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Abstract The paper shows how a synthetic gradient of a quadratic cost function can be
used to monitor performance. The method requires a model of the closed loop system.
In the current paper this is obtained from the recommended tuning rule. The tuning rule
requires a simple model of the process. The method is non-invasive, only closed loop data
from normal operation is used. By monitoring the gradient, information about the state of
the loop is obtained.
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1. INTRODUCTION

The need for tools to automatically analyze perfor-
mance of feedback controllers has been recognized in
the process industry where a typical plant might have
hundreds or even thousands of controllers. The ben-
efits of having controllers running smoothly is an in-
crease in product quality and reduction in down time
because problems are found before they cause prob-
lems.

Previous work on performance monitoring has gener-
ally focused on identifying the impulse response from
a stochastic disturbance added to the output. For a re-
view see (Harriset al., 1999). Using these methods
it is possible to compare current performance, mea-
sured as variance of output, to the maximally achiev-
able performance while taking into account fundamen-
tally limiting factors of performance such as dead time
or non-minimum phase zeros. For a correct usage of
these methods knowledge about the limiting factors is
required at all operating conditions the control loop is
supposed to work in. This information might be con-
sidered difficult to obtain.

Any performance monitoring loop is bound to en-
counter oscillations. Oscillations might occur because
loop is marginally unstable or a nonlinearity is present.
Oscillating loops might also cause oscillating distur-

bances in other feedback loops which are “down-
stream”. In (Horch, 2000) it was shown that the above
mentioned methods can fail to indicate poor perfor-
mance when oscillations occur.

The method presented takes a new approach to the
problem. In contrast to comparing the current per-
formance to what is maximally achievable consider-
ing the fundamental limitations, the presented method
gives information about whether the performance,
with the current control parameters and disturbance
spectrum, could be improved by a change in the con-
troller parameters. This information is supplied by cal-
culating a synthetic gradient of a quadratic cost func-
tion with regard to the controller parameters.

Because the method requires a model of the closed
loop, it is suggested to integrate the performance
monitoring with a tuning method with the design goal
of a certain closed loop transfer function. This is theλ
tuning method but it is also shown how the method can
be applied when the loop has been manually tuned.

In the current article the focus will be on PI control.
Surveys frequently show that more than 90% of con-
trollers in the process industry are controlled with a PI.
The synthetic gradient can be used to monitor other
types of controllers even though the structure of the
PI is taken advantage of. In discrete form the PI is
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parametrized as

C(z) = K

(
1 +

h
Ti(z− 1)

)
(1)

ParameterK is used to increase or decrease the loop
gain. It affects both the proportional and integral term.
Most control engineers are familiar with what affect it
has to changeK and it is frequently used for trimming
loops. For this reason special emphasis will be on the
gradient with respect toK.

The paper is organized in the following manner. In
Section 2 it is shown how the synthetic gradient is
obtained. In Section 4 it is shown how to use the
synthetic gradient. In Section 5 conclusions are drawn.

2. THE SYNTHETIC GRADIENT OF A
QUADRATIC COST FUNCTION

2.1 Iterative Feedback Tuning

Iterative Feedback Tuning (IFT) has recently emerged
as a technology to tune fixed order controllers like
the PID by performing experiments on the closed-loop
system. The tuning is performed by calculating the
gradient of a quadratic cost function with respect to the
controller parameters and modifying the parameters in
the descent direction of this cost function. Because of
lack of space only the aspects of IFT that are used
directly in the proposed method will be introduced.
Every thing else about IFT can most probably be found
in (Hjalmarssonet al., 1998).

The method deals with SISO linear systems on the
form

yt = G0ut + vt (2)

vt is the process disturbance. In this paper the con-
troller is restricted to be of one degree of freedom. The
control signal is given by

ut = C(ρ)(rt − yt) (3)

ρ is a vector containing the controller parameters.
Given that the controller is given by Eq.(1) the param-
eter vector would be

ρ = [K Ti ]

The closed loop system is then given by

yt =
C(ρ)G0

1 + C(ρ)G0
rt +

1
1 + C(ρ)G0

vt

= T(ρ)rt + S(ρ)vt (4)

T(ρ) is referred to as the complimentary sensitivity
function while S(ρ) is the sensitivity function. It is
easy to check that they satisfyT(ρ) + S(ρ) = 1.
The time argument of the signals will now be omitted

but they will be written as a function of controller
parametersρ.

Putting ỹ(ρ) = r − y(ρ) the cost function that is
monitored is of quadratic type (LQG with tracking),

J(ρ) =
1

2N
E

 N∑
t=1

ỹ(ρ)2 + δ
N∑

t=1

u2(ρ)

 (5)

The expectation is with respect to the weakly station-
ary disturbancev. The goal within the IFT framework
is to minimizeJ(ρ) by finding the solutionρ so that

0 =
∂J
∂ρ

=
1
N

E

 N∑
t=1

ỹ(ρ)
∂ỹ(ρ)
∂ρ

+ δ

N∑
t=1

u(ρ)
∂u(ρ)
∂ρ


This is done by obtaining a unbiased estimate of∂J/∂ρ
and modifyingρ in the negative gradient direction.

ρi+1 = ρi − γiR
−1
i
∂J
∂ρi

(6)

whereRi is some appropriate positive definite matrix,
typically an estimate of the Hessian ofJ andγ is the
step size.

In what follows,δ is set to zero making it in effect
a minimum variance cost function that is monitored.
With δ > 0 a cost function is obtained that would result
in a more conservative controller. The effect ofδ is of
interest but will not be pursued further in this paper.

Within the IFT framework the gradient is found by
performing two experiments (when controller is one-
degree of freedom) under which input and output data
is collected. The resulting data series are of lengthN
and are referred to asui , yi for i = 1,2.

The first experiment consists of collecting data under
normal operation. This results in data seriesu1, y1.
In the second experimenty1 is subtracted from the
reference value and the resulting signal,r − y1, is fed
to the closed loop system. This generates data series
u2, y2.

When a synthetic gradient is calculated the last exper-
iment is omitted. In steadr −y1 is fed through a model
of the closed loop system. This model will be referred
to asT̂(ρ) to distinguish it from the actualT(ρ).

The equation for the synthetic gradient is now given
for δ = 0.

∂̂J
∂ρ

=
1
N

N∑
t=1

[rt − y1
t ]

1
C
∂C
∂ρ

T̂(ρ)[rt − y1
t ] (7)

Remark Since it is the minimum of the cost function
that is of interest, in what follows when referring to
the gradient, the direction to that minimum is what is
meant, i.e. the negative of the traditional gradient.



Remark Notice that for parameterK in the PI
algorithm this equation becomes particularly simple,
namely

− ∂̂J
∂K

= − 1
N

N∑
t=1

[rt − y1
t ]

1
K

T̂(ρ)[rt − y1
t ] (8)

A positive value of this gradient indicates loop gain
could be increased to reduceJ(ρ).

2.2 Tuning rule

The tuning rule used isλ-tuning and applies specially
for PI controllers. Among the first references toλ-
tuning is (Dahlin, 1968). The process is modeled as

G(s) =
Kp

T s+ 1
e−Ls

In λ-tuning the closed loop transfer function is speci-
fied as

T(s) =
1

Tcls+ 1
e−sL (9)

where Tcl = λT. The main tuning parameter isλ.
By approximatinge−sLn with 1 − sL and using pole
placement, then givenλ, the PI parameters are given
as

K =
1

Kp

T
L + Tcl

Ti = T (10)

Within the pulp and paper industry the recommended
values forλ is 1 − 3. To calculate the gradient with
Eq. (7) the transfer function given by Eq. (9) is used as
T̂(ρ)

Manual tuned loop Assume the loop has been tuned
manually. If dead time,L, is known and it is possible
to characterize the tuning withλ then the relations
Tcl = λT andTi = T can be used to find̂T(ρ).

3. USING THE GRADIENT FOR PERFORMANCE
MONITORING

In the current section it is shown how the gradient can
be used for performance monitoring. This is best il-
lustrated by an example. Observations will be made
regarding the behavior of the gradient under normal
conditions and abnormal conditions. From these ob-
servations, the performance monitoring algorithm will
be suggested in later sections.

Within the IFT methodology, the gradient is calculated
with regard to what disturbances are actually affecting
the loop. A frequency domain approximation of the
cost functionJ(ρ), with r = 0 andδ = 0, can be found
by Parseval’s relation

J(ρ) ≈ 1
4π

∫ π

−π
|S(ρ)|2Φvv (11)

Φvv is the power spectrum of the disturbances. The
controller parameters affect the sensitivity function by

lifting it up or dragging it down on specific frequency
intervals. If the power spectrum of the disturbances is
concentrated in a frequency region where an increase
in a parameter increases the gain of the sensitivity
function, the gradient with regard to this parameter
will be negative. If the sensitivity function gain is
reduced with a positive change in the parameter the
gradient will be positive.

In what follows, the gradient will be calculated for a
number of different disturbances. It is not implied that
a typical loop in a plant is affected only by distur-
bances of this kind even though an attempt has been
made to cover many cases. In reality the disturbances
affecting a loop can vary greatly in frequency content
and intensity. Sometimes they can best be described in
a stochastic fashion while other times more determin-
istic disturbances seem to be affecting the loop. The
deterministic disturbances might be related to the op-
erating points of the plant or other factors.

Plant Assume the process is a typical monotonic
process,

G0(s) =
e−5s

(10s+ 1)(s+ 1)
(12)

A PI controller is found with Eq. (10) after identifying
the FOPDT parameters from a step response.

3.1 Disturbance is sinusoidal

A sinusoidal was applied to the system throughvt,
vt = sin(ω0t). As there is no stochastic component in
this disturbance, variance is zero. The result is shown
in Fig. 1.

The gradient is negative when the frequency is above
0.08. This can be explained from Fig. (2) and by
considering Eq. (11) while keeping in mind that the
power spectrum of a sinusoidal is like a delta function
around the disturbance frequency. There the sensitivity
function is shown when gain is increased by a factor
2 or reduced by a factor 2. For those frequencies that
the sensitivity function increases with increase in gain,
the gradient will be negative. This is for frequencies
higher than 0.08. For lower frequencies, increasing the
gain, drags the sensitivity function down. This gives a
negative gradient.

A negative gradient indicates that the disturbances
have much power in the frequency range where the
sensitivity function can be reduced by reducing the
gain. This is typically high frequency. A positive gain
means the disturbances are of low frequency character
and by increasing gain performance can be improved.

Notice that the smallest frequency is well below the
system bandwidth and can be compared with a slow
load disturbance.
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Fig. 1 −∂J/∂K as a function of frequency
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Fig. 2 Sensitivity functionS with the frequencies as in Fig. 1
marked with vertical, dashed lines.

3.2 Stochastic disturbance

The disturbance model was

vt = Gd(z)et = G0(z)
1

z− 1
et (13)

The disturbance is driven by noisee with variance 1.
In Fig.4 the level curves of the cost functionJ(ρ) are
shown. The cost function has a minimum forK =

2.1 and Ti = 15 approximately. The thick dashed
line farthest to the right is the stability boundary.
Robustness of the controllers within this parameter
space changes with parameters as expected. As a
measure of robustness the maximum sensitivity is
used.

Ms = max
ω
|S(iω)| (14)

Shown in Fig. 4 are three lines for equal maximum
sensitivity, namelyMs = [1.4,2,5]. The tuning for
λ = 1 andλ = 3 is shown as© and× in the lower
left corner.
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Fig. 3 Typical disturbancev (−−) and output signaly (−) for
Example 1 withλ = 3.

Table 1 Mean and standard deviations of gradient and other
important numbers

− ∂J
∂K − ∂J

∂Ti
∆J(ρ)

∣∣∣∣ ∂J
∂ρ

∣∣∣∣
Mean 1.81 -0.04 0.75 1.81

Std 0.41 0.014 0.067 0.41

The gradient,−∂J/∂ρ was calculated using the approx-
imate model of the closed loop given by Eq. (9) for
100 different disturbance realizations that were filtered
through the actual sensitivity function. Sampling time
was 1, and 1000 points were collected. The signal was
normalized to have variance estimate equal to 1. A typ-
ical realization can be seen in Fig. 3. The mean and
standard deviation for the components of the gradient
are shown in Table.1.Also shown is the mean and stan-
dard deviation the length of the gradient. The statisti-
cal properties of the gradient estimate can be obtained
by considering Eq.(8) as an estimate of the cross corre-
lation between two signals for time shift equal to zero.
As expected from Fig. 4 the gradient recommends in-
crease in loop gain. The steepest decent is in the posi-
tive K direction.

Some observation can be made at this point.

• When a stochastic disturbance affects the sys-
tem, the gradient estimate is a stochastic vari-
able as well. Drop in variance should mean that
a more deterministic disturbance is affecting the
loop.

• The tuning is quite conservative for the distur-
bances affecting the system. This is not lim-
ited to the tuning method presented. Most tuning
method used for PID controllers would result in
a conservative controller.

• Direction is an indicator of where the current
tuning is close to instability or not. If−∂J/∂K
is negative, meaning reducing loop gain would
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Fig. 4 Contour curves withδ = 0 with example 1.

Table 2 Mean and standard deviations of loop gain gradient as a
function of∆K.

∆K Mean(−∂J/∂K) Std(−∂J/∂K)

2 1.1 0.32

4 0.41 0.20

6 0.17 0.16

8 -0.23 0.09

increase performance one is closer to the region
of instability than if it is positive

• Length of gradient is an indicator how far from
the minimum one is. The IFT method aims at
finding the parameterρ so that∂J/∂ρ = 0. As
the gradient becomes longer, one can assume
one is moving away from better performance to
worse.

3.3 Increase in gain

Assume that the static gain of the process is increased.
This is described by the equation

yt = G0∆Kut + vt (15)

where∆K corresponds to the increase in gain. In Ta-
ble. 2 the loop gain gradient is shown. 10 disturbance
realizations were simulated for each∆K again through
the real sensitivity function while the gradient was cal-
culated with Eq. (8). In Fig. 5 typical realizations are
shown for each case.

As expected, the gradient becomes smaller until finally
it becomes negative. The variance is also reduced
greatly. The increase in gain means the disturbances
with frequency where the amplitude ofS is larger than
1 are amplified further as an increase in∆K pushes the
peak ofS up. With∆K = 8 the system has very small
amplitude marginal.

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

Time

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

Time

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

Time

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

Time

Fig. 5 Normalized responses for gain case, gain goes from 2 to 8
from increasing from top to bottom..
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Fig. 6 Limit cycle caused by friction.

3.4 Limit cycle because of friction

A simple model of a valve with Coulomb friction was
added in front of the plant. The model that was used
was similar to the one presented in (Horch, 2000). The
stiction force was 0.1 while the Coulomb force was
half that.

In Fig.6 a simulation can be seen of the resulting limit
cycle. No noise was added to the system so that the
dominating frequencies would be the one from the
friction limit cycle. The gradient was calculated when
starting at 10 different time points of the period of the
limit cycle. The resulting mean and standard deviation
of −∂J/∂K were

Mean(−∂J/∂K) = 2.97

Std(−∂J/∂K) = 0.04

The limit cycle causes a drop in variance. The gradi-
ent has a high positive value similar to when sinusoidal
frequencies of low frequencies was added to the sys-
tem.

4. ALGORITHM

It is suggested that the loop gain gradient is calculated
periodically with certain frequency, for example using
1000 data points or 20 to 30 timesTcl. The variance of



y, σ2
y, is estimated for the same period. Alarms should

not be sounded ifσ2
y is very low.

The mean of the gradient should be monitored and
an alarm should be sounded if it becomes negative.
The stochastic character of the gradient should be
taken into account when determining if the gradient
is negative. A negative gradient means the system
might be close to instability. A softer alarm should
be sounded if it becomes to long since this indicates
performance is very far from optimal.

Thevarianceshould be monitored and an alarm could
be sounded when there is a drop in it. A drop in
variance indicate disturbances are more deterministic
such as load disturbances or disturbances with one
frequency dominant (such as limit cycles).

Methods within statistical process control might be
appropriate to monitor these things (such as ¯x andR
control charts). Operators in control rooms should be
able to plot the gradient over a long period of time,
over all operating regions. Notice that this plot can
give valuable information regarding possibilities to
trim the loop further. If the gradient is always positive
and far from zero, this indicates the loop gain could be
increased which is a good indication the loop could be
made faster.

5. CONCLUSIONS

A method to monitor performance of PID controller
has been suggested in much reduced form because of
lack of space. The monitoring isdone by calculating
the synthetic gradient of a quadratic cost function by
using a model of the closed loop obtained from the
tuning method.

With this method it is possible to get valuable informa-
tion about whether the current controller is suitable for
the type of disturbances affecting the loop. Abnormal
operating conditions such as if system is close to insta-
bility, or if loop is in a limit cycle, can be detected. The
data collected give valuable information for trimming
the loop. The method is non-invasive and requires lit-
tle prior information to be used. The parameter values
of a well trimmed PI are sufficient.

Focus is on PI even though the method is not limited
to this structure. The fact that control engineers are
familiar with this structure should make the method
more useful.
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