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Abstract: This article describes the synthesis of a sliding mode controller SMCr based on 
a second order linear model using an integral-differential surface of the tracking-error. 
Different from similar strategies, the tuning parameters keep a close relationship with the 
system dynamics in terms of conventional specifications of transient response. The 
proposed controller only needs the output feedback of system and could be satisfactorily 
used in control of single input-single output nonlinear electric systems such as electronic 
power converters with pulse width modulation. Copyright ©2002 IFAC 
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1. INTRODUCTION  

 
Numerous physical processes exhibit a behavior 
whose dynamics can be represented by a single 
input-single output (SISO), second order model. 
However, such approach discards process inherent 
non-linearities that sometimes would cause 
degradation of control when the conventional PID 
strategy is used.  This becomes more evident when it 
is working in extreme conditions or in zones where 
the parametric uncertainty of the model becomes 
more accented. 
 
In this framework, robustness proper of the sliding 
mode control strategy (SMC) should provide better 
performance than conventional control strategies. 
Properties such as order reduction and invariant 
dynamics of the system in the sliding mode have 
stimulated development of multiple procedures for 
the synthesis of controllers in a wide spectrum of 
applications. Such are the cases of processes with 
multi-input / multi-output configuration (DeCarlo et 
al., 1988), with strong non linearities, with variable 
dead time or non minimum phase (Camacho, 1996; 
Camacho and Smith, 1997; Camacho et al., 1999). In 
addition, excellent results have been reported in 

control of electric motors and electronic power 
converters (Utkin, 1993; Cáceres and Barbi, 1999) 
where discontinuous action in variable structure 
control (VSC) is compliant with the nature of their 
elements. 
 
The main drawback in VSC is the chattering 
generally associated with a high control activity that 
sometimes could not be tolerated by the system. It 
could excite high frequency unmodeled dynamics or 
decrease their efficiency (Utkin, 1993; Sira et al., 
1997). This last aspect highlights the convenience of 
synthesizing the SMCr under an approximately 
continuous control law.  
 
Based on the SMC robustness, this article shows the 
synthesis of a controller based on integral-differential 
surface of error and a continuous approximation of 
nonlinear part of the controller. The design is pointed 
to obtain a simple structure that only needs the output 
feedback making it attractive for control of nonlinear 
electric systems such as power converters with 
schemes of pulse width modulation (PWM). 
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where em%  is the specified error band inside which 
Ts is specified. The response, Fig. 4, exhibits a 
reduced overshoot but a larger settling time.  
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Fig. 4. Dynamics of the sliding surface when λ1 > 1. 

 
Due to overdamping, the settling time will be 
severely influenced by the specified error band. 
Damping ratio associated with λ1 parameter is shown 
in Fig. 5. Note that overshoot only could be reduced 
if λ1 >> 1. 
 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

Mp  = 7. 56%

λ1   parameter

Pe
rc

en
t  

O
ve

rs
ho

ot
  M

p,
  (

%
)

 
Fig. 5. Overshoot -λ1 relationship. 
 
As shown in the above results for the three cases, the 
relationship between the controller parameters and 
the transient response of the close-loop system is 
evident. This facilitates the controller tuning 
considerably. For instance, if a desired overshoot 
should be lower than 8%, λ1 >1.5 would be a suitable 
election (see Fig. 5).  
 

Once defined the percent overshoot Mp, the 
parameter λ0 is selected to satisfy the desired time 
response in terms of peak time or settling time. This 
tuning procedure is straightforward and it is as 
simpler as a PID controller tuning. 
 
Another interesting aspect is the strong relationship 
between the controller parameters and the system 
natural response. In Eqn. (1), the system 
approximated by the second order model should 
contain the dominant poles of Q, so that an 
alternative representation of M could be obtained in 
terms of natural frequency ωn and damping radio ξ 
from the original system at any operation point, such 
that: 

a1 n
2= ω                             (26) 

a 22 n   = ξ ω                         (27) 
 
From Eqn. (10) it is evident that λ0 is related with ωn 
and λ1 with ξ. As usual, the controlled system must 
respond faster than the open-loop system and 
therefore, it is desirable that λ0  > ωn. 
 
According to Eqn. (13), Eqn. (18) and Eqn. (22), the 
percent overshoot only depends on λ1, which 
provides a straight way to achieve the desired percent 
overshoot in system response. For instance, choosing 
λ1 > ξ is convenient if ξ < 0.707. Then, next step is to 
adjust λ0 to provide the desired response in terms of 
settling time or peak time, which are totally 
determined according to the λ1 range.  
 
A reasonable value for Kd could be determined 
assuming that in the meantime of an external 
disturbance or when step change is introduced, the 
sliding surface value σ(t) >> δ. Therefore, the 
nonlinear part of the controller UN approximates 
Kd.sign(σ(t)) and its magnitude will be Kd. In order 
to guarantee the reaching condition in any 
circumstance, from Eqn. (3) and Eqn. (4), it is 
enough that: 
 

Kd F t>
1
b

( )                         (28) 

 
For systems with saturated single input, the superior 
estimate F(t) in Eqn. (4) is given by the control input 
bounds:  
 

f t U U( ) b ( )< −max min               (29) 
 
because is impossible allow, without loss of stability, 
a disturbance in the system that requires a control 
magnitude larger than the range of values of U(t) for 
an indefinite period of time. Finally, the parameter δ 
(always positive) is adjusted to suppress the 
chattering. 
 
 

5. CONTROL FOR A BOOST CONVERTER  
 
In general, if energy conversion is carried out in 
continuous conduction mode, the boost converter can 



     

be described in the average state space according to:  
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where iL(t) is the inductor average current, v0(t) is the 
output voltage, R is the load in ohms, Vs is the 
external dc source voltage and u(t) is the control 
input. This control input is assumed a saturated 
continuous function in the open interval (0, 1). 
 
To derive an approximate model of the converter, the 
electronic switch is replaced by the PWM switch 
(Timersky et.al, 1988), resulting in the circuit shown 
in Fig. 6. 

Switch PWM

+
RC

L

v0

+

–

Vs

DT

D’T

1

23

 
Fig. 6. Equivalent circuit of the boost converter 
 
Substituting the PWM switch by its fundamental 
frequency model, around a stationary point of 
operation D, the dynamics of system in Eqn. (30) is 
described approximately as follows:  
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where d(s) represents the incremental duty cycle. 
Equation (31) characterizes a non minimum phase 
system with respect to the output voltage, and 
therefore, it’s difficult to control. 
 
The behavior of the open-loop system corresponding 
to reference step changes and load disturbances is 
shown in Fig. 7. 
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Fig. 7. Open loop response of the converter against a: 

 (a) Reference step change response (20 a 21V) 
 (b) Step change in the load resistor (±50%R) 

 
To obtain the tuning parameters of the controller, the 
system in Eqn. (31) is described in terms of the 
natural response of the approximate model M:  
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where D is the steady state duty cycle. A parameter 
summary is shown in Table 1, according to the 
following circuit elements: inductor, 170mH; 
capacitor, 1000µF; resistor, 100 Ω; and power supply 
voltage, 10Vdc.  The duty cycle D is computed for an 
output voltage of 20 V. 
 

Table 1.   Model  parameters M(s)        (D = 0.5) 
Parameter Value 
b  5.882×104 
a1  1.471×103 
a2  10 
ωn , natural frequency 38.35 
ξ ,   damping ratio 0.130 

  
Lower limits for λ0 and λ1 are immediately obtained 
from the natural response: 
 

λ0  > ωn = 38. 35    y    λ1 > ξ  = 0.130 
 
Considering the closed-loop gain restriction that 
imposes an unstable zero dynamics of the system, is 
advisable to choose moderate gains, for instance, λ0  

= 1.05ωn or 1.1ωn and then increase λ1 from a value 
equal to ξ until the desired response is achieved. The 
gain Kd is obtained from the control input bounds (0 
< u < 1). Hence, to reach the sliding surface is 
enough to choose Kd = 1. 
 
In systems with high natural frequency, λ0 will be 
larger than λ1 and therefore, the instantaneous value 
of the surface σ(t) could reach an unusual magnitude. 
Because δ y σ(t) have the same order of magnitude, 
for practical implementation purposes, the sliding 
surfaceσ(t) can be normalized with respect to the 
natural frequency without degrades the UN behavior. 
 
 

6. RESULTS  
 
Using the average description according to Eqn. (30), 
the system was simulated using MATLAB® with 
step time equal to 1×10–4 s. The controller synthesis 
was carried out with the following parameters: 
λ0 = 42.18 (1.1ωn); λ1 = 0.417 (3.2 ξ); Kd = 1; δ = 
1.5; the error surface was normalized with respect to 
a factor of 10ωn. 
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Figure 8, shows the system step response when a 
reference step change is introduce at t = 0.5 s. It 
shows a small overshoot and a short settling time 
even better than the predicted by the tuning 
equations. The ITAE performance index, Fig. 8 (b), 
becomes constant confirming the annulment of 
steady state error. 
 
The good system response behavior to load 
disturbances is shown in Fig. 9 (a), when the output 
voltage is set to 20V. The load disturbances are 
simulated by step changes of ±50% of the nominal 
load. Figure 9 (b) shows that the steady state error is 
annulled in similar times.  
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Fig. 9. Attenuation of load disturbances. 

(a) Step changes ± 50% nominal load 
(b) ITAE performance index. 
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Fig. 10. Load step change response. 

(a) Control input magnitude (normalized) 
(b) Average inductor current 

 
Figure 10 shows the control signal and the average 
inductor current when the load change was 
simulated. The results are very similar to those 
obtained using and SMC adaptive strategy (Escobar 
et al., 1997) evaluated on experimental prototype of 
the boost converter.  
 
 

7.  CONCLUSIONS  
 
The designed SMC controller, based on an integral-
differential surface of the tracking-error, performed 
very well when reference and load step changes were 
introduced, with zero steady state error and without 
chattering.  
 
Its main attribute is the close relationship between 
the controller tuning parameters and the desired 
closed-loop transient response. The possibility to 
obtain the desired percent overshoot unilaterally 
(adjusting λ1) allows achieving demanding 
agreements between percent overshoot and settling 
time.  
 
Deduced from a second order model of the system, 
the control law has a simple structure and it requires 

only an output feedback loop. This could be suitable 
in design of control schemes of minor complexity, 
especially for power converters with schemes of 
pulse width modulation (PWM), where the current 
feedback is usual in the control strategy.  
 
Just one parameter (δ) in the controller structure is 
subject to the designer selection. Once a satisfactory 
Kd/δ relationship has been determined, the sliding 
surface σ(t) can be normalized with respect to the 
natural frequency, without degrades the UN behavior 
because it only depends on the magnitude and sign of 
the sliding surface σ (t) with respect to the numeric 
value of δ. This aspect is very important for practical 
implementation of the SMCr in analog schemes. 
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