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Abstract: Passivity is the property stating that any storage energy in a system is
not larger than the energy supplied to it from external sources. This paper considers
adaptive feedback passivation for a class of nonlinear systems. A nonlinear system
with unknown constant parameters is transformed via feedback into a new system.
An appropriate update law is designed so that the new transformed system is passive.
In fact the system is passive via feedback if the unknown parameters are replaced
with their suitable estimates.
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1. INTRODUCTION

The link between Lyapunov stability and passivity
increases the importance of passivity in the con-
trol area. In fact passivity is not only important
because of this link, but also because there is a
relation between passivity and optimality (Sepul-
chre et al., 1997). Passivity has wide applications
including electrical, mechanical and chemical pro-
cess systems (Ortega et al., 1998; Sepulchre et al.,
1997).

The passivity concept is a particular case of dis-
sipativity, which has been addressed by Willems
(1971). Passivity has been considered in recent
years in many different areas, the stability of feed-
back interconnected systems (Hill et al. 1977), ap-
plications to robotics and electro-mechanical sys-
tems (Ortega, 1991) and the geometric approach
to feedback equivalence (Byrnes et al., 1991).
Global asymptotic stabilization of nonlinear pas-
sive systems with stable free dynamics using some
techniques of feedback equivalence and bounded
control, has been studied by Lin (1996). The full
details of passivity of nonlinear systems including
concepts, stability and applications can be found
in Sepulchre et al. (1997), and for Euler-Lagrange
systems with applications in Ortega et al. (1998).

The passivity of a general canonical form of non-
linear systems has been considered in a paper by
Sira-Ramı́rez (1998), based upon the properties of
projection operators. The system is converted into
a generalized Hamiltonian system, and is passive
whenever the appropriate symmetric matrix is
negative definite. This work has been generalized
to multivariable nonlinear systems (Sira-Ramı́rez
and Rı́os-Boĺıvar, 1999). An adaptive passivation
procedure of SISO nonlinear system based control
has been studied by Rı́os-Boĺıvar et al. (2000).

In this paper the passivity of nonlinear systems
is considered. A nonlinear affine system is trans-
formed into a passive system via a transformed
control. The resulting system is (strictly) passive
regarding different choices of the rate function.
The only assumption is the transversality condi-
tion, i.e. the directional derivative of the storage
function in the input matrix direction is not zero.

A particularly important aspect in regulation
and tracking tasks for systems is robustness in
the presence of disturbances and unmodelled dy-
namics. We design sliding mode control (SMC)
for the transformed passive systems to achieve
robustness. When a nonlinear system contains an
unknown parameter, the method allows one to de-
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sign adaptive sliding mode (tracking) controllers.
The resulting control law achieves robust asymp-
totic stability with considerably reduced chatter-
ing.

In Section 2 the passivation of nonlinear systems
is considered. The sliding mode of nonlinear pas-
sive systems is studied in Section 3. In Section
4 feedback passivation is designed for parameter-
ized nonlinear systems. In Section 5 an exother-
mic chemical reactor model illustrates the results.
Conclusions are presented in Section 6.

2. PASSIVATION OF NONLINEAR SYSTEMS

Consider the nonlinear system

ẋ = f(x) + g(x)u (1)

y = h(x)

where x ∈ X ⊆ Rn is the state; u ∈ U ⊆ Rm

the control input and y ∈ Y ∈ Rm the output.
Functions f and g are smooth on X . Assume that
X is a pathwise connected open subset of Rn.
The equilibrium point xe ∈ X satisfies f(xe) +
g(xe)ue = 0 with ue ∈ U constant. h is a smooth
function defined on X . Let us consider the well-
known definitions (Ortega et al.,1998; Sepulchre
et al., 1997).

Definition 1. (i) The system (1) is dissipative
with respect to the supply rate w(u, y) : U ×
Y → R if there exists a storage function
V : X → R+ such that

V (x(T )) ≤ V (x(t0)) +

T∫

t0

w(u(t), y(t))dt (2)

for all u ∈ U , all T and x(t0) such that
x(t) ∈ X for all t0 ≤ t ≤ T .

(ii) The system (1) is said to be passive if it is
dissipative with supply rate w(u, y) = uT y.

(iii) The system (1) is said to be strictly passive
if it is passive with supply rate w(u, y) =
uT y−Ψ(t, x, u, y) with Ψ(t, x, u, y) a positive
function. If there exists a positive function γ
such that Ψ(t, x, u, y) = γ‖y‖2, the system is
strictly output passive.

Definition 2. Let V : X → R+ with V (0) = 0, be
a smooth positive definite storage function. Define

LgV (x) =
∂V

∂xT
g(x) (3)

Assumption 3. It is assumed that LgV (x) 6= 0 for
all x ∈ X , and this condition is known as the
transversality condition.

It is assumed that Assumption 3 is satisfied
throughout the paper. In general the transver-
sality condition is a differential topology concept
when the properties (such as dimension) of the in-
tersection of two hyperplanes are considered. For
instance, see Guckenheimer and Holmes (1983).
This assumption is not restrictive. If the transver-
sality condition is not satisfied, the storage func-
tion may be modified so that the new storage func-
tion satisfies the condition (Sira-Ramı́rez, 1998).
We now follow our approach.

Theorem 4. Consider the system (1). Let

Ψ(t, x, u, y) : R+ ×X × U × Y → R+

be a positive real function. Assume that f(x) =
f1(x) + f2(x) where ∂V

∂xT f1 ≤ 0. The following
input coordinate transformation with a new ex-
ternal independent control input v,

u=
LT

g V (x)
‖LgV (x)‖2

(
− ∂V

∂xT
f2(x)+hT (x)v−Ψ(t, x, u, y)

)

(4)

transforms the system (1) into

ẋ=

(
I−g(x)

LT
g V (x)

‖LgV (x)‖2
∂V

∂xT

)
f(x)+g(x)×

LT
g V (x)

‖LgV (x)‖2
(
hT (x)v−Ψ+

∂V

∂xT
f1(x)

)
(5)

which is strictly passive with dissipation rate Ψ.
If Ψ = 0 the system is passive. With Ψ = γ‖y‖2,
γ > 0, the system is strictly output passive.

Proof: Considering the time derivative V and
substituting (4) yields

V̇ =
∂V

∂xT
f(x) +

∂V

∂xT
g(x)u

≤ ∂V

∂xT
f2(x) +

∂V

∂xT
g(x)

LT
g V (x)

‖LgV (x)‖2 ×(
− ∂V

∂xT
f2(x) + hT (x)v −Ψ(t, x, u, y)

)

= hT (x)v −Ψ(t, x, u, y) (6)

For simplicity and without loss of generality, for
the rest of the paper, we assume that f1(x) = 0,
i.e. f(x) = f2(x). When V (x) is a positive definite
function with V (0) = 0, then from Theorem
4 the system (1) is (asymptotically) stable if(
hT (x)v < Ψ(t, x, u, y)

)
hT (x)v ≤ Ψ(t, x, u, y).

3. SLIDING MODE OF PASSIVE SYSTEMS

Now a sliding mode control v is designed so that
the system (5) is converted to a reduced order



system. This system could be the zero dynamics
of the nonlinear system. Here we consider output
sliding mode control but the approach can be eas-
ily extended to the general case by replacing h(x)
with s(x), where s(x) = 0 is an arbitrary sliding
surface. The rest of the theory remains intact.
We assume that rank(g(0))=rank(dh(0)) = m and
the rank Lgh(x) is constant in a neighbourhood
of 0, i.e. 0 is a regular point for the system.
Then Lgh(0) is nonsingular and the system has
relative degree [1, 1, . . . , 1] at x = 0 (Byrnes et
al., 1991). In this method the system (1) is first
converted into a new system (5) via the feedback
transformation (4). Then a sliding mode control
is designed for system (5). Consider h(x) = 0 as
a sliding hyperplane. Ideal sliding motion occurs
when h(x) = 0. The system equation of the ideal
sliding mode is

ẋ =

(
I − g(x)

LT
g V (x)

‖LgV (x)‖2
∂V

∂xT

)
f(x)− g(x)×

LT
g V (x)

‖LgV (x)‖2 Ψ(t, x, u, y) (7)

and the control (4) is now

u=
LT

g V (x)
‖LgV (x)‖2

(
− ∂V

∂xT
f(x)−Ψ(t, x, u, y)

)
(8)

When the ideal sliding mode occurs, it is required

that on the manifold h(x) = 0,
∂h

∂t
=

∂h

∂x
feq = 0

with

feq =

(
I − g(x)

LT
g V (x)

‖LgV (x)‖2
∂V

∂xT

)
f(x)

−g(x)
LT

g V (x)
‖LgV (x)‖2 Ψ(t, x, u, y)

In a system with a boundary layer, h(x) and/or
∂h

∂t
may not be zero outside of the boundary layer.

Assume that h(x) 6= 0 and hT (x)h(x) is invertible.
It can be shown from (5) that the control

ṽs=−h(x)(h(x)Th(x))−1LgV (x)
(

∂h

∂x
g(x)

)−1
∂h

∂x
feq

yields
∂h

∂t
= 0. vs is not the equivalent control

(when h(x) = 0). The equivalent control is veq =
0. However, vs ensures that the trajectories re-
main inside a neighbourhood of the sliding surface
for future time. For the occurrence of a proper
sliding mode, the trajectories may cross the slid-
ing manifold repeatedly and remain in the bound-
ary of the sliding manifold. Along this manifold
they tend to an equilibrium point whenever the
sliding (zero) dynamics of the system is stable.
A control is designed next so that the trajectories

tend to a neighbourhood of h(x) = 0, an attractive
sliding region, and remain inside for future time.

Consider the following control for the passive
system (5)

v=−h(x)(h(x)T h(x))−1LgV (x)
(

∂h

∂x
g(x)

)−1

×
∂h

∂x

[
feq+Ksgn

(
(
∂h

∂x
)T h(x)

)]
(9)

where K > 0 is a constant sliding mode gain. The
control (9) enforces the system trajectories to the
sliding manifold s = h(x) = 0, since

sT ṡ =hT ∂h

∂x
ẋ

=hT∂h

∂x

{
feq−g

(
∂h

∂x
g

)−1
∂h

∂x

[
feq+Ksgn

(
(
∂h

∂x
)T h

)]}

=−KhT ∂h

∂x
sgn

(
(
∂h

∂x
)T h

)
≤ 0 (10)

and

ẋ=

(
I−g

(
∂h

∂x
g

)−1
∂h

∂x

)
feq−g

(
∂h

∂x
g

)−1
∂h

∂x
sgn

(
(
∂h

∂x
)T h

)

4. ADAPTIVE PASSIVATION OF
NONLINEAR SYSTEMS

Consider the parameterized multivariable nonlin-
ear system

ẋ = f(x) + φ(x)θ + g(x)u (11)

y = h(x)

where x ∈ X ⊆ Rn is the state; u ∈ U ⊆ Rm

the control input and y ∈ Y ∈ Rm the output.
Functions f and g are smooth on X . Assume that
X is a pathwise connected open subset of Rn.
The equilibrium point xe ∈ X satisfies f(xe) +
g(xe)ue = 0 with ue ∈ U constant. h is a smooth
function defined on X . φ ∈ Rn×p are smooth and
θ = [θ1 θ2 . . . θp]T is a vector of unknown
constant parameters.

The system (11) can be written as

ẋ = f(x) + φ(x)θ̂ + g(x)u + φ(x)θ̃ (12)

y = h(x)

where θ̂ is an estimate of θ and θ̃ = θ − θ̂.
According to Theorem 4 the nominal system of
(12)

ẋ = f̂(x, θ̂) + g(x)u (13)

y = h(x)

with f̂(x, θ̂) = f(x) + φ(x)θ̂, is a passive system
via feedback passivation (4) by replacing f with



f̂ . Consider the Lyapunov function V and assume
the transversality condition LgV 6= 0 holds. The
nominal passive system with new control input v
is given by (5) by replacing f̂ with f .

Now consider the extended Lyapunov function

W = V +
1
2
θ̃T Γ−1θ̃ (14)

where Γ is a positive definite matrix. Then

Ẇ =
∂V

∂x
ẋ +

1
2
θ̃T Γ−1(− ˙̂

θ)

= hT v −Ψ +
∂V

∂x
φθ̃ +

1
2
θ̃T Γ−1(− ˙̂

θ)

= hTv−Ψ+
1
2
θ̃T Γ−1

(
Γ
[
∂V

∂x
φ

]T

− ˙̂
θ

)
(15)

The update estimate function is selected to be

˙̂
θ = ΓφT ∂V

∂xT
(16)

which eliminates the last term of equation (15).
Then

Ẇ = hT v −Ψ (17)

u=
LT

g V (x)
‖LgV (x)‖2

(
− ∂V

∂xT
f̂(x, θ̂)+hT(x)v−Ψ

)
(18)

and the transformed system is

ẋ =

(
I − g(x)

LT
g V (x)

‖LgV (x)‖2
∂V

∂xT

)
f̂(x, θ̂) + g(x)×

LT
g V (x)

‖LgV (x)‖2
(
hT (x)v −Ψ

)
+ φ(x)θ̃ (19)

which is a passive system.

5. EXAMPLES

An exothermic chemical reactor model

It is desired to globally stabilize the temperature
of a chemical reactor at an arbitrary set point by
designing an appropriate control. The stabiliza-
tion of chemical reactors has been studied during
the second half of the last century, e.g. Aris and
Admundson (1958). A feedback control has been
designed by Viel et al. (1997) to stabilize chemical
reactors globally. Their method is based upon
saturation control with some assumptions. One
of the assumptions is that the zero dynamics of
the isothermal system is globally asymptotically
stable when the temperature tends to the desired
temperature. In this case the global stabiliza-
tion of both temperature and concentrations is
achieved. We design a control via two steps; first
the system is converted into a passive system via a

feedback transformation and then sliding control
is designed to stabilize the system. The sliding
control ensures that the reactor temperature reg-
ulates to a desired value. Global stabilization is
achieved without any assumptions except for the
minimum phase condition on the system, which is
necessary for stabilizing the concentrations.

Consider the multivariable reactor model (Sira-
Ramı́rez and Ŕıos-Boĺıvar, 1999; Viel et al., 1997)
in which a first order and exothermic reaction
A → B occurs:

ẋ1 =−k(x3)x1 − βx1 + βw

ẋ2 = k(x3)x1 − βx2

ẋ3 = αk(x3)x1 − qx3 + u

y = x3 (20)

where x1 and x2 are the concentrations in the
reactor of reactant A and the product B, respec-
tively. x3 denotes the reactor temperature. The
positive constant α is the exothermicity of the
reaction. β > 0 is a constant associated with the
dilution rate. The control input w represents the
concentration of the reactant A in the feed flow,
denoted by xin

1 when it is not considered as a pos-
itive constant input ( Viel et al., 1997), while the
control input u corresponds to a suitable and well-
known combination of the feed temperature Tin

and the coolant temperature Tw, i.e. u = βTin +
eTw where e > 0 is the heat transfer rate constant.
Let q = β+e > 0. k(x3) is a nonnegative bounded
function of temperature. The operating region of
the system is R3

+. The constant equilibrium point
of the system may be parameterized in terms
of the equilibria for the variables x1 and x2 as
follows:

x̄3 =
k1

ln
(

k0x̄1
βx̄2

)

w = x̄1 + x̄2

u = qx̄3 − αx̄1k(x̄3) = qx̄3 − αβx̄2

Although w is a positive constant, we can consider
it as control input

w =
{

xin
1 x3 ≤ X?

3

0 otherwise (21)

where xin
1 is positive constant value and X?

3 is
the positive constant temperature. w affects the
system by reducing the temperature and therefore
reduces the velocity of exothermic action. When-
ever the system temperature is larger than X?

3 ,
the control input w cuts off at the value xin

1 . X?
3

may be selected to be the desired value X3, but
they also could be two different values. Consider
the storage function

V (x) =
1
2

(
x2

1 + x2
2 + x2

3

)

Then



V̇ = ẋ1x1 + ẋ2x2 + ẋ3x3

=−x2
1k(x3)− βx2

1 + βx1w + x1x2k(x3)

−βx1x2 − αx1x3k(x3)− qx2
3 + x3u

≤ βx1w + x1x2k(x3) + αx1x3k(x3) + x3u

= x3v −Ψ

where v is a new control and Ψ is a nonnegative
function. Therefore,
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Fig. 1. An exothermic chemical reactor model
with K = 0.1 and W = 1

u=−αx1k(x3)− 1
x3

(βx1w+x1x2k(x3)+Ψ)+v (22)

and the transformed system is

ẋ1 =−k(x3)x1 − βx1 + βw

ẋ2 = k(x3)x1 − βx2

ẋ3 =−qx3 − 1
x3

(βx1w + x1x2k(x3) + Ψ) + v

y = x3 (23)

Since the transformed system (23) is passive, it is
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Fig. 2. An exothermic chemical reactor model
with K = 20 and W = 0

stable. Because x3ẋ3 < 0, the temperature tends
to an equilibrium point asymptotically without
any restriction on the selection of v even if Ψ = 0.
However, it is desired that the temperature tends
to a given set point. Now the control input v is
designed so that the state x3 tracks the desired
value X3. Consider the sliding tracking control

v = qx3 +
1
x3

(βx1w + x1x2k(x3) + Ψ)

−W (x3 −X3)−Ksgn (x3 −X3) (24)

where K and W are nonnegative numbers such
that W + K 6= 0. Substituting (24) in (22)

u=−αx1k(x3)+qx3−W(x3−X3)−Ksgn(x3−X3)

Since αx1k(x3) is very small and qx3 is large, the
control takes nonnegative values. The nonnega-
tivity of the control is a physical restriction of the
problem. However, one can select the control as

u = max
{
0,−αx1k(x3) + qx3 −W (x3 −X3)

−Ksgn (x3 −X3)
}

(25)

to ensure the control is nonnegative. Note that the
system may be stabilized via many other choices
of v. Sliding control (24) has been considered
because it is a simple and suitable control. The
isothermal dynamics, the sliding zero dynamics of
the system, is

ẋ1 =−k(X3)x1 − βx1 + βw

ẋ2 = k(X3)x1 − βx2

which is asymptotically stable. Successful sim-
ulation results are shown in Fig. 1 for X3 =
300, X?

3 = 340, ψ = 0, k0 = 7.2e + 10min−1,
k1 = 8700K, α = 209KL/mol, β = 1.1min−1,
e = 0.15min−1, K = 0.1, W = 1, X?

3 = 340K,
X3 = 300K, xin

1 = 1mol/L. We consider k(x3) =

k0e
− k1

x3 , i.e. Arrhenius Law. For simulation we
consider k0 = 7.2e + 10min−1 and k1 = 8700K.
The control input w is constant, w = 1 for all
time, because the temperature does not exceed
X?

3 . The sliding gains W and K affect the reaching
time of the desired temperature X3. If the value
W is larger than K the chattering is very small,
while for a constant value W , for increasing K
chattering appears. Note that limt→∞ x2 = 0
because limt→∞ k(x3) = 0, however x2 > 0 for all
t. The gain values W and K should be selected
so that the value u takes a reasonable value from
a practical viewpoint. Table 1 shows that suitable
gains W are 0 ≤ W ≤ 2. A large value of K causes
undesired chattering, and the control switches be-
tween at least two different values. However, the
chattering phenomenon is negligible if we select
K sufficiently small (see Table 1 and Fig. 2).
Note that for all values of K and W , the desired
temperature is obtained.

Now assume that w is not a constant input and
consider the output of the system as y = [x1 x3]T .
Then LgV (x) = [x1 x3] = yT . The control is now

[
w
u

]
=

−1
x2

1 + x2
3

{(
(k(x3) + β)x2

1 + βx2
2 + qx2

3 +

−x1x2k(x3)− αx1x3k(x3)−Ψ
)




1
β

x1

x3


− v

}



K W initial value of u umin umax final value u

2 0 52 52 376.97 373 and 376.9
4 0 54 54 378.98 371 and 378.9
6 0 56 56 380.9 380.89 and 369
20 0 70 70 394.99 355 and 394.99
50 0 100 100 424.98 325.1 and 424.98
0.1 0.1 76.1 76.1 375 375
0.1 0.5 180.1 180.1 375.33 375
0.1 1 310.1 310.1 375.1 375
0.1 2 570.1 374.68 570.1 375
0.1 4 10901 370 10901 376
0.1 10 26051 345 26051 376
0.1 100 26050 177 26050 292− 492

0.5 1 310.5 310.5 375.5 375(Avg.) (374.5− 375.5)
1 1 311 311 375.49 75(Avg.) (374− 376)
1 2 571 372.9 571 374(Avg.) (373.97− 376.1)
2 2 572 372.6 372.6 375(Avg.) (372− 377)

Table 1. Initial, maximum, minimum and equilibrium (final) values of the control u
with respect to different gain values K and W .

It is desired to regulate x1 and x3 to given values
X1 and X3, respectively. The sliding surface is the
intersection of the surfaces x1 = X1 and x3 = X3.
The sliding control v = [v1 v2]T is given by

v1=
1
β

[
x3

1x
2
3(β + k(x3))+x3

1x2(x1k(x3)− βx2)

+x3
1x3(x1k(x3)− qx3)− x2

1x
2
3(x1k(x3) + βx1)

+x1x2x
2
3(x1k(x3)− βx2) + x3

1x3(αx1k(x3)− qx3)

+Kx2
1sgn(x1−X1) + Kx1x3sgn(x3−X3)

]

v2=x2
1x

3
3(β + k(x3))+x2

1x2x3(x1k(x3)− βx2)

+x2
1x

2
3(x1k(x3)− qx3)− x2

1x
3
3(k(x3)+β) +

x2x
3
3(x1k(x3)− βx2)+x2

1x2(αx1k(x3)− qx3)

+Kx1x3sgn(x1−X1) + Kx2
3sgn(x3−X3) (26)

The sliding condition is

sT ṡ = −K(|x1 −X1|+ |x3 −X3| < 0)

The sliding zero dynamics system is obtained
when v1 = v2 = 0.

6. CONCLUSIONS

Passivity based control has been studied for affine
nonlinear systems. In this method, the system
is transformed into a new system, the so-called
passive system via control feedback (passivation).
The sliding mode of the passive system has been
considered. An exothermic chemical reactor model
has been presented to show the results.
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