

DYNAMIC MODELLING USING GENETIC PROGRAMMING

Mark Hinchliffe and Mark Willis

m.p.hinchliffe@ncl.ac.uk, mark.willis@ncl.ac.uk
Advanced Control Group, Department of Chemical and Process Engineering

University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

Abstract: In this contribution we demonstrate how a Single Objective Genetic
Programming (SOGP) and a Multi-Objective Genetic Programming (MOGP) algorithm
can be used to evolve accurate input-output models of dynamic processes. Having
described the algorithms, two case studies are used to compare their performance with
that of Filter-Based Neural Networks (FBNNs). For the examples given, the models
generated using GP have comparable prediction performance to the FBNN. However,
performance with respect to additional modelling criteria can be improved using the
MOGP algorithm. Copyright © 2002 IFAC

Keywords: Genetic algorithms, dynamic modelling, multi-objective optimisation

1. INTRODUCTION
Previous work (McKay et al., 1997, 2000) has shown
that Genetic Programming (GP) is able to evolve
accurate input-output models of steady-state process
systems. However, it is often necessary for the
engineer to be able to accurately predict the dynamic
response of the process. Therefore, the aim of this
work is to extend the use of the GP methodology to
the modelling of dynamic process systems.

A study of the literature shows that there are several
ways to modify the GP framework so that it can be
applied to dynamic modelling:

1) Use a GP algorithm to evolve sets of differential
equations, e.g. see Cao et al (1999). This can be
time-consuming, as it requires multiple sets of
differential equations to be solved.
2) Use a terminal set containing feedback loops and
recursive nodes (Bettenhausen and Marrenbach,
1995). This technique has been successfully applied
to the modelling of biotechnological processes,
although the computing requirements again appear to
be rather high.
3) The output may be represented as a function of
input and output values shifted back in time (time
series approach). GP has been used to develop time
series models in a number of research areas. Notable
references include, Fleming and Rodríguez-Vázquez
(1998) who applied a multi-objective GP algorithm
to the development of Non-linear Auto-Regressive
Moving Average eXogeneous (NARMAX) models

for gas turbine engine identification and Kulkarni et
al. (1999) who used GP to develop ARX models of
industrial processes including a CSTR and a heat
exchanger.

The time series form of model is used in this work.
The novelty of the work is that we not only show
how a SOGP may be applied to dynamic systems
modelling but also extend the work to consider the
use of a MOGP. Furthermore, using two case studies,
we demonstrate the modelling capabilities of our
algorithms in comparison to that of a FBNN.

2. SOGP ALGORITHM

We adopt a multi-basis function (MBF) approach
where each population member is a linear sum of a
number of non-linear basis functions,

∑
=

−
−−+=

m

1j

1
1k1kjj0k)q,y,(ugaay ˆˆ (1)

The gj are m basis functions (m was chosen as
uniformly random integer in the range [1 10]), which
are functions of the process input, u, and the process
output, y. q-1 is the back-shift operator (for example,
q-1yk=yk-1) and is used to indicate that a time series of
values are used. aj are constants, a0 is a bias or offset
term and k represents the current time sample. In
order to develop models that can be used for long-
term prediction, we assume that the actual process
output values are unknown and cannot
be used as model inputs. The predicted output values

 generated by the model are used

),...,(1 τ−− kk yy

)ˆ,...,ˆ(1 τ−− kk yy

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

mailto:m.p.hinchliffe@ncl.ac.uk
mailto:mark.willis@ncl.ac.uk

instead. This form of prediction is sometimes
referred to as ‘pure’ prediction (Henson and Seborg,
1997) as the method only requires the process inputs
in order to predict the output over the entire data set.
This is especially important if the model is to be used
for carrying out process simulations, as the output
must be assumed unknown. As equation (1) is linear
in the parameters, the constants (a0,…,an) can be
optimised using the method of recursive least squares
(RLS). It is possible that the input-output data could
be analysed before any runs were undertaken in order
to estimate system time delays and determine
appropriate orders for the auto-regressive and input
terms required by the model. However, this would
mean that GP was not operating as an automated
modelling tool, making few a priori assumptions
about the underlying structure of the model. A more
elegant approach is to provide the algorithm with
building blocks that allow the number of process lags
to be adjusted as the run proceeds. This can be
accomplished by including the back-shift operator,
q-1, in the function set. Dynamic models can then be
created from a smaller terminal set consisting solely
of the process input(s) and model output shifted by a
single time sample. Nesting of back-shift operators
enables the algorithm to build the necessary time-
shifted input and output terms without having to
precisely define the number of lags at the start of the
run. The GP algorithm settings and parameters are
summarised in Table 1.

Table 1. GP algorithm settings and parameters.
Function set +,-,/,*,^,SQRT,SQR,EXP,

LOG,q0,q1,q2,q3

Terminal set u scaled in range [0 1], y
Constants in range [-10 10]

Crossover 0.7
Mutation 0.2
Direct reproduction 0.1
Generation gap 90%
Fitness measure RMS error
Selection method Linear ranking.
Maximum tree size 500 characters.

The function set contains the primitives +, -, /, *, ^
(power), SQRT (square root), SQR (square), EXP
(exponential) and LOG (logarithm). The q1, q2 q3
represent the back-shift operators q-1, q-2 and q-3 and
u and y are the input and output terminals, uk-1 and

 respectively. As it is convenient to simply
assign a back-shift operator to every input/output
terminal appearing in a newly generated model
equation, it is necessary to include an operator that
does not perform a time-shift. This ensures that there
is a uniform distribution of time-shifts in the initial
population and allows model terms with a single
process lag to be produced (e.g. q0(u1)=u

1ˆ −ky

k-1).
Apart from the terminal and function sets, the other
algorithm features and settings are the same as those
used for steady-state modelling, including the use of
high-level crossover which enables the algorithm to
exchange whole basis functions and adapt the total

number of functions present in each population
member. Low-level crossover provides a mechanism
for subtrees to be transferred between individuals.
(see Hinchliffe, 2001 for further details)

3. FILTER-BASED FEEDFORWARD NEURAL
NETWORKS

The simplest way to use standard feedforward
artificial neural networks for dynamic modelling is to
use a time history of input variables, uk-1,uk-2,…uk-n,
as inputs to the network. This means that each
network input consists of a process input variable
shifted back in time (Bhat and McAvoy, 1989). This
is similar to the Finite Impulse Response (FIR)
approach to dynamic modelling and therefore has the
disadvantage that a long time history of inputs may
be required to enable the network to accurately
capture the dynamics of the process. This means that
a large number of inputs may be required giving rise
to a complex network with a large number of
parameters to be optimised. This will make network
training more time consuming due to the increased
complexity of the problem.

These problems can be avoided by using a FBNN
(e.g. see Turner et al. 1996), where the hidden layer
neurons are augmented with first order transfer
functions or “filters” with a gain of one. The process
of training filter-based neural networks requires the
optimisation of the filter constants as well as the
weights and bias values. This was carried out using a
Levenberg-Marquardt training algorithm.

4. CASE STUDY 1
The following system equation was used to generate
input-output data for the purpose of testing the
modelling capabilities of the SOGP and MOGP
algorithms,

112
2

2
1

121

1
)5.2(

−
−−

−−− +
++
+

= k
kk

kkk
k u

yy
yyyy (2)

The input signal, u, was generated as a multi-level
pseudo random signal of 400 data points in the range
[0 5]. Two hundred of these data points were used for
training and the remaining 200 data points were used
for model validation. Due to the probabilistic nature
of the GP algorithm, and because the training of
FBNNs can be affected by the random initialisation
of network weights, multiple runs of each algorithm
were carried out so that a fair comparison of the two
algorithms can be made. Each algorithm was run 20
times. The GP algorithm had a population size of 100
and was run for 50 generations. The neural network
runs used an ‘early stopping’ criteria to stop training
when the RMS error on the validation data increased.
The FBNN algorithm was run using network
architectures ranging from 1 to 15 hidden layer
neurons. The GP model with the lowest validation
RMS error is shown in Table (2). Equation (3) shows
the first basis function in the form it was stored by
the GP algorithm (with some simplification to
improve readability).

-0.4848*q1(q2(q1(q2(q1(q3(u)
+q0(-9.3343e-2))))+3.8604))-1.871 (3)

The GP algorithm has combined a series of back-
shift operators in order to model the system time
delay (the uk--11 term is constructed from a
combination of six back-shift operators).

Table 2. SOGP model with lowest validation RMS
error.

Basis Functions Parameters
698.34848.0 11 −− −ku -1.068
562.54848.0 12 −− −ku -0.3091

))ˆˆ)exp((
ˆ)(ˆˆ(

3234

221

−−−−

−−−

−−
−+

kkkk

kkk

yyuu
yyy

 -0.01907

12 ˆ4848.0ˆ4848.0 −− +− kk yy 0.3091
860.3ˆ 2 −−ky 0.2659

32 ˆˆ −− + kk yy 0.04660
0.1482 -2.549
Bias -4.259

In this case study, it is difficult to make an unbiased
comparison between the neural network and the GP
algorithm. The FBNN does not have the ability to
directly model the system time delay (unless the
appropriate time shifted value of the process input is
supplied) and will be at a disadvantage when
compared to the GP algorithm. The easiest way to
overcome this problem is to present the network with
input data delayed by the correct sample delay.
However, this will hand the advantage to the neural
network, as the GP algorithm has to use a
combination of back-shift operators and uk-1
terminals to identify the time delay. One solution is
to carry out two batches of network runs, with and
without the time delay removed, and observe the
relative performance of the GP algorithm.

Table 3 provides a numerical summary of the results
obtained. As expected, the neural network with time
delay compensation (FBNN#2) easily outperforms
the network that does not have the time delay
removed (FBNN#1). The GP algorithm produced a
wide range of prediction errors, with the worst values
lying in the same region as those generated by
FBNN#1 and the lowest errors approaching the
accuracy of FBNN#2. Although the GP algorithm
was able to achieve performance comparable to
FBNN#2 in a fraction of the runs, the algorithm is
also capable of producing unacceptably poor results.

Table 3. Validation data prediction errors (1-9-1 and
1-13-1 refer to the number of neurons in each

network layer).

 Min Mean Max

SOGP 0.0047 0.0238 0.0622

FBNN#1 (1-9-1) 0.0390 0.0477 0.0549

FBNN#2 (1-13-1) 0.0033 0.0064 0.0106

This should be expected, as the algorithm has the
difficult task of evolving a suitable model structure
from elementary building blocks. However, the fact
that the process time delay does not have to be
explicitly accounted for gives the GP algorithm a
distinct advantage over neural networks.

5. MOGP ALGORITHM

Process model development is a task that may
require a number of other factors or ‘objectives’ to be
considered before the final solution is reached.
Examples of possible objectives include measures of
model parsimony, such as the number of model
parameters and the maximum number of process
lags. Additional or alternative measures of prediction
error could be considered, for instance, residual
variance, one-step ahead and long-term prediction
errors. Model validation criteria such as residual
correlation tests and statistical information criteria
could also be incorporated. An advantage of using
GP for model development is that the algorithm can
be easily modified to incorporate additional measures
of model performance. The most significant
difference between the MOGP and SOGP algorithms
is that the former makes use of a Pareto based
ranking scheme with fitness sharing.

Pareto-based techniques have become increasingly
popular in recent years. This is especially true for
real world scientific and engineering applications to
which 90% of Pareto based multi-objective
evolutionary algorithm (MOEA) applications are
applied (Van Veldhuizen, 2000). The family of
solutions to a multi-objective optimisation problem is
said to be Pareto-optimal if, for each individual, an
improvement in performance in one objective
dimension cannot be achieved without degrading
performance with respect to other objectives.

Unfortunately, for real problems, the set of Pareto-
optimal solutions for a particular problem may be
very large. It will therefore be difficult to effectively
sample all regions of the trade-off surface using a GP
algorithm that has a relatively small population size.
This problem can be overcome by using the goal
based Pareto ranking method proposed by Fonseca
and Fleming (1995). This enables the user to specify
desired levels of performance in each objective
domain and direct the search towards the required
region of the search space.

Although evolutionary algorithms such as GP are
capable of simultaneously exploring different regions
of the solution space, genetic drift may cause the
algorithm to eventually converge around one region
of the trade-off surface. To counteract the effects of
this phenomenon and promote diversity, niche
induction methods may be used. One such method is
that of fitness sharing where individuals that are
closer to each other mutually decrease each other’s
fitness. Consequently, individuals that are more
isolated are given a greater chance of reproducing.

Further details of the MOGP algorithm may be found
in Hinchliffe, 2001.

6. MODEL RESIDUALS

The residuals of a model represent the difference
between the predicted and actual values of the
process output. Consequently, the presence of any
information remaining in the residuals is an
indication that the proposed model may be
inadequate in some way. The existence of such
information can be investigated by using a number of
techniques. For example, some tests measure the
correlations between residuals and inputs(s) and the
autocorrelation of the residuals. Other approaches
include checks for normally distributed residuals and
the number of zero crossings (changes of sign) of the
residual sequence. These techniques are usually
applied after the model structure and associated
parameters have been identified. A potential
advantage of using a MOGP approach is that
performance with respect to the tests will be taken
into account throughout the model evolution process.
Although any combination of these criteria could be
used as objectives within a MOGP framework, the
correlation tests outlined by Billings and Voon
(1986) were a used. The tests are as follows,

(a))()(τδτφεε = (b) 0)(=τφ εu (c) 0)(=τφεεu (4)
(d) 0)()'(2 =τφ

εu
 (e) 0)(22)'(=τφ

εu
 τ∀

φxy signifies the correlation between variables x and
y, τ is the time-shift and δ is the Kronecker delta
function. The first two tests are the standard
autocorrelation and cross correlation functions used
in linear system identification. The remaining higher
order tests are designed to detect missing non-linear
terms by examining the correlations between odd and
even powers of the inputs and residuals. The
correlation tests are usually performed at the 95%
confidence level. This means that the residuals will
contain no linear or non-linear structure if the
absolute value of each test statistic is not greater than

N/96.1 , where N is the number of data points. The
correlation test objective value (Φ) for a MOGP
model can then be found by taking the sum of the test
values that exceed the 95% confidence limit.
Defining , , , εεφφ =1 εφφ u=2 uεεφφ =3 ε

φφ
)'(4 2u

= and

22)'(5 ε
φφ u= yields,

τ

()∑∑
= =

−=Φ
5

1 0

/96.1)(
i j

i

max

Njφ if 0,1 ≠= ji (5)

The maximum time-shift, maxτ , was set to twenty
process lags for all of the correlation tests carried out
in this work. In practice, the results of the tests must
be analysed carefully to ensure that maxτ is not less
than the maximum lag required for an accurate
model.

Fig. 1. Distribution of final generation objective

values for SOGP.

Fig. 2. Distribution of final generation objective
values for MOGP.

The distributions of the objective values taken from
the final generations of each set of algorithm runs are
shown in Figures (1) and (2). It can be seen the
SOGP algorithm was able to generate models that
have low RMS errors but do not necessarily perform
adequately in terms of the correlation tests. The goal
based ranking scheme employed by the MOGP
algorithm has enabled the algorithm to evolve more
solutions in the desired region of the search space.
The distribution of the MOGP objective values
shows that the algorithm has generated a larger
number of individuals that have low RMS errors and
have acceptable correlation test performance. Before
the ‘best’ model can be chosen from the non-
dominated set of candidate solutions, the
performance on the validation data must also be
taken into consideration.

Table 4. non-dominated individuals obtained using
MOGP with preference information.

Model
no. RMS Correlation

tests
Validation

RMS
1 0.002309 3.3707 0.003507
2 0.002353 3.1662 0.003579
3 0.002388 1.3484 0.003234
4 0.002423 0.7742 0.003450
5 0.002720 0.6392 0.003447
6 0.002825 0.4598 0.003691
7 0.002859 0.2848 0.003645
8 0.002908 0.1603 0.003838
9 0.003434 0.0667 0.004079

10 0.003468 0.0158 0.004172
11 0.003938 0 0.004588

Table 4 shows objective values and validation RMS
errors for the non-dominated set of MOGP models.
Model 3 provides the most accurate prediction on the
validation data, with an RMS error of 0.00323
(compared to the best validation RMS of 0.00475 for
SOGP). Arguably, model 4 provides a better
compromise solution. The model has slightly higher
training and validation RMS error values than model
3, but has a significantly lower correlation test score.
Figure 3. shows the results of the five correlation
tests for this model (+/- 95% confidence limits are
shown as horizontal dashed lines).

Fig. 3. Correlation test plot for model 4

(RMS=0.00242, Ф=0.774).

The correlation objective value is greater than zero
because of the first test, which tests for the presence
of autocorrelated residuals. It is conjectured that
autocorrelation is indicated as the model contains
past outputs of the model and not past process
outputs. This approach may introduce correlations in
the residuals and make it more difficult to completely
satisfy all of the tests.

7. CASE STUDY 2 – COOKING EXTRUDER
The aim of this exercise is to develop an input-output
model for the degree of starch gelatinisation in an
industrial cooking extruder. There are four inputs
available for model development: feed flowrate (Qf),
feed moisture content (Mf), screw speed (ω) and the
feed temperature (Tf). A data set comprising 400
points was used for training purposes and a further
195 data points were used for model validation. The
distributions obtained using the FBNN and SOGP
algorithms are given in Fig.4. Although the
minimum, mean and maximum RMS values are
slightly lower for the neural network, a one-sided
Kolmogorov-Smirnov test (at the 95% confidence
level) indicates that the difference between the
distributions is not significant.

Fig. 4 Validation RMS error distributions.

Fig. 5. compares the performance of the neural
network and SOGP algorithms in terms of the
computational effort required to achieve a given
validation RMS error (the error bars indicate +/- one
standard deviation). At higher RMS error values, the
SOGP algorithm outperforms the neural network.
This could be because the RLS optimisation routine
enables the SOGP algorithm to raise the performance
of the initial population members to a reasonable
level without consuming a particularly large amount
of processing power. The neural network may
initially produce poor predictions due the large
number of model parameters, which all have to be
initialised probabilistically.

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

1.E+07 1.E+08 1.E+09
Estimated f lops

Va
lid

at
io

n
R

M
S

Neural Netw ork

MBF-GP

Fig. 5 Comparison of computational effort required

by FBNN and SOGP algorithms.

As the validation RMS error decreases, the neural
network begins to outperform the GP algorithm,
requiring fewer FLOPS to achieve the same RMS
error. The difference between the algorithms
continues to increase as the validation RMS errors
are reduced. This could be because neural network
training is essentially a parameter optimisation
exercise. The GP algorithm has to explore a wide
range of different model structures, performing
parameter optimisation on each candidate solution,
and is therefore unlikely to be as efficient as the
neural network. One of the disadvantages of using
neural networks is that a wide range of network
architectures has to be investigated in order to obtain
the best set of model predictions. If the
computational effort required to carry out these
additional runs is taken into consideration, the
difference between the algorithms is less significant
and GP becomes a more attractive possibility.

Fig. 6. Distribution of final generation objective

values for SOGP.

To determine the advantage gained by using the
MOGP 20, further runs were performed with a
population size of 100 individuals for 100
generations.

Fig. 7. Distribution of final generation objective

values for MOGP.

The distributions of the individuals evolved by the
algorithms are compared in Figure (6) and (7). It can
be seen the SOGP algorithm was able to generate
models that have low RMS errors but do not
necessarily perform adequately in terms of the
correlation tests. The goal based ranking scheme
employed by the MOGP algorithm has enabled the
algorithm to evolve more solutions with lower
correlation objective values. The non-dominated
solutions have comparable RMS errors to the FBNN.
However, when the performance with respect to the
correlation tests is considered, the MOGP algorithm
outperforms the neural network with a mean
objective value of 1.6 compared to 12.3 for the
neural network.

7. DISCUSSION AND CONCLUSIONS

This paper has demonstrated, using two examples,
how performance with respect to additional
modelling criteria can be improved using a MOGP
algorithm. A disadvantage of using the correlation
tests is that the additional processing time becomes
significant as the number of process inputs increases.
This is because the cross correlation tests have to be
repeated for each process input. One alternative is to
use tests based only on the residuals and the process
output. Billings and Zhu (1994) demonstrated how
such tests could be used to reduce the number of
correlations that have to be evaluated.

While GP may not provide a significant increase in
model accuracy when compared to more established
techniques such as neural networks, the algorithm
has more of an advantage when applied to multi-
objective problems. The parallel nature of GP means
that the algorithm can evolve a set of candidate
solutions with varying levels of performance in each
objective. Real world engineering problems typically
involve a number of criteria that must be satisfied
before a successful solution can be achieved.
Consequently, there has been a large increase in the
application of MOEAs to engineering problems and
it is likely that this trend will continue.

8. REFERENCES

Bettenhausen, K.D., Marrenbach, P.(1995). Self-
Organising Modelling of Biotechnological Batch
and Fed-batch Fermentations, EUROSIM ’95.

Bhat, N. and McAvoy, T.J.(1989).Use of neural nets
for dynamic modelling and control of chemical
process systems. ACC, 1342 – 1347.

Billings, S. A. and W. S. F. Voon, (1986),
Correlation based model validation tests for non-
linear models, International Journal of Control. 44,
235-244.

Billings, S.A. and Zhu, Q.M. (1994). Nonlinear
Model Validation Using Correlation Tests.
International Journal of Control, 60(6): 1107-1120

Cao, H., Yu, J., Kang, L., Chen, Yuping, Chen,
Yongyan (1999). The kinetic evolutionary
modelling of complex systems of chemical
reactions. Computers & Chemistry. 23, 143-152.

Fonseca, C. M., Fleming, P. J., (1995). Multi-
objective Genetic Algorithms Made Easy:
Selection, Sharing and Mating Restriction,
GALESIA.

Henson, M. A., Seborg, D. E., (1997), Nonlinear
Process Control, Prentice Hall.

Hinchliffe, M.P. (2001) Dynamic Modelling using
Genetic Programming, PhD Thesis Uni. of
Newcastle, UK.

Kulkarni, B. D., Tambe, S. S., Dahule, R. K.,
Yadavalli, V. K.(1999) Consider Genetic
Programming for Process Identification.
Hydrocarbon Processing 78: 89-97.

McKay, B., Willis, M.J., Barton, G.(1997). Steady-
state Modelling of Chemical Process Systems
Using Genetic Programming. Computers and
Chemical Engineering, 21, 981-996.

McKay, B., Willis, M.J., Searson, D.P., Montague,
G.A. (2000) Nonlinear Continuum Regression: an
evolutionary approach. Trans. Inst. M.C. 22, 125-
140.

Rodriguez-Vazquez, K., Fleming, P.J.(1998). Multi-
objective Genetic Programming for Gas Turbine
Engine Model Identification. UKACC
CONTROL’98.

Turner, P., Montague, G.A. Morris, A.J. (1996)
‘Non-linear and direction dependant dynamic
process modelling using neural networks’, IEE
Process Control Theory and Applications. 143, 44-
48.

Van Veldhuizen, D.A. Lamont, G.B. (2000),
Multiobjective Evolutionary Algorithms Analyzing
the State-of-the-Art, Evolutionary Computation
8(2): 125-147

	2. SOGP ALGORITHM
	4. CASE STUDY 1

