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Abstract: Parametric linear constant and gain-scheduled control systems design
are studied for a class of linear parameter varying (LPV) systems and piecewise
linear (PL) systems based on stabilization via convexity restrictions. Specifically,
the maximum row sum (matrix) norm is utilized to obtain a computationally
attractive state space method for the scheduling of simple linear controllers under
incomplete modelling information. Furthermore, certain close connections of the
studied framework with fuzzy gain scheduling are discussed.
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1. INTRODUCTION

Gain scheduling is an important type of nonlin-
ear control in many application areas, such as
in flight controls, jet engine control, missile con-
trol, vehicular engine control and process control
(D. Gangsaas et al. 1986). The present work deals
mostly with the scheduling of linear controllers
for linear parameter varying (LPV) and piecewise
linear (PL) systems. A nice discussion of many
issues in gain scheduling is given in (Rugh 1991).

In applications it is typically desired that the
scheduling system is as simple as possible, with-
out sacrificing performance significantly, and so
it is of importance that the scheduled controllers
are themselves simple. This is possible to achieve
by scheduling methods for reduced, or low, or-
der linear controllers. Based on considerable ex-
perience from especially linear quadratic gaus-
sian (LQG) control, it is possible to state that
often a well-tuned, simple, reduced order con-
troller attains about the same performance as
the optimal full-order (LQG) controller (Mäkilä
and Toivonen 1987, Sandelin et al. 1991). There
is similar experience from reduced order optimal
H∞ control (Nyström et al. 1999).

The scheduling of linear controllers is studied
here for LPV and PL systems. LPV systems
have been quite popular in control design stud-
ies, see (Ridgely and McFarland 1999) and the
references therein. PL systems are popular for
example in the modelling of electronic circuits
and systems (Leenaerts and van Bokhoven 1998),
and also increasingly in control studies (Pettit and
Wellstead 1995).

In the present work discrete-time LPV systems
and PL systems are considered with special em-
phasis on the use of only partial and inaccurate
modelling information about the system dynamics
in the gain scheduling. This reveals also the close
connections of the studied system modeling and
gain scheduling concepts with certain fuzzy com-
puting approaches (Årzén and Johansson 1999,
Viljamaa 2000). In the present work, we use
reduced-order, or reduced complexity, controllers.
In addition a special feature is the use of sparse
scheduling of such simple controllers, i.e. the num-
ber simple controllers that need to be scheduled
may be much smaller than the number of dynami-
cal models required to describe the full LPV or PL
system dynamics. The controller design approach
studied here is based on a certain simple convex
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design problem that can be solved via linear pro-
gramming techniques (Rao 1978).

The proofs are omitted due to space limitations,
but are available on request (from the authors).

2. PARAMETRIC DESIGN FOR LPV
SYSTEMS

It is convenient to start by discussing constant
linear controller design for LPV systems.

2.1 Parametric Linear Controller Design

Consider the following class of discrete linear
parameter varying (LPV) systems

x(t + 1) =

K
∑

k=1

θk(t) (Akx(t) + Bku(t)) + w(t) (1)

z(t) = Dx(t) + v(t), (2)

where x is the n dimensional state vector, u is
the p dimensional input vector, z is an m dimen-
sional output vector, and w and v are disturbance
terms. Furthermore, {θk(t)}K

k=1 are possibly time-
varying parameters satisfying

K
∑

k=1

θk(t) = 1, θk(t) ≥ 0, k = 1, . . . , K. (3)

This means that x evolves as a, possibly time-
varying, convex combination of K ordinary linear
state space models.

Consider first a constant (fixed) controller of the
form

u(t) = Fz(t). (4)

This control law does not feed back the parameter
values θk(t), and so it does not depend on the
availability of these parameter values.

We are here mostly interested in issues of stabi-
lization, so the first natural question is: Does there
exists a controller of the form (4) that can stabilize
the LPV system (1) for an arbitrary sequence

{θk(t)}K
k=1, t = 0, 1, . . . , satisfying (3)?

We shall not try to give a general answer to this
very difficult question. However, even so there are
several interesting things that can be said about
this problem. Clearly a necessary condition for a
controller of the form (4) to be stabilizing is that it
must stabilize each of the constant pairs (Ak , Bk).
That is, the matrices Ak + BkFD, k = 1, . . . , K,
should all have their eigenvalues strictly inside the
unit circle.

The LPV system (1) contains many interesting
special cases. One such special case is obtained

when θk(t) = θk(t + K) for any k and t ≥ 0,
and θ1(0) = 1, θ2(1) = 1, . . . , θK(K − 1) = 1.
This choice corresponds to a simple periodic time-
varying system. Let us consider an example.

Example 1. Let us have the matrices

A1 =

(

−a −b
0 −a

)

, A2 =

(

−a 0
−b −a

)

,

where 0 < a < 1 and b > 0. Consider the linear
2-periodic system

x(t + 1) = A(t)x(t),

where A(2t) = A1, A(2t + 1) = A2, for any
t = 0, 1, . . . .

Take x(0) = [1 1]T . It is then easy to compute
that

[x1(2t) x2(2t)] > [a(a + b)]t[1 1],

and so the 2-periodic system is certainly unstable
if a(a + b) > 1 (recall that 0 < a < 1 and b > 0).
Take for example a = 0.1 and b = 10. Then the 2-
periodic system is unstable although both A1 and
A2 are stable matrices (and the eigenvalues of A1

and A2 are on a circle of radius 0.1 only, i.e. close
to the origin).

It is clear from this example that controller de-
sign methods that are based on the locations
of the eigenvalues of the matrices Ak + BkFD,
k = 1, . . . , K, do not provide a natural approach
to address stabilization problems for LPV systems
(1). Such methods would be also necessarily very
difficult computationally. We shall next state a
sufficient stabilization condition for (1) using con-
trollers of the form (4).

Theorem 2. Let an LPV system of the form (1)
be given. Let the system be controlled with a
parametric controller of the form (4). Then a
sufficient condition for a feedback gain matrix
F to be stabilizing for an arbitrary {θk(t), k =
1, . . . , K}t≥0 sequence satisfying (3), is that there
exists an invertible n×n matrix T and an induced
matrix norm ‖ · ‖ such that

max
k=1,... ,K

‖T (Ak + BkFD)T−1‖ < 1. (5)

Remark 3. Clearly the above result applies to a
generalized form of the LPV system (1) obtained
by relaxing conditions (3) to

0 <

K
∑

k=1

θk(t) ≤ 1, θk(t) ≥ 0, k = 1, . . . , K. (6)

The notation is in the next result as in the
previous one.



Proposition 4. Let T be an invertible matrix. Let

SF (T, ρ) ≡ {F | ‖T (Ak + BkFD)T−1‖ < ρ}, (7)

where k = 1, . . . , K and ‖·‖ is any induced matrix
norm and ρ is any positive number. Introduce the
function

`(F ) ≡ max
k=1,... ,K

‖T (Ak + BkFD)T−1‖. (8)

Then SF (T, ρ) is a convex set and `(F ) is a convex
function in the set of all (real) matrices of the
same size as F .

Corollary 5. Let the set SF (T, 1) be defined as
above and let this set be non-empty. Further-
more, let Λk denote the set of feedback gain ma-
trices F such that maxi |λi(Ak + BkFD)| < 1,
k = 1, . . . , K. Let ∩K

k=1Λk consist of at least
two disjoint subsets, each of the subsets being a
connected set. Then SF (T, 1) belongs to exactly
one of these disjoint subsets.

Hence by looking at some induced matrix norm in
place of the spectral radius (the largest eigenvalue
in absolute value) of the matrices Ak + BkFD,
k = 1, . . . , K, allows a geometrically much easier
approach for addressing stabilization of the LPV
system (1).

Let ‖A‖1 ≡ maxi

∑

j |Aij | denote the (maximum)
row sum norm of the square matrix A. Then it is
well-known that

‖A‖1 = sup
x6=0

‖Ax‖∞
‖x‖∞

, (9)

where ‖x‖∞ = supi |xi| denotes the supremum
(maximum) norm of a vector. Thus ‖·‖1 is indeed
an induced matrix norm.

By Theorem 2 the existence of a feedback gain
matrix F such that maxk ‖Ak + BkFD‖1 < 1
implies stability of the LPV system (1) for an
arbitrary {θk(t), k = 1, . . . , K} sequence satis-
fying (3). As this condition can be tested as a
linear programming feasibility problem (for real
matrices Ak, Bk,(k = 1, . . . , K,) F , and D), it is
a convenient condition to use.

2.2 Gain Scheduling for LPV Systems

Let us define a LPV controller by generalizing the
control law (4) as follows

u(t) = F (ϕ(t))z(t), (10)

where

F (ϕ(t)) =

L
∑

`=1

ϕ`(t)F`. (11)

Here {F`}L
`=1 are constant matrices, ϕ(t) =

{ϕ`(t)}L
`=1, and the measurable (scheduling) pa-

rameters satisfy

L
∑

`=1

ϕ`(t) = 1, ϕ`(t) ≥ 0, ` = 1, . . . , L. (12)

Proposition 6. Consider the LPV system (1) sat-
isfying (6) and controlled with (10)–(11). Let
there exist an induced matrix norm ‖ ·‖ such that

max
k,`

‖Ak + BkF`D‖ < 1. (13)

Then the closed loop system is (asymptotically)
stable.

We have so far made no assumptions on the in-
terconnection structure of the parameters {θk(t)}.
For practical applications it is relevant to assume
certain sparseness properties about which of the
parameters {θk(t)} can be simultaneously non-
zero. This allows interesting gain scheduling de-
sign and analysis.

2.3 Gain Scheduling for Localized LPV Systems

Let us define the K × K symmetric matrix Γ so
that its entries can take the (binary) values 0 or
1 only. Define Γii = 1 for any i. Furthermore, for
i 6= j, Γij = 0 means that θi(t) and θj(t) can not
be simultaneously non-zero whilst Γij = 1 means
that they can. We shall call Γ the interconnection
topology matrix of the LPV system (1).

Let q1(i) = min j such that Γij = 1. Furthermore
let q2(i) = max j such that Γij = 1. Introduce the
quantity

band(Γ) = max
i

{q2(i) − q1(i) + 1}. (14)

If band(Γ) � K then clearly Γ is a sparse
band matrix. In this case only a small set of
neighbouring index values k can have non-zero
parameter values θk(t) at any given time t. We
say that the LPV system (1) is then a localized
system.

Let r(t) define an integer valued indicator function
with the property that it gives as its value the
index k of ONE non-zero θk(t) parameter at time
t. Let now β ≤ K define an upper bound for
band(Γ). Hence any index ` such that θ`(t) is non-
zero at time t satisfies

` ∈ P (t) ≡
{

max{1, r(t) − β + 1}, . . . ,

min{r(t) + β − 1, K}
}

. (15)

We can interpret the index set P (t) of consecutive
integers as the information available about the
active local dynamics of the LPV system (1) at
time t. That is (cf. (1))



x(t+1) =
∑

k∈P (t)

θk(t)(Akx(t)+Bku(t))+w(t). (16)

The assumption that the LPV system is localized,
motivates a sparse, local, gain scheduling design
as follows.

For simplicity we shall only consider gain schedul-
ing design with as few design parameters as possi-
ble. Hence we restrict us to uniform, 1-neighbour
overlapping, designs by considering the quantity

ρM (W ) = max
i=1+(j−1)W/2

j=1,... ,J

min
‖Fj‖1≤M

max
i≤k≤i+W−1

‖Ak + BkFjD‖1. (17)

Here W (< K) is an even positive integer (for the
sake of notational simplicity) and the maximum
value, J , of j is the smallest integer j ≥ 1
such that (j + 1)W/2 ≥ K. Furthermore, the
largest value for k that is allowed above, is K
(for notational simplicity we have not included
this restriction in the expression for ρM (W )).
Introduce the notation

I(j) = {k ∈ Z+ | 1 + (j − 1)(W/2) ≤ k

≤ (j + 1)(W/2)}, 1 ≤ j < J,

I(J) = {k ∈ Z+ | 1 + (J − 1)(W/2) ≤ k ≤ K},

where Z+ denotes the (usual ordered) set of all
positive integers. The set of consequtive k values
from 1 to K is thus divided, when computing
ρW (M), into J sets of consequtive integers I(j),
j = 1, . . . , J . The set I(j) has nonzero inter-
sections only with its left neighbour I(j − 1) for
1 < j ≤ J and with its right neighbour I(j + 1)
for 1 ≤ j < J . Each feedback gain matrix Fj

is designed locally for k values in I(j) and each
I(j) has W elements, except possibly the set I(J)
may have fewer. Each k value in I(j), 1 < j < J ,
belongs either to the left neighbour I(j − 1) or
to the right neighbour I(j + 1) of I(j), but not
to both of them. That is, the intersection I(j −
1) ∩ I(j + 1) = ∅ is empty for 1 < j < J . Hence
the terminology uniform 1-neighbour overlapping
design.

Note that ρM (W ) can be computed by solving a
set of linear programming problems for each given
M and W value. The task is to find, if possible, a
small M value and a large W value such that

ρM (W ) ≤ ρ < 1, (18)

where ρ < 1 is a user chosen design parameter.
The smaller M and ρ values can be found, the
better robustness properties are implied. A larger
W value implies that a simpler gain scheduling
controller is obtained. Let {Fj}J

j=1 define the local
controllers obtained whilst computing a satisfac-
tory ρM (W ) value.

Note that I(j) is the set of consecutive index
values k for which the pair Ak + BkFjD is known
(designed) to be a stable matrix when ρM (W ) <
1.

The scheduled gain matrix F (t) in the control law

u(t) = F (t)z(t) (19)

is defined as follows. (Recall the definition of z(t)
in (1).)

(1) If P (t) ⊂ I(1) and P (t) 6⊂ I(2) then F (t) =
F1.

(2) If P (t) ⊂ I(j) and P (t) 6⊂ I(j + 1) for some
1 < j < J then F (t) = λtFj + (1 − λt)Fj+1

for any 0 ≤ λt ≤ 1.
(3) If P (t) ⊂ I(J) and P (t) 6⊂ I(J − 1) then

F (t) = FJ .

It is readily seen that the gain scheduling con-
troller (19) stabilizes the localized LPV system if
ρM (W ) < 1 AND β ≤ [(W/4) + 1]−, where [y]−
denotes the largest integer j satisfying j ≤ y (y
is here a real number). We shall summarize some
properties of the gain scheduling system in the
form of a robustness result. The notation is as
in the above construction of the gain scheduling
controller (19).

Theorem 7. Consider a localized LPV system of
the form (1). Let a gain scheduled controller (19)
be designed for this system as described above.
Let ρM (W ) < 1 and β < [(W/4) + 1]−. The
designed controller will then also stabilize any
LPV system obtained from the system (1) by
replacing the pairs (Ak, Bk) with any pairs (Ak +
4Ak, Bk + 4Bk), k = 1, . . . , K, satisfying

sup
k

‖4Ak‖1 + sup
k

‖4Bk‖1M‖D‖1

< 1 − ρM (W ). (20)

If the LPV system (1) satisfies in addition the
conditions

‖Ak+1 − Ak‖1 ≤ εA (21)

‖Bk+1 − Bk‖1 ≤ εB, (22)

for some small positive numbers εA and εB , then
it can be often expected that a simple uniform
gain scheduling controller can be designed for the
localized system.

Note that there is no advantage in trying to
write the controller F (t) in (19) as some function
F (t) = G(P (t)) of the information P (t). In fact,
we could even choose the parameter λt in a fuzzy,
or alternatively random, manner so that F (t)
need not even be (mathematically speaking) an
ordinary function. Hence we see that if-then rule
based controllers arise naturally in gain scheduling
for localized LPV systems. We see thus that



fuzzy computing type ideas arise naturally in this
context.

3. PIECEWISE LINEAR SYSTEMS

Piecewise linear (PL) systems are especially pop-
ular in the modelling of circuits. It is convenient
to consider here discrete-time PL systems defined
in state space form as

x(t + 1) = A(y)x(t) + B(y)u(t) + w(t) (23)

y(t) = Cx(t), (24)

where x is the n dimensional state vector, u is the
p dimensional input vector, y is a scalar variable,
w is a disturbance term, and

y(t)≤ y1 ⇒ A(y) = A1, B(y) = B1,

y(t) ∈ (yk−1, yk] ⇒ A(y) = Ak, B(y) = Bk,

k = 2, . . . , K − 1

y(t) > yK−1 ⇒ A(y) = AK , B(y) = BK . (25)

Here K ≥ 2 is an integer and (Ak , Bk), k =
1, . . . , K, are matrices of appropriate dimensions
and {yk}

K−1
k=1 are real numbers satisfying yk <

yk+1 for k = 1, . . . , K−2. (Clearly for K = 2 only
the first and last rules above for defining A(y) and
B(y) are present.)

The dynamics of PL systems can be very complex.
PL systems are clearly closely related to LPV sys-
tems (1). Furthermore there is a close connection
between LPV systems (1) and PL systems from
the point of view of convex parametric design. Let
us start with a simple example.

Example 8. Consider the PL system

x(t + 1) = A(y)x(t)

y(t) = [1 1]x(t),

where

y(t)≤ 0 ⇒ A(y) = A1

y(t) > 0 ⇒ A(y) = A2,

where A1 and A2 are the 2 × 2 matrices given in
Example 1.

Take x(0) = [1 1]T . Then as in Example 1

[x1(2t) x2(2t)] > [a(a + b)]t[1 1].

Hence the PL system of this example is certainly
unstable if a(a + b) > 1 although A1 and A2

are stable matrices (recall that 0 < a < 1 by
assumption).

Let the PL system (23)–(25) be controlled with a
parametric controller of the form (4). That is, let

u(t) = Fz(t), (26)

where

z(t) = Dx(t) + v(t). (27)

Note that the scalar variable y in the definition of
the PL system could be a component in z.

Clearly due to the formal similarities between
LPV systems and PL systems, it is quite easy to
derive analogous results to those in Section 2 for
PL systems.

We shall next consider gain scheduling design for
a PL system based on a (typically small) set of
approximate models (Â(σi), B̂(σi)), i = 1, . . . , L.
Here {σi} are real numbers satisfying σi < σi+1

for i = 1, . . . , L − 1. Let L < K.

Let us design L gain matrices Fi, each Fi obtained
as a minimizer to

gi(M) ≡ min
‖F‖1≤M

‖Â(σi) + B̂(σi)FD‖1, (28)

where i = 1, . . . , L and M > 0 is a design
parameter. Let supi gi(M) < 1 and

max
i

‖Â(σi) − Ak(i)‖1 ≤ δA (29)

max
i

‖B̂(σi) − Bk(i)‖1 ≤ δB , (30)

where k(i) is a minimizer of mink |σi − yk| and δA

and δB are non-negative numbers.

Furthermore let

max
k

‖Ak+1 − Ak‖1

|yk+1 − yk|
≤ ξA (31)

max
k

‖Bk+1 − Bk‖1

|yk+1 − yk|
≤ ξB (32)

for some non-negative number ξA and ξB . Here
yK is a positive number satisfying yK > yK−1.

Let us now determine for each i the range of
k values for which it is guaranteed that ‖Ak +
BkFiD‖1 < 1, i = 1, . . . , L. We get that ‖Ak +
BkFiD‖1 < 1 if

|yk − yk(i)| <
1 − gi(M) − δA − δBM‖D‖1

ξA + ξBM‖D‖1
≡ Σi.

(33)

Let

max
1≤k≤K−1

|yk+1 − yk| ≤ εy, (34)

where εy > 0.

Let us define the numbers {ai, bi}L
i=1 so that

ai < ai+1, bi < bi+1 for 1 ≤ i ≤ L − 1, and
ai < σi < bi, i = 1, . . . , L. Furthermore, let
ai < bi−1 < σi < ai+1, 1 < i < L. Let us



assume that a1 ≤ y1 < σ1 and σL < yK−1 ≤ bL.
Furthermore, it assumed that σi − ai < Σi − c ×
εy/2 and bi − σi < Σi − c × εy/2 for i = 1, . . . , L,
where c > 0. We shall later try to choose a value
for c based on stabilization considerations for the
gain scheduled closed loop system. Recall that the
quantities {Σi}L

i=1 are defined in (33).

The gain-scheduled controller will be of the form

u(t) = F (y(t))z(t). (35)

The gain scheduling of F (t) is done as follows.
(We assume below that L ≥ 2.)

(1) If y(t) < a2 then F (y(t)) = F1.
(2) If y(t) ∈ [ai+1, bi) (i < L) then F (y(t)) =

λtFi + (1 − λt)Fi+1 for any 0 ≤ λt ≤ 1.
(3) If y(t) ∈ [bi−1, ai+1) (1 < i < L) then

F (y(t)) = Fi.
(4) If y(t) ≥ bL−1 then F (y(t)) = FL.

Note that the PL system (23) can be naturally
interpreted as a localized system as only one of
the pairs (Ak, Bk), k = 1, . . . , K, is active at any
given time t.

We can now state the following theorem.

Theorem 9. Consider the PL system (23). Let
the models (Â(σi), B̂(σi)), i = 1, . . . , L, be used
to design the gain-scheduled controller u(t) =
F (y(t))z(t) to control the PL system (23). (Here
L < K.) Let (29)–(32) hold for given non-negative
numbers δA, δB , ξA and ξB . Let (34) hold for
a given non-negative number εy. Let M > 0 be
a given number. Let the numbers (ai, bi), i =
1, . . . , L be defined as above and let them satisfy
also the conditions

σi − ai < Σi − (3/2)εy and

bi − σi < Σi − (3/2)εy, i = 1, . . . , L, (36)

where Σi is defined by (33).

Then clearly the gain-scheduled controller u(t) =
F (y(t))z(t) stabilizes asymptotically the PL sys-
tem (23).

4. CONCLUSIONS

The design of gain-scheduled controllers from sim-
ple linear controllers has been studied for lin-
ear parameter varying (LPV) systems and for
piecewise linear (PL) systems. Via suitably aug-
mented state space models, it is possible to con-
sider with the studied approach gain scheduling of
PID controllers and of arbitrary linear dynamic
state space controllers, cf. parametric design of
arbitrary linear controllers (Mäkilä and Toivonen
1987). Hence the studied approach provides a rea-
sonably unified approach for gain scheduling. This

approach is based on a computationally attractive
linear programming design technique.
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