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Abstract: The paper addresses the problem of stabilizing discrete-time systems subject
to time varying polytopic uncertainty. Non stationary quadratic Lyapunov functions
are derived for synthesis in a Poly-Quadratic Lyapunov function concept which avoids
in a large extent the conservatism linked with the classical single Lyapunov function
quadratic approach. The state space feedback synthesis problem is addressed. The
results are extended to cope with two particular problems: H∞ performance analysis
and synthesis problem as well as state feedback design while maximizing the size of
the uncertainty domain.
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1. INTRODUCTION

The interest of Lyapunov functions in both robust
analysis and design has been largely proved for
systems modelled in the time-domain. Recently,
the determination of Parameter-Dependent Lya-
punov Functions (PDLF) in order to test the
stability of either time-invariant or time-varying
uncertain models has been investigated Had-
dad and Bernstein (1994); Blanchini and Miani
(1999); Feron et al. (1996); Geromel et al. (1998);
Oliveira et al. (1999); Peaucelle et al. (2000);
Trofino and de Souza (1999). The main reason is
that quadratic approach, which has been widely
used, suffer from conservatism because stability
is checked through the use of a single Lyapunov
function over the whole uncertainty domain.

In the time varying case, the literature is quite

poor as far as the discrete-time case is concerned
Amato et al. (1998). In this paper, we largely refer
to the work presented in Daafouz and Bernussou
(2001) where the concept of Poly-Quadratic sta-
bility is introduced. This concept can be seen as
an extension to the time varying case of a result
proposed in Oliveira et al. (1999). The stability
of a discrete-time system subject to polytopic
uncertainty is attested owing to the existence of a
Lyapunov function that is quadratic with respect
to the state vector and that is a convex combi-
nation of extreme Lyapunov matrices computed
on the vertices. This technique is performed by
solving a system of Linear Matrix Inequalities
(LMI). It must be noticed that the involved
LMI conditions are necessary and sufficient for
Poly-Quadratic stability to be satisfied.

In this paper, discrete-time models with time-
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varying uncertainty are considered. The uncer-
tainty is either convex polytopic or parametric
affine structured Tesi and Vicino (1990). The sec-
ond case can be seen as a particular case of the
first one. In both cases, the problems of robust sta-
bilization and robust H∞ control by static state
feedback are considered. For the affine type of
uncertainty the problem of maximizing the un-
certainty domain while preserving stability and
possibly achieving an H∞ performance level is
investigated. All the presented results rely on the
LMI framework. Due to space limitations, all the
proofs are omitted and can be found in Daafouz
et al. (2001).

Notations : We denote by M ′, the transpose
of M and by M† the pseudo-inverse of M . The
Hadamard product is denoted by ¯. I is the iden-
tity matrix and 0 is a null matrix of appropriate
dimensions. l1 u,v is a matrix of dimension u × v
with all entries equaling 1.

2. PRELIMINARIES

In this section, we introduce the uncertain model
that is considered in the paper and give use-
ful preliminary results concerning robust stability
analysis for time-varying discrete-time systems.
We largely refer to Daafouz and Bernussou (2001).
The following discrete-time model is considered:

x(k + 1) = A(ξ(k))x(k) + B(ξ(k))u(k), (1)

where x(k) ∈ IRn is the state, u(k) ∈ IRm is the
control. The state space matrices are given by

A(ξ(k)) =

N∑
i=1

ξi(k)Ai, B(ξ(k)) =

N∑
i=1

ξi(k)Bi (2)

with Ai and Bi, i = 1, ..., N , being constant
matrices. The time varying parameter vector ξ(k)
is such that

ξ(k) =
[
ξ1(k) ξ2(k) ... ξN (k)

]′ (3)

with

ξi ≥ 0 ∀i ∈ {1, ..., N} and
N∑

i=1

ξi = 1

A state feedback control design problem is to find

u(k) = Kx(k) (4)

such that the closed system

x(k + 1) = Acl(ξ(k))x(k) (5)

with

Acl(ξ(k)) = A(ξ(k)) + B(ξ(k))K =

N∑
i=1

ξi(k) (Ai + BiK)︸ ︷︷ ︸
Acli

is asymptotically stable. For simplicity rea-
sons, from now ξ(k) will be denoted ξ. Fol-
lowing Daafouz and Bernussou (2001), we pro-
pose parameter-dependent Lyapunov functions
(PDLF) of the form:

V (x(k), ξ) = x
′
(k)P(ξ)x(k) with P(ξ) =

N∑
i=1

ξi(k)Pi

(6)

where the various Pi, i = 1, ..., N , are n × n
symmetric positive definite (SPD) matrices.

Definition 1. Daafouz and Bernussou (2001):
System (5) is said to be Poly-Quadratically stable
if and only if there exists a PDLF of the form (6)
that is negative definite decrescent.

Poly-Quadratic stability is sufficient for asymp-
totic stability. Assessing the Poly-Quadratic sta-
bility of polytopic uncertain closed-loop model is
equivalent to find N SPD matrices Pi, i = 1, ...N
such that (6) and

A′cl(ξ)P+(ξ)Acl(ξ)− P(ξ) < 0 (7)

with: 


P(ξ) =

∑N
i=1 ξi(k)Pi

P+(ξ) =
∑N

i=1 ξi(k + 1)Pi

(8)

In this part, we propose LMI conditions for a
time-varying polytopic system such as (5) to be
Poly-Quadratically stable.

Theorem 1. Daafouz et al. (2001): System (5) is
Poly-Quadratically stable if and only if there exist
SPD matrices Pi ∈ IRn×n, i = 1, ...N as well
as matrices Gi ∈ IRn×n such that ∀{i; j} ∈
{1, ..., N}2:

[ −Pi A′cli
G′j

GjAcli Pj −Gj −G′j

]
< 0 (9)

Now, we give a dual condition which was already
proposed in Daafouz and Bernussou (2001).

Theorem 2. Daafouz and Bernussou (2001): Sys-
tem (5) is Poly-Quadratically stable if and only
if there exist SPD matrices Xi ∈ IRn×n as well
as matrices Gi ∈ IRn×n, i = 1, ...N , such that
∀{i; j} ∈ {1, ..., N}2:

[
Xi −Gi −G′i G′iA

′
cli

AcliGi −Xj

]
< 0 (10)

Remark 1. : Abviously the Poly-Quadratic sta-
bility encompasses the former ones on quadratic
stability with Gi = Pi = P ∀i ∈ {1, ..., N} in (9).

A state feedback control that makes the closed
loop system (5) Poly-Quadratically stable can be
obtained using the following result.



Theorem 3. Daafouz et al. (2001): System (1) is
Poly-Quadratically stabilizable by a state feed-
back control if there exist SPD matrices Xi ∈
IRn×n, matrices G ∈ IRn×n and R ∈ IRm×n,
i = 1, ..., N , such that ∀{i; j} ∈ {1, ..., N}2:

[
Xi −G−G′ (AiG + BiR)′

AiG + BiR −Xj

]
< 0, (11)

The state feedback control law is then given by
(4) with K = RG−1.

One can notice that imposing Gi = G, ∀i =
1, ..., N to derive the result of Theorem 3 intro-
duces some conservatism, but still less pessimistic
than the single Lyapunov function approaches.

3. ROBUST H∞ PERFORMANCE

Consider the following discrete time system
{

x(k + 1) = A(ξ)x(k) + B1(ξ)w(k) + B2(ξ)u(k),

z(k) = C1(ξ)x(k) +D1(ξ)w(k) +D2(ξ(k))u(k)
(12)

where x(k) ∈ IRn is the state, u(k) ∈ IRm is the
control vector w(k) ∈ IRq is the disturbance of the
system and z(k) ∈ IRp is the controlled output.
The state space matrices are given by,

A(ξ) =
∑N

i=1
ξiAi, B1(ξ) =

∑N

i=1
ξiB1i,

B2(ξ) =
∑N

i=1
ξiB2i, C1(ξ) =

∑N

i=1
ξiC1i

D1(ξ(k)) =
∑N

i=1
ξiD1i, D2(ξ) =

∑N

i=1
ξiD2i

(13)

with

ξ =
[
ξ1, ξ2, ..., ξN

]′
, ξi ≥ 0,

N∑

i=1

ξi(k) = 1

The matrices Ai, B1i, B2i, C1i, D1i and D2i,
i = 1, ..., N , are constant matrices of appropriate
dimensions. Given γ > 0, the well known H∞
state feedback control problem is to find

u(k) = Kx(k) (14)

making the closed system




x(k + 1) = Acl(ξ)x(k) + B1(ξ)w(k)

z(k) = Ccl(ξ)x(k) +D1(ξ)w(k)
(15)

with

Acl(ξ) = A(ξ)+B2(ξ)K, Ccl(ξ) = C1(ξ)+D2(ξ)K,

asymptotically stable and enforcing the γ-gain
condition

γ−1

∞∑
k=0

z(k)2 < γ

∞∑
k=0

w(k)2, ∀
∞∑

k=0

w(k)2 > 0 (16)

Such a control law is said γ-gain state feed-
back controller. The following definition associates
Poly-Quadratic stability with the well known H∞
performance criterion for discrete time systems.

Definition 2. The autonomous system (12) is
said Poly-Quadratically stable with an H∞ per-
formance γ if it is Poly-Quadratically stable and

γ−1

∞∑
k=0

z(k)2 < γ

∞∑
k=0

w(k)2, ∀
∞∑

k=0

w(k)2 > 0 (17)

Consider the autonomous discrete time system
(12) where u(k) = 0. Given γ > 0, we are
interested in answering the question: Is the au-
tonomous system (12) Poly-Quadratically stable
with an H∞ performance γ ?

Theorem 4. Daafouz et al. (2001): The system
(12) is Poly-Quadratically stable with an H∞
performance γ if and only if there exist SPD
matrices Xi ∈ IRn×n and matrices Gi ∈ IRn×n,
i = 1, ..., N , such that ∀{i; j} ∈ {1, ..., N}2:


Xi −Gi −G′i (•)′ (•)′ (•)′
0 − γI (•)′ (•)′

AiGi B1i −Xj (•)′
C1iGi D1i 0 − γI


 < 0 (18)

A γ-gain state feedback controller for the system
given by (12) can be obtained using the following
result.

Theorem 5. System (12) is Poly-Quadratically
stabilizable with an H∞ performance γ by a
state feedback control if there exist SPD matrices
Xi ∈ IRn×n, matrices G ∈ IRn×n and R ∈ IRm×n,
i = 1, ..., N , such that ∀{i; j} ∈ {1, ..., N}2:


Xi −G−G′ (•)′ (•)′ (•)′
0 − γI (•)′ (•)′

AiG + B2iR B1i −Xj (•)′
C1iG + D2iR D1i 0 − γI


 < 0, (19)

The γ-gain state feedback control law is then
given by (14) with K = RG−1.

4. ROBUST STABILIZATION

First, the classical problem of robust stabilization
is handled. Then, the same problem is addressed
while ensuring an H∞ gain lower than γ.

4.1 Classical robust stabilization

The following discrete-time model is considered:

x(k + 1) = A(δ(k))x(k) + B(δ(k))u(k) (20)

x(k) ∈ IRn is the state vector at time k and
u(k) ∈ IRm is the input vector at the same time.
In the following we use the notation:

M = M(δ(k)) =
[
A(δ(k)) B(δ(k))

]
(21)

M = M0 +
p∑

i=1

(δ[i](k)M[i])

In the above expression M0 = [A0 B0] corre-
sponds to the nominal plant. δ(k) is a vector time



function corresponding to uncertain but bounded
parameters and matrices M[i] ∈ IR(n×(n+m)), i =
1, ..., p are precisely known and specify which en-
tries of M are affected by parameter variations. δ
is assumed to belong to an hyper-rectangular set
∆ i. e. δ(k) ∈ ∆ ∀k where:

∆ = ∆(δ̃) = {v ∈ IR
p | (−α[i]δ̃ ≤ v[i] ≤ α[i]δ̃, ∀i ∈ {1, ..., p})}

(22)

where v =
[

v[1] . . . v[p]

]′ and the positive scalar
numbers α[i] and α[i] are introduced to define the
form of ∆ in the IRp-space. δ̃ is some sort of “size”
of ∆ to be derived. The nominal value of δ is 0 so
that M(0) = M0.
Define Φ by {0; 1}p, i.e. the set of the N = 2p

distinct elements of IRp, φj , j = 1, ..., N , with
entries only equaling either 0 or 1. Then, ∆ is
actually a convex hull that can be defined through
its vertices

δj = (−(φj ¯ α) + (( l1 p,1 − φj)¯ α))δ̃ (23)

where all matrices

φj =




φj[1]
...

φj[p]


 , j = 1, ..., N, (24)

make the whole set Φ up and where α and α are
vectors defined by:

α =




α[1]

...
α[p]


 ; α =




α[1]

...
α[p]


 (25)

Using these notations, when δ(k) describes ∆,
M(δ(k)) describes a polytopeM(δ̃) that reads the
following description:

M(δ̃) = {M(ξ) ∈ IR
n×n |M(ξ) =

N∑
j=1

(ξj(k)Mj) ; ξ ∈ Ξ}

(26)

where Ξ, the set of all suitable functions ξ, is
defined by:

Ξ = {ξ =




ξ1(k)
..
.

ξN (k)


 ∈ {IR+}N |

N∑
j=1

ξj(k) = 1} (27)

Extreme matrices Mj ∈ IR(n×(n+m)), j = 1, ..., N

are the vertices of polytope M(δ̃) and can be
detailed as follows:

Mj = M(δj) = M0 + δ̃M̄j ∀j ∈ {1, ..., N} (28)

and ∀j ∈ {1, ..., N}

M̄j =
[

Āj B̄j

]
=

p∑
i=1

((−φj[i]α[i] + (1− φj[i] )α[i])M[i])

(29)

In this paper, we aim to derive a state feedback
control law u(k) = Kx(k) that stabilizes the
model (20) . The closed-loop system behaviour is
described by:
x(k+1) = Acl(δ(k))x(k) = (A(δ(k)) + B(δ(k))K)x(k) (30)

It is clear that the closed-loop dynamic matrix
Acl can be written:

Acl(k) = Acl0 +
N∑

i=1

(δ[i](k)Acl[i]) (31)

where Acl0 = A0 + B0K and where the various
matrices Acl[i] are defined by:

Acl[i] = A[i] + B[i]K ∀i ∈ {1, ...N} (32)

Following the same reasonning as above, it is clear
that when δ(k) describes ∆(δ̃), then the closed-
loop state matrix describes a polytope Acl(δ̃)
defined by:

Acl(δ̃) = {Acl(ξ) ∈ IR
n×n |Acl(ξ) =

N∑
j=1

(ξj(k)Aclj
) ; ξ ∈ Ξ}

(33)

Besides, extreme matrices Aclj are defined by
∀j ∈ {1, ..., N}:

Aclj = Acl0 + δ̃Āclj = Acl0 + δ̃(Āj + B̄jK) (34)

This structure is useful to achieve our goal that
is to compute a matrix K which makes (30)
be stable for all function δ(k) varying in ∆(δ̃).
While computing a suitable K, we look for δ̃?, the
maximal value of δ̃ such that stability is ensured.
Hence, δ̃? is a robust stability bound. We state
the following theorem:

Theorem 6. Daafouz et al. (2001): Let an uncer-
tain discrete-time system be described by (20)
where δ(k) varies in ∆(δ̃) defined by (22). There
exists a static state feedback control law u(k) =
Kx(k) ∀k ∈ IN such that closed-loop system de-
scribed by (30) is Poly-Quadratically stable if
δ̃ ≤ δ̃? with:

δ̃? = λ?−1 (35)
λ? ∈ IR being the solution to the following opti-
mization problem:

min λ
X0,X̄1,...,X̄N ,G,R,λ (36)

where X0 = X ′
0 > 0 ∈ IRn×n, X̄i = X̄ ′

i ∈ IRn×n,
i = 1, ..., N , G ∈ IRn×n and R ∈ IRm×n, are vari-
ables satisfying the following LMI constraints :[

X̄i G′Āi + R′B̄i

ĀiG + B̄iR −X̄j

]
<

λ

[
−X0 + G + G′ −G′A′0 −R′B0

−A0G−B0R X0

] (37)

for all {i; j} ∈ {1, ..., N}2. Then, the feedback
matrix is given by K = RG−1.

It is important to notice that if K exists, it
stabilizes the nominal plant and then there exits
X0 = X ′

0 > 0, G and R such that:[
X0 −G−G′ G′A′0 + R′B′

0

A0G + B0R −X0

]
< 0 (38)

As a consequence, problem (36) appears as a typ-
ical generalized eigenvalue problem which can be



solved owing to LMI tools. In practice, constraint
(38) must be clearly added to the LMI system.

4.2 Robust stabilization with H∞ performance

The following system is now considered:
{

x(k + 1) = A(δ(k))x(k) + B1(δ(k))w(k) + B2(δ(k))u(k)
z(k) = C1(δ(k))x(k) +D1(δ(k))w(k) +D2(δ(k))u(k)

(39)

where various signals are defined in paragraph 3
and where δ is a vector varying in ∆(δ̃) defined in
(22). We define a global matrix S by:

S =

[
A(δ(k)) B1(δ(k)) B2(δ(k))
C1(δ(k)) D1(δ(k)) D2(δ(k))

]
= S0 +

p∑
i=1

(δ[i](k)S[i])

=

[
A0 B10 B20
C10 D10 D20

]
+

p∑
i

(δ[i](k)

[
A[i] B1[i] B2[i]
C1[i] D1[i] D2[i]

]
)

(40)

It is aimed to find a control law u(k) = Kx(k)
such that:

• the closed-loop system is stable
• the γ-gain condition defined in (16) is en-

forced for a given value of γ.
• the size δ̃ of hyperrectangular set ∆(δ̃) is

maximized.
The closed loop-system, considering w as the
single closed-loop input vector, is described by:

Scl = Scl0 +

p∑
i=1

(δ[i](k)Scl[i]
) =

[
A0 + B20K B10
C10 + D20K D10

]
+

p∑
i

(
δ[i](k)

[
A[i] + B2[i]K B1[i]
C1[i] + D2[i]K D1[i]

] )

(41)

Hence, following the same reasonning as in the
above paragraph, it is clear that Scl varies in a
polytope which is defined by:

Scl(δ̃) = {Scl(ξ) ∈ IR
n×n | Scl(ξ) =

N∑
j=1

(ξj(k)Sclj
) ; ξ ∈ Ξ}

(42)

where the extreme matrices read:

Sclj
= Scl0 + δ̃S̄clj

= Scl0 + δ̃

[
Āj + B̄2jK B̄1j

C̄1j + D̄2jK D̄1j

]
(43)

and:
S̄j =

[
Āj B̄1j B̄1j

C̄1j D̄1j D̄2j

]
=

p∑
i=1

((−φj[i]α[i] + (1− φj[i] )α[i])S[i]) ∀j ∈ {1, ..., N} (44)

Thus, using arguments detailed in the proof of
Theorem 5 given in Daafouz et al. (2001) we get
the next theorem:

Theorem 7. Daafouz et al. (2001): Let a system
be described by (39) where δ(k) varies in ∆(δ̃)
defined by (22). Let γ be a scalar positive number.
There exists a static state feedback control law

u(k) = Kx(k), such that the obtained closed-
loop system is Poly-Quadratically stable with a
H∞ performance γ if δ̃ ≤ δ̃? with:

δ̃? = λ?−1 (45)

λ? ∈ IR being the solution to the following opti-
mization problem:

min λ
X0,X̄1,...,X̄N ,G,R,λ (46)

where X0 = X ′
0 > 0 ∈ IRn×n, X̄i = X̄ ′

i ∈ IRn×n,
i = 1, ..., N , G ∈ IRn×n and R ∈ IRm×n, are vari-
ables satisfying the following LMI constraints,
∀{i; j} ∈ {1, ..., N}2 :

[
X̄i (•)′ (•)′ (•)′
0 0 (•)′ (•)′

ĀiG + B̄2iR B̄1i −X̄j (•)′
C̄1iG + D̄2iR D̄1i 0 0

]
<

λ

[ −X0 + G + G′ (•)′ (•)′ (•)′
0 γI (•)′ (•)′

−A0G− B20R −B10 −X0 (•)′
−C10G−D20R −D10 0 γI

] (47)

Then, the feedback matrix is given by K =
RG−1.

Notice that the problem introduced above is a
classical generalized eigenvalue problem.

5. NUMERICAL EXAMPLES

5.1 Example 1

Consider a system given by (12) with

A1 =

[ −0.06 −0.25 0.10 −0.47
0.09 −0.50 −0.63 0.52
0.55 0.47 −0.59 −0.50
0.03 0.29 0.87 0.56

]
, B21 =

[ −0.06
−0.59
−0.32
−0.53

]

A2 =

[ −0.19 0.28 −0.12 0.66
0.34 −0.32 −0.32 0.54
−0.06 0.29 0.38 0.39
−0.03 0.36 0.52 −0.28

]
, B21 =

[
0.04
0.39
0.04
−.11

]

D11 = D12 = 0, C11 = C12 =
[

1 0 0 0
]

,

B11 = B12 =
[

1 0 0 0
]′

, D21 = D22 = 0

Analyzing stability of the open loop system
(u(k) = 0 ), we find that this system is not
quadratically stable (there is no single quadratic
Lyapunov fucntion V (x) = x′Px, proving stabil-
ity), nor quadratically stabilizable (one can not
compute a control law using quadratic stabilis-
ability conditions). Using Theorem 2, we find that
this system is Poly-Quadratically stable. Analyz-
ing the H∞ performance level using Theorem 4
we find that the minimum value of γ such that
conditions of Theorem 4 are satisfied is γ = 8.39.
A state feedback law can be used to improve this
performance level. Using Theorem 5, we get the
control law given by

u(k) = Kx(k) with K =
[

0.1737 0.8226 1.6092 0.9688
]

which gives an H∞ performance γ = 6.9.



5.2 Example 2

Now consider the system described by (39) with
p = 1 (one single varying parameter) and:

A0 =

[ −0.13 0.02 −0.01 0.09
0.22 −0.41 −0.48 0.53
0.24 0.38 −0.11 −0.06
0 0.32 0.69 0.14

]
, B2[1] =

[
0.05
0.49
0.18
0.21

]
,

A[1] =

[
0.06 −0.26 0.11 −0.57
−0.13 −0.09 −0.16 −0.01
0.31 0.09 −0.48 −0.45
0.03 −0.04 0.17 0.42

]
, B20 =

[ −0.01
−0.10
−0.14
−0.32

]
,

B1 = B10 =
[

1 0 0 0
]′

, C1 = C10 =
[

1 0 0 0
]

,

D1 = D10 = D2 = D20 = 0

Note that if δ̃ = 1, we recover the polytopic
system with two vertices described in the previous
example. First, it is aimed to stabilise the system
for the greatest size of uncertainty. Considering
quadratic stabilisation, i. e. solving problem (36)
with X1 = X2 = G, we find

u(k) = Kx(k) with K =
[
−0.1883 −0.2123 1.6235 2.2568

]

what leads to δ̃? = 0.9426. This result confirms
that the polytopic system previoulsy considered is
not quadratically stabilisable.
Solving the Poly-Quadratic stabilisability prob-
lem (36) (Theorem 6) yields

u(k) = Kx(k) with K =
[
−0.0060 0.8640 1.9786 0.9647

]

that leads to the optimal value δ̃? = 1.0788 which
is consistent with the fact that the polytopic
system of the previous example is indeed Poly-
Quadratically stabilisable.
One can apply the same comparison between
quadratic and Poly-Quadratic stabilisability while
a H∞ performance level is required. This level
is γ = 6.9. Using conditions of Theorem 7, the
quadratic approach (i.e. X1 = X2 = G) yields

u(k) = Kx(k) with K =
[
−0.0628 0.1637 1.7186 1.7422

]

and the maximal value of δ̃ is δ̃? = 0.8818. In
a Poly-Quadratic context (Theorem 7 with no
restriction), we get

u(k) = Kx(k) with K =
[

0.1698 0.8176 1.6125 0.9798
]

and the maximal value of δ̃ is δ̃? = 0.9999. These
results are perfectly coherent with those of the
previous paragraph.

6. CONCLUSION

Robust stabilization and robustH∞ state-feedback
control of discrete-time models against time-
varying parametric uncertainty has been handled
through the concept of Poly-Quadratic stabil-
ity. This property was proved to be less pes-
simistic than the more classical quadratic stabil-
ity. The proposed results are based on computa-
tionally tractable LMI conditions. The efficiency
of the technique has been emphasized on numer-
ical examples. One can extend easily the results
proposed in this paper to the well known gain
scheduling problem. In this problem, the plant is

assumed to switch between different linear models
and one is interested by a stabilizing switching
control. Under an assumption relying on knowl-
edge of the true model in real time, a stabilizing
switching control with an H∞ performance level
can be derived immediately from the results pro-
posed in this paper.
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