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Abstract: In this contribution we demonstrate how a Single Objective Genetic 
Programming (SOGP) and a Multi-Objective Genetic Programming (MOGP) algorithm 
can be used to evolve accurate input-output models of dynamic processes. Having 
described the algorithms, two case studies are used to compare their performance with 
that of Filter-Based Neural Networks (FBNNs). For the examples given, the models 
generated using GP have comparable prediction performance to the FBNN. However, 
performance with respect to additional modelling criteria can be improved using the 
MOGP algorithm. Copyright © 2002 IFAC 
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1. INTRODUCTION 
Previous work (McKay et al., 1997, 2000) has shown 
that Genetic Programming (GP) is able to evolve 
accurate input-output models of steady-state process 
systems. However, it is often necessary for the 
engineer to be able to accurately predict the dynamic 
response of the process. Therefore, the aim of this 
work is to extend the use of the GP methodology to 
the modelling of dynamic process systems.  

A study of the literature shows that there are several 
ways to modify the GP framework so that it can be 
applied to dynamic modelling: 

1) Use a GP algorithm to evolve sets of differential 
equations, e.g. see Cao et al (1999). This can be 
time-consuming, as it requires multiple sets of 
differential equations to be solved. 
2) Use a terminal set containing feedback loops and 
recursive nodes (Bettenhausen and Marrenbach, 
1995). This technique has been successfully applied 
to the modelling of biotechnological processes, 
although the computing requirements again appear to 
be rather high. 
3) The output may be represented as a function of 
input and output values shifted back in time (time 
series approach). GP has been used to develop time 
series models in a number of research areas. Notable 
references include, Fleming and Rodríguez-Vázquez 
(1998) who applied a multi-objective GP algorithm 
to the development of Non-linear Auto-Regressive 
Moving Average eXogeneous (NARMAX) models 

for gas turbine engine identification and Kulkarni et 
al. (1999) who used GP to develop ARX models of 
industrial processes including a CSTR and a heat 
exchanger.  

The time series form of model is used in this work. 
The novelty of the work is that we not only show 
how a SOGP may be applied to dynamic systems 
modelling but also extend the work to consider the 
use of a MOGP. Furthermore, using two case studies, 
we demonstrate the modelling capabilities of our 
algorithms in comparison to that of a FBNN.  

2. SOGP ALGORITHM 

We adopt a multi-basis function (MBF) approach 
where each population member is a linear sum of a 
number of non-linear basis functions, 
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The gj are m basis functions (m was chosen as 
uniformly random integer in the range [1 10]), which 
are functions of the process input, u, and the process 
output, y. q-1 is the back-shift operator (for example, 
q-1yk=yk-1) and is used to indicate that a time series of 
values are used. aj are constants, a0 is a bias or offset 
term and k represents the current time sample. In 
order to develop models that can be used for long-
term prediction, we assume that the actual process 
output values  are unknown and cannot 
be used as model inputs. The predicted output values 

 generated by the model are used 
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instead.  This form of prediction is sometimes 
referred to as ‘pure’ prediction (Henson and Seborg, 
1997) as the method only requires the process inputs 
in order to predict the output over the entire data set. 
This is especially important if the model is to be used 
for carrying out process simulations, as the output 
must be assumed unknown. As equation (1) is linear 
in the parameters, the constants (a0,…,an) can be 
optimised using the method of recursive least squares 
(RLS). It is possible that the input-output data could 
be analysed before any runs were undertaken in order 
to estimate system time delays and determine 
appropriate orders for the auto-regressive and input 
terms required by the model. However, this would 
mean that GP was not operating as an automated 
modelling tool, making few a priori assumptions 
about the underlying structure of the model. A more 
elegant approach is to provide the algorithm with 
building blocks that allow the number of process lags 
to be adjusted as the run proceeds. This can be 
accomplished by including the back-shift operator,  
q-1, in the function set. Dynamic models can then be 
created from a smaller terminal set consisting solely 
of the process input(s) and model output shifted by a 
single time sample. Nesting of back-shift operators 
enables the algorithm to build the necessary time-
shifted input and output terms without having to 
precisely define the number of lags at the start of the 
run. The GP algorithm settings and parameters are 
summarised in Table 1. 

Table 1. GP algorithm settings and parameters. 
Function set +,-,/,*,^,SQRT,SQR,EXP, 

LOG,q0,q1,q2,q3
 

Terminal set u scaled in range [0 1], y 
Constants in range [-10 10]  

Crossover 0.7 
Mutation 0.2 
Direct reproduction  0.1 
Generation gap 90% 
Fitness measure RMS error 
Selection method Linear ranking. 
Maximum tree size 500 characters. 

The function set contains the primitives +, -, /, *, ^ 
(power), SQRT (square root), SQR (square), EXP 
(exponential) and LOG (logarithm). The q1, q2 q3 
represent the back-shift operators q-1, q-2 and q-3 and 
u and y are the input and output terminals, uk-1 and 

 respectively. As it is convenient to simply 
assign a back-shift operator to every input/output 
terminal appearing in a newly generated model 
equation, it is necessary to include an operator that 
does not perform a time-shift. This ensures that there 
is a uniform distribution of time-shifts in the initial 
population and allows model terms with a single 
process lag to be produced (e.g. q0(u1)=u

1ˆ −ky

k-1).  
Apart from the terminal and function sets, the other 
algorithm features and settings are the same as those 
used for steady-state modelling, including the use of 
high-level crossover which enables the algorithm to 
exchange whole basis functions and adapt the total 

number of functions present in each population 
member. Low-level crossover provides a mechanism 
for subtrees to be transferred between individuals. 
(see Hinchliffe, 2001 for further details)  
 

3. FILTER-BASED FEEDFORWARD NEURAL 
NETWORKS 

 
The simplest way to use standard feedforward 
artificial neural networks for dynamic modelling is to 
use a time history of input variables, uk-1,uk-2,…uk-n, 
as inputs to the network. This means that each 
network input consists of a process input variable 
shifted back in time (Bhat and McAvoy, 1989). This 
is similar to the Finite Impulse Response (FIR) 
approach to dynamic modelling and therefore has the 
disadvantage that a long time history of inputs may 
be required to enable the network to accurately 
capture the dynamics of the process. This means that 
a large number of inputs may be required giving rise 
to a complex network with a large number of 
parameters to be optimised. This will make network 
training more time consuming due to the increased 
complexity of the problem. 

These problems can be avoided by using a FBNN 
(e.g. see Turner et al. 1996), where the hidden layer 
neurons are augmented with first order transfer 
functions or “filters” with a gain of one. The process 
of training filter-based neural networks requires the 
optimisation of the filter constants as well as the 
weights and bias values. This was carried out using a 
Levenberg-Marquardt training algorithm. 

4. CASE STUDY 1 
The following system equation was used to generate 
input-output data for the purpose of testing the 
modelling capabilities of the SOGP and MOGP 
algorithms, 
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The input signal, u, was generated as a multi-level 
pseudo random signal of 400 data points in the range 
[0 5]. Two hundred of these data points were used for 
training and the remaining 200 data points were used 
for model validation. Due to the probabilistic nature 
of the GP algorithm, and because the training of 
FBNNs can be affected by the random initialisation 
of network weights, multiple runs of each algorithm 
were carried out so that a fair comparison of the two 
algorithms can be made. Each algorithm was run 20 
times. The GP algorithm had a population size of 100 
and was run for 50 generations. The neural network 
runs used an ‘early stopping’ criteria to stop training 
when the RMS error on the validation data increased. 
The FBNN algorithm was run using network 
architectures ranging from 1 to 15 hidden layer 
neurons. The GP model with the lowest validation 
RMS error is shown in Table (2). Equation (3) shows 
the first basis function in the form it was stored by 
the GP algorithm (with some simplification to 
improve readability).  



 
-0.4848*q1(q2(q1(q2(q1(q3(u) 
+q0(-9.3343e-2))))+3.8604))-1.871 (3) 

The GP algorithm has combined a series of back-
shift operators in order to model the system time 
delay (the uk--11 term is constructed from a 
combination of six back-shift operators). 

Table 2. SOGP model with lowest validation RMS 
error. 

Basis Functions Parameters 
698.34848.0 11 −− −ku  -1.068 
562.54848.0 12 −− −ku  -0.3091 
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 -0.01907 

12 ˆ4848.0ˆ4848.0 −− +− kk yy  0.3091 
860.3ˆ 2 −−ky  0.2659 

32 ˆˆ −− + kk yy  0.04660 
0.1482 -2.549 
Bias -4.259 

In this case study, it is difficult to make an unbiased 
comparison between the neural network and the GP 
algorithm. The FBNN does not have the ability to 
directly model the system time delay (unless the 
appropriate time shifted value of the process input is 
supplied) and will be at a disadvantage when 
compared to the GP algorithm. The easiest way to 
overcome this problem is to present the network with 
input data delayed by the correct sample delay. 
However, this will hand the advantage to the neural 
network, as the GP algorithm has to use a 
combination of back-shift operators and uk-1 
terminals to identify the time delay. One solution is 
to carry out two batches of network runs, with and 
without the time delay removed, and observe the 
relative performance of the GP algorithm.  

Table 3 provides a numerical summary of the results 
obtained. As expected, the neural network with time 
delay compensation (FBNN#2) easily outperforms 
the network that does not have the time delay 
removed (FBNN#1). The GP algorithm produced a 
wide range of prediction errors, with the worst values 
lying in the same region as those generated by 
FBNN#1 and the lowest errors approaching the 
accuracy of FBNN#2. Although the GP algorithm 
was able to achieve performance comparable to 
FBNN#2 in a fraction of the runs, the algorithm is 
also capable of producing unacceptably poor results. 

Table 3. Validation data prediction errors (1-9-1 and 
1-13-1 refer to the number of neurons in each 

network layer). 

 Min Mean Max 

SOGP 0.0047 0.0238 0.0622 

FBNN#1 (1-9-1) 0.0390 0.0477 0.0549 

FBNN#2 (1-13-1) 0.0033 0.0064 0.0106 

This should be expected, as the algorithm has the 
difficult task of evolving a suitable model structure 
from elementary building blocks. However, the fact 
that the process time delay does not have to be 
explicitly accounted for gives the GP algorithm a 
distinct advantage over neural networks. 
 

5. MOGP ALGORITHM 

Process model development is a task that may 
require a number of other factors or ‘objectives’ to be 
considered before the final solution is reached. 
Examples of possible objectives include measures of 
model parsimony, such as the number of model 
parameters and the maximum number of process 
lags. Additional or alternative measures of prediction 
error could be considered, for instance, residual 
variance, one-step ahead and long-term prediction 
errors. Model validation criteria such as residual 
correlation tests and statistical information criteria 
could also be incorporated. An advantage of using 
GP for model development is that the algorithm can 
be easily modified to incorporate additional measures 
of model performance. The most significant 
difference between the MOGP and SOGP algorithms 
is that the former makes use of a Pareto based 
ranking scheme with fitness sharing. 
 
Pareto-based techniques have become increasingly 
popular in recent years. This is especially true for 
real world scientific and engineering applications to 
which 90% of Pareto based multi-objective 
evolutionary algorithm (MOEA) applications are 
applied (Van Veldhuizen, 2000). The family of 
solutions to a multi-objective optimisation problem is 
said to be Pareto-optimal if, for each individual, an 
improvement in performance in one objective 
dimension cannot be achieved without degrading 
performance with respect to other objectives.  
 
Unfortunately, for real problems, the set of Pareto-
optimal solutions for a particular problem may be 
very large. It will therefore be difficult to effectively 
sample all regions of the trade-off surface using a GP 
algorithm that has a relatively small population size. 
This problem can be overcome by using the goal 
based Pareto ranking method proposed by Fonseca 
and Fleming (1995). This enables the user to specify 
desired levels of performance in each objective 
domain and direct the search towards the required 
region of the search space. 
 
Although evolutionary algorithms such as GP are 
capable of simultaneously exploring different regions 
of the solution space, genetic drift may cause the 
algorithm to eventually converge around one region 
of the trade-off surface. To counteract the effects of 
this phenomenon and promote diversity, niche 
induction methods may be used. One such method is 
that of fitness sharing where individuals that are 
closer to each other mutually decrease each other’s 
fitness. Consequently, individuals that are more 
isolated are given a greater chance of reproducing. 



 
Further details of the MOGP algorithm may be found 
in Hinchliffe, 2001. 
 

6. MODEL RESIDUALS 

The residuals of a model represent the difference 
between the predicted and actual values of the 
process output. Consequently, the presence of any 
information remaining in the residuals is an 
indication that the proposed model may be 
inadequate in some way. The existence of such 
information can be investigated by using a number of 
techniques. For example, some tests measure the 
correlations between residuals and inputs(s) and the 
autocorrelation of the residuals. Other approaches 
include checks for normally distributed residuals and 
the number of zero crossings (changes of sign) of the 
residual sequence. These techniques are usually 
applied after the model structure and associated 
parameters have been identified. A potential 
advantage of using a MOGP approach is that 
performance with respect to the tests will be taken 
into account throughout the model evolution process. 
Although any combination of these criteria could be 
used as objectives within a MOGP framework, the 
correlation tests outlined by Billings and Voon 
(1986) were a used. The tests are as follows, 
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φxy signifies the correlation between variables x and 
y, τ is the time-shift and δ is the Kronecker delta 
function. The first two tests are the standard 
autocorrelation and cross correlation functions used 
in linear system identification. The remaining higher 
order tests are designed to detect missing non-linear 
terms by examining the correlations between odd and 
even powers of the inputs and residuals. The 
correlation tests are usually performed at the 95% 
confidence level. This means that the residuals will 
contain no linear or non-linear structure if the 
absolute value of each test statistic is not greater than 

N/96.1 , where N is the number of data points. The 
correlation test objective value (Φ) for a MOGP 
model can then be found by taking the sum of the test 
values that exceed the 95% confidence limit. 
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The maximum time-shift, maxτ , was set to twenty 
process lags for all of the correlation tests carried out 
in this work. In practice, the results of the tests must 
be analysed carefully to ensure that maxτ  is not less 
than the maximum lag required for an accurate 
model.  

 
Fig. 1. Distribution of final generation objective 

values for SOGP. 

 
Fig. 2. Distribution of final generation objective 
values for MOGP. 

The distributions of the objective values taken from 
the final generations of each set of algorithm runs are 
shown in Figures (1) and (2). It can be seen the 
SOGP algorithm was able to generate models that 
have low RMS errors but do not necessarily perform 
adequately in terms of the correlation tests. The goal 
based ranking scheme employed by the MOGP 
algorithm has enabled the algorithm to evolve more 
solutions in the desired region of the search space. 
The distribution of the MOGP objective values 
shows that the algorithm has generated a larger 
number of individuals that have low RMS errors and 
have acceptable correlation test performance. Before 
the ‘best’ model can be chosen from the non-
dominated set of candidate solutions, the 
performance on the validation data must also be 
taken into consideration.  

Table 4. non-dominated individuals obtained using 
MOGP with preference information. 

Model 
no. RMS Correlation 

tests 
Validation 

RMS 
1 0.002309 3.3707 0.003507 
2 0.002353 3.1662 0.003579 
3 0.002388 1.3484 0.003234 
4 0.002423 0.7742 0.003450 
5 0.002720 0.6392 0.003447 
6 0.002825 0.4598 0.003691 
7 0.002859 0.2848 0.003645 
8 0.002908 0.1603 0.003838 
9 0.003434 0.0667 0.004079 

10 0.003468 0.0158 0.004172 
11 0.003938 0 0.004588 



 
Table 4 shows objective values and validation RMS 
errors for the non-dominated set of MOGP models. 
Model 3 provides the most accurate prediction on the 
validation data, with an RMS error of 0.00323 
(compared to the best validation RMS of 0.00475 for 
SOGP). Arguably, model 4 provides a better 
compromise solution. The model has slightly higher 
training and validation RMS error values than model 
3, but has a significantly lower correlation test score. 
Figure 3. shows the results of the five correlation 
tests for this model (+/- 95% confidence limits are 
shown as horizontal dashed lines). 

 
Fig. 3. Correlation test plot for model 4 

(RMS=0.00242, Ф=0.774). 

The correlation objective value is greater than zero 
because of the first test, which tests for the presence 
of autocorrelated residuals. It is conjectured that 
autocorrelation is indicated as the model contains 
past outputs of the model and not past process 
outputs. This approach may introduce correlations in 
the residuals and make it more difficult to completely 
satisfy all of the tests.  

7. CASE STUDY 2 – COOKING EXTRUDER 
The aim of this exercise is to develop an input-output 
model for the degree of starch gelatinisation in an 
industrial cooking extruder. There are four inputs 
available for model development: feed flowrate (Qf), 
feed moisture content (Mf), screw speed (ω) and the 
feed temperature (Tf). A data set comprising 400 
points was used for training purposes and a further 
195 data points were used for model validation. The 
distributions obtained using the FBNN and SOGP 
algorithms are given in Fig.4. Although the 
minimum, mean and maximum RMS values are 
slightly lower for the neural network, a one-sided 
Kolmogorov-Smirnov test (at the 95% confidence 
level) indicates that the difference between the 
distributions is not significant.  

 
Fig. 4 Validation RMS error distributions. 

Fig. 5. compares the performance of the neural 
network and SOGP algorithms in terms of the 
computational effort required to achieve a given 
validation RMS error (the error bars indicate +/- one 
standard deviation). At higher RMS error values, the 
SOGP algorithm outperforms the neural network. 
This could be because the RLS optimisation routine 
enables the SOGP algorithm to raise the performance 
of the initial population members to a reasonable 
level without consuming a particularly large amount 
of processing power. The neural network may 
initially produce poor predictions due the large 
number of model parameters, which all have to be 
initialised probabilistically. 
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Fig. 5 Comparison of computational effort required 

by FBNN and SOGP algorithms. 

As the validation RMS error decreases, the neural 
network begins to outperform the GP algorithm, 
requiring fewer FLOPS to achieve the same RMS 
error. The difference between the algorithms 
continues to increase as the validation RMS errors 
are reduced. This could be because neural network 
training is essentially a parameter optimisation 
exercise. The GP algorithm has to explore a wide 
range of different model structures, performing 
parameter optimisation on each candidate solution, 
and is therefore unlikely to be as efficient as the 
neural network. One of the disadvantages of using 
neural networks is that a wide range of network 
architectures has to be investigated in order to obtain 
the best set of model predictions. If the 
computational effort required to carry out these 
additional runs is taken into consideration, the 
difference between the algorithms is less significant 
and GP becomes a more attractive possibility. 

 
Fig. 6. Distribution of final generation objective 

values for SOGP. 

To determine the advantage gained by using the 
MOGP 20, further runs were performed with a 
population size of 100 individuals for 100 
generations.  



 

 
Fig. 7. Distribution of final generation objective 

values for MOGP. 

The distributions of the individuals evolved by the 
algorithms are compared in Figure (6) and (7). It can 
be seen the SOGP algorithm was able to generate 
models that have low RMS errors but do not 
necessarily perform adequately in terms of the 
correlation tests. The goal based ranking scheme 
employed by the MOGP algorithm has enabled the 
algorithm to evolve more solutions with lower 
correlation objective values. The non-dominated 
solutions have comparable RMS errors to the FBNN. 
However, when the performance with respect to the 
correlation tests is considered, the MOGP algorithm 
outperforms the neural network with a mean 
objective value of 1.6 compared to 12.3 for the 
neural network. 

 
7. DISCUSSION AND CONCLUSIONS 

 
This paper has demonstrated, using two examples, 
how performance with respect to additional 
modelling criteria can be improved using a MOGP 
algorithm. A disadvantage of using the correlation 
tests is that the additional processing time becomes 
significant as the number of process inputs increases. 
This is because the cross correlation tests have to be 
repeated for each process input. One alternative is to 
use tests based only on the residuals and the process 
output. Billings and Zhu (1994) demonstrated how 
such tests could be used to reduce the number of 
correlations that have to be evaluated.  
 
While GP may not provide a significant increase in 
model accuracy when compared to more established 
techniques such as neural networks, the algorithm 
has more of an advantage when applied to multi-
objective problems. The parallel nature of GP means 
that the algorithm can evolve a set of candidate 
solutions with varying levels of performance in each 
objective. Real world engineering problems typically 
involve a number of criteria that must be satisfied 
before a successful solution can be achieved. 
Consequently, there has been a large increase in the 
application of MOEAs to engineering problems and 
it is likely that this trend will continue. 
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