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Abstract: Most of iterative learning control (ILC) methods requires that the relative degree
of the plant is less than 2 for a linear system or the plant is passive for a non-linear
system. A new model reference parametric adaptive iterative learning control using the
command generator tracker (CGT) theory is proposed in this paper. The method can be
applied to control a plant with a higher relative degree and it only requires to iteratively
adjust �� � � parameters for an SISO plant. Therefore, the ILC control system is very
simple. The proposed method is in the spirit of simple adaptive control which has received
intensive researches during past two decades. Simulation results show the effectiveness
and usefulness of the proposed method.
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1. INTRODUCTION

Iterative learning control (ILC) is a technique to con-
trol systems that perform the same task repeatedly.
It is learning from the repetitive process like a hu-
man being who is learning from his past experiences.
Comparing with the feedback control which is usually
conducted along the time domain only, iterative learn-
ing control is conducted along both the time domain
and repetitive trials. It memorizes its previous control
information and uses them to compute the next control
action so that the system performance is improved.
Repetition of trials is essential for this method to work
and for this reason ILC is best suited to controlling
plants where the same tasks have to be performed
repeatedly, e.g. robotic assembly and batch processing
in chemical plants.

Arimoto (Arimoto et al., 1984) first noticed this fact
and applied the idea to the robot motion control prob-
lem. Since then, many research works (Bien and J.-
X. Xu, 1998), (Amann et al., 1996), (Owens and
Munde, 2000) have been done in the development
of various ILC schemes. However, most of ILC ap-
proaches require �� �� � which is equivalent to the
relative degree of the plant is less than 2. This re-
quirement is equivalent to the condition that the plant
is almost strictly positive real (ASPR) (Kaufman et
al., 1997). The plant is said to be ASPR if there exists a
statict output feedback such that the resulting closed-
loop system is strictly positive real (SPR). Although
the ASPR charateristics of the plant allow us to control
and stabilize the plant robustly with a high gain based
ILC output feedback (Owens and Munde, 2000) most
practical plants do not satisfy the ASPR condition.
Thus such an ASPR condition imposes a strict restric-
tion on the plant with regard to the applicability of the
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ILC.

Simple adaptive control (SAC)(Kaufman et al., 1997),
which is born from model reference adaptive control,
is based on the CGT theory. It gains its name since
it only requires to adjust �� � � (�� is the order
of the reference model and is much smaller than the
order of the plant) parameters for an SISO plant. It
has received an intensive research during past two
decades (Kaufman et al., 1997), (Deng et al., 2001)
and has been widely applied to many industry systems
which include large flexible space structures, robot
manipulators, ship steering control, DC motors, boil-
ers, aircraft and nonlinear servomechanisms due to its
simplicity and robustness. The early version of SAC
requires that the plant is ASPR. For a controlled sys-
tem with a relative degree greater than 2, a robust par-
allel compensator is introduced in (Deng et al., 2001).

This paper presents an alternative ILC scheme - a
parametric ILC scheme for an SISO linear unknown
plant. The proposed method is based on the model
following structure developed using the CGT theory
(Kaufman et al., 1997). The control objective consists
in tracking a trajectory specified by a reference model.
The approach uses a control structure which is a linear
combination of feedforward of the model states and
inputs and feedback of the error between plant and
model outputs. The convergence of the tracking error
is achieved as the number of the trials increases. The
proposed method is demonstrated by the simulation
results.

2. PROBLEM FORMULATION

Consider a linear SISO system given by the following
equations

����� � ����� � �����
���� � �����

(1)

where ���� � 	� denotes the state vector, ���� and
���� are the input and output of the system, respec-
tively, �, �, � are matrix and vectors with appropriate
dimensions. In this study, the parameters in (1) is as-
sumed unknown and only the knowledge of its relative
degree is required for the proposed learning control
approach.

Given a finite initial state �� and a finite time interval
��
 � 	, the control objective is to find an iterative learn-
ing control input ����� such that the system output
�����, as j tends to infinity, follows the output �� of
the following reference model

������ � ������� � �������
����� � �������

(2)

where ����� � 	�� is the model state vector, �����
and ����� are the model input and the model output,
respectively, and ��, ��, �� are matrix and vectors
with the appropriate dimensions. It is noted that nor-
mally �� � �.

It is noted that most ILC algorithms (Bien and J.-
X. Xu, 1998), (Amann et al., 1996), (Owens and
Munde, 2000) requires that �� �� �. This condition is
equivalent to that the relative degree of the plant is less
than 2. However, most practical plants do not satisfy
this condition. One of the main contributions of this
paper is that we relax this requirement by introducing
a robust parallel compensator.

3. COMMANDER GENERATOR TRACKER

The proposed ILC approach is based on the CGT the-
ory (Kaufman et al., 1997). To describe the application
of the CGT theory, a new set of system and con-
trol trajectories as ����� and �����, respectively, will
be used to denote their corresponding values when
����� � ����� for � � � and � � 
 (i.e. when perfect
tracking occurs). From the above description, we have

������ � ������ � ������
����� � ������ � ����� � �������

(3)

From the CGT theory, we have�
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(4)

where 
��, 
��, 
��, and 
�� are the functions of �,
�, �, ��, ��, and ��. An adaptation law (Kaufman
et al., 1997) can be designed to identify them for
the unknown �, � and �. Here we design an iterative
learning law to adjust them.

It is noted that although the CGT based analysis re-
quires that ����� is a step command, any command
signal which can be described as the solution of a
differential equation forced by a step input (or zero)
can be used as well (Kaufman et al., 1997).

4. THE ILC CONTROL ALGORITHM FOR AN
ASPR CONTROLLED SYSTEM

In this section, we assume that the system (1) is ASPR.
That is there exists a constant ��� such that the transfer
function ���� �� � ������

��� is SPR.

It is well known that a necessary and sufficient condi-
tion for the transfer function �������� �����

��� to be
SPR is that there exist two positive definite symmetric
matrices P and Q satisfying the following equations
(Kaufman et al., 1997)

��� ������
�� � � ��� ������ � ��

� � � ��
(5)



Let ������ � ����� � �����. Our objective is to find
a ����� such that �
���� ������ � � for � � ��
 � 	.
Let ����� � ����� � �����. It is easily to show that
�
���� ����� � � will lead to �
���� ������ � �.
Thus our task transfers to design a ����� to achieve
�
���� ����� � �. Using (1) and (3), we have

������ � ������� ���

��������� ������ � �������� ������ (6)

From (4), it is noted that ����� � 
������� �

�������. The proposed parametric ILC control al-
gorithm is
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and the parameter error vector

������ � � ������� �������
� ������� 	
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Putting the control law (7) into (6), we have the error
equation

������ � ��� ����������� � ���������������

� ������������ � �������������

� ��� ����������� � ������������ (8)

The proposed parametric iterative learning law is

����� � �������� ������������ (9)

where � is a positive constant. Define a cost function
of the parameter errors as
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From (9) and (10), we have
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Define a positive Lyapunov-like function

����� � ��� ���� ����� (12)

Taking the derivative of (12) with respective to time
and using (8) and (5), we have

������ � ��� ������� ������
�� � � ��� ������	�����

� ���� ���� ����� ��������

����� ��������� � ����� �������������� (13)

Integrating (13) from 0 to t and putting it into (11) and
considering ����� � �, we have

��� ��
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� ����� � ����� � ������ � � (14)

Therefore, we have that �� � ����. Adding (14) from
0 to j, we have

�

�������� � ��
��� � ����� � ����� � �(15)

This leads to �
���� ����� � �. From the definition
of �����, we have that �
���� ����� � �. Thus
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Next, we will show that all the signals of the closed-
loop system are bounded. From (10) and (14), we have
� � �� � ���� � ��. This leads to the conclusion
that the ����� is bounded. Since �����
 �����
 ������
and ����� are bounded, from (7) we conclude that � �

is bounded. Since �����, ����� and ����� are bounded,
we have shown that ����� is bounded.

At this point, we would like to make the following
remark to the proposed control approach.

The proposed learning control algorithm is different
with the other approaches. It iteratively learns the
parameters instead of the control input and it only
adjusts three parameters for an SISO plant. It uses the
output of the plant, the input and states of the reference
model only, and it does not use identifiers or observers
in the control loop.

5. ROBUST PARALLEL FEEDFORWARD
COMPENSATOR

The ILC algorithm proposed in section 4 requires that
the plant is ASPR. In this section, we introduce a
robust parallel compensator proposed in (Deng et al.,
2001) to relax this requirement. The transfer function
of Eq. (1) is

����� �
�����

����
(17)



where N(s) and D(s) are

���� � �� � �����
��� � � � �� ��� � ��

���� � ���� � �������� �    � ��� � ��

It is assumed that the range of the unknown plant
parameters are known as follows
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If the relative degree ��" # 
, the method proposed
in section 4 can not be applied since the plant is
not ASPR. For a non-ASPR plant, we design a PFC
F(s) which makes the resulting augumented controlled
system, �
��� � ����� � $ ��� � �����

�����
, ASPR.

Consider the following parallel compensator

$ ��� �

����
���

Æ�$���� �

����
���

Æ�%������

�����
(18)

where � � � � " and Æ # �, ����� is a monic
Hurwitz polynomial of order ���, ����� is a monic
polynomial of order "�� � ��� � �� � !� # �, and %�
is chosen to satisfy that the polynomials %����

��� �
� � � � %�� � ��� and %����

��� � � � � � %�� � ��� are
Hurwitz polynomials. It has been proved in (Deng et
al., 2001) that we can choose a reasonable small Æ to
make �
��� be ASPR.

6. ILLUSTRATIVE EXAMPLE

In order to demonstrate the proposed control algo-
rithm, we consider the following example. The trans-
fer function of the plant is

����� �
��� � ��

�� � ��� � ��

where ��, ��, ��, and �� are unknown parameters. The
reference model is chosen as

����� �



� � 


Its state representation is

������ � ����� � �����
����� � �����

(19)

We will carry out the simulation study in two cases.
In case 1, we assume that �� # � and �� # �. Thus
����� is ASPR. In case 2, we assume that �� � � and
�� # � that is ����� is no longer ASPR.

Case 1. In this study we assume that the parameters of
the plant are �� � 
, �� � 
, �� � 
, �� � ��. This
knowledge is used for the simulation study only and it
is not used in the ILC design. It is clearly to see that
the plant is unstable.

For this case, the ILC control law is shown in (7),
the parametric learning law is shown in (9), the initial
values of the learning parameters are chosen as zero,
and the learning gain � � 
�.

Figure 1 shows the tracking performance for the first
trial for case 1 and Fig. 2 shows the input profile at this
trial. Figures 3 and 4 show the tracking performance
and control input at fifth trial in case 1.
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Fig. 1. Tracking performance at the first trial of case 1
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Fig. 2. Control input at the first trial of case 1

Case 2. In this study we assume that �� � � and the
rest parameters of the plant are the same as in Case 1.
It is clearly to see that the system is not ASPR since
its relative degree is 2. We design a PFC using the
approach in section 5 as follows,

$ ��� �
�

� � &�
�

Æ%�

� � &�
(20)

In the simulation %� � 
, &� � �, &� � 
 and
Æ � � �. For this case, the ILC control law and the
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Fig. 3. Tracking performance at the fifth trial of case 1
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Fig. 4. Control input at the fifth trial of case 1

parametric learning law are same as in case 1.

Figures 5 and 6 show the tracking performance and
the control input profile at the first trial for case 2.
Figures 7 and 8 show the tracking performance and
control input at the thirtieth trial in case 2.

From the simulation results, the system learns very
fast for an ASPR plant. For a non-ASPR plant we can
see that it takes longer to learn. It may get worse first
before it achieve a good tracking performance.
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Fig. 5. Tracking performance at the first trial of case 2
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Fig. 6. Control input at the first trial of case 2
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Fig. 8. Control input at the thirtieth trial of case 2
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