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Abstract: A controller for an induction motor is designed using Ho, control theory
and input-output feedback linearization. Because of the special structure of the state-
space equations governing the induction motor a Linear Parameter Varying (LPV)
feedback controller, scheduled with rotor speed, is used for the inner current loop. An
LPV observer is also used to estimate the flux vector. The application is based on the
nonlinear model and tracking requirements of a recently published benchmark. The
proposed controller delivers high performance over the entire operating range of the

induction motor.
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1. INTRODUCTION

Induction motors are mainly used in industry to
transform electrical energy into mechanical en-
ergy. However, induction motors are rarely used
as actuators because they are significantly more
difficult to control than d.c. motors. Nowadays,
therefore, there is great interest in developing
high performance control laws to make induction
motor performance rival that of the d.c. motor
in a number of high precision applications (e.g.
robotic applications). Induction motors are theo-
retically challenging for control engineers because
as dynamical systems they are highly nonlinear,
the flux which is to be controlled (and sometimes
the rotor speed) is not available. Also, physical pa-
rameter uncertainties, such as the variation of the
rotor resistance with temperature, affect signifi-
cantly the dynamics of the system. Overviews of
the important induction motor control techniques
are given in (Bose, 1998) and (Taylor, 1994).

In this paper, the design of a controller for an
induction motor is based on Linear Parameter
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Variant Ho,, the so-called LPV theory (Apkarian
and Gahinet, 1995), (Gahinet and al, 1995), and
input/output feedback linearisation. It is assumed
that only the stator currents and the rotor speed
are available for measurement. Broadly speaking,
the control law consists of a fast LPV inner loop
used to track stator current references which are
generated by a non-linear input-output linreariza-
tion state feedback gain. The flux vector is es-
timated by an observer which, as we will see,
has also an LPV structure. Robust stability and
robust performance of the flux observer and the
current loop are easy to prove in the LPV context.
The non-linear model of the motor and tracking
requirements come from the benchmark given in
(Ortega et al., 2000). Full non-linear simulations,
including parametric variations, saturation limits,
time delay and noisy measurements demonstrate
that modern H., techniques combined with in-
put/output linearization offer a promising and
effective way to design robust controllers for in-
duction motors.

The paper is organized as follows. The model of
the induction motor is given in section 2. The
controller design is described in section 3. Section



4 includes the simulations results and conclusions
are given in section 5.

2. INDUCTION MOTOR MODEL

We consider a squirrel-cage induction motor
whose nominal physical parameters are given in
table 1.

Description Parameter | value | Units
Stator Inductance Lg 0.47 H
Rotor Inductance L, 0.47 H
Mutual Inductance Lgr 0.44 H
leakage factor o3 = oy o 0.12
Stator resistance R 0.8 Q
Rotor resistance R, 3.6 Q
Moment of inertia D, 0.06 kg.m?
viscous damping constant Rm 0.04 N.m.s
Number of pole pairs Np 2

Table 1. Nominal physical parameters of
the induction motor

Under the assumption of linear magnetic circuits,
a 5th order non-linear model (stator-fixed frame)
of the induction motor is given by

¥ = a1 (.732.'6'5 - ;L'3$L'4) + asx1 + asTr
ZL:Q = Q4T2 — NpT1T3 “+ a5y

T3 = NpT1T2 + a4T3 + A5Ts

T4 = agT2 + a7T1T3 — VT4 + aguy
Ty = —arT1T2 + ATz — YT5 + agUs
Y= [:L.l; T4, x5]T

(1)

The state vector is £ = [w,a,Pb,ia,0s]’ =
[1, 22,23, 74, 75]7, where w is the rotor speed,
® = [¢a, ¢p]T are the rotor fluxes, is = [iq, i) are
the stator currents and ugs = [ul,uz]T represents
the stator voltages. The measured output is y =
[w,4q,%]T, the control input is u, = [u1,us]T and
7y, is the load torque disturbance.

The outputs to be controlled are

e Shaft rotor speed 1 = w
¢ Rotor flux norm @ = ||¢||

The parameters of the induction motor model are
defined as follows: a1 = npLs/(DmLy), az =
—Rm/Dm, as = —]./Dm,7 a4 = —]./TT, as =
L /T,, a6 = Ls;/(TroLsL;),a7 =npLs/(0LsL;)
and ag = 1/(oLs) where

p - Lr _ R L3,
"R, Ly LsoL,T,
LZ
— 1 ST 2
0- LSLT ( )

with nominal values given in table 2.

The rotor resistance R,., which will change in the
experiments, and the load torque disturbance 7.
R, is assumed to vary in the range [0.7R,, 1.3R,].
The change in the rotor resistance affects linearly
or affinely the values of parameters a4, as, ag

Parameter | nominal value
a1 31.21
as -0.667
a3 -16.67
a4 -7.66
as 3.37
ag 127.14
ar 33.19
as 17.73
¥ 197.78
TL 7(Nm)

Table 2. Nominal parameter values of
the induction motor model

and «y. The load torque disturbance is assumed
to vary in the range [0.2571,7z]. In table 2, the
nominal values of parameters subject to variation

are denoted by a4, as etc...; similarly, R, in table
1.

3. CONTROLLER STRUCTURE AND
CONTROLLER DESIGN

The controller is made up of four elements which
will be designed separately. Figure 1 shows the
structure considered. Kj,, is a current feedback
controller which tracks the current setpoint ref-
erence isrof. The role of Ky, is to ensure good
tracking over the entire operating range (i.e. when
w is varying). It will have an LPV form and be de-
signed using quadratic H, gain scheduling stabil-
isation (Apkarian and Gahinet, 1995), (Apkarian
and Adams, 1998), (Gahinet and al, 1995).

The reference current vector is..y is generated
through a static input-output linearization state
feedback Fj,. The flux vector is estimated by
Gops which, as we will see has an LPV structure.
Finally, Kj;,, is a simple LTI regulator based on
the linearized map relating the input v with the
speed and the flux.
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Fig. 1. Controller structure

3.1 Polytopic Ho current feedback

Let us consider the second, third, fourth and fifth
state space equations of the induction motor given
in (1). These four equations constitute an affine
parameter-dependent plant if the rotor speed z; =

|



w is taken as the parameter. More precisely, let us
define the subsystem G; with state vector £ =
[T2, 23,74, 25]7 having i, = [z4,75]7 as output
vector and u, = [uy,us]T as input vector. From
(1) G can be written as follows:

G- {g’: (Ag +wA;)é + Bu 3)

is = C¢&
with
as 0 as 0
_ 0 a4 O as
AO - (aﬁ 0 _,y 0 Y (4)
0 ag 0 —v
0 —mp, 00
| nyp 0O 00
A= ( 0 a 0 0 (5)
—ay 0 0 O
0 0
0 0 0 01O
B=1l4 o] C_(0001>(6)
0 as
and with

W € [Wmin,Wmaz] = [-110,110] rad/s (7)

Alternatively, G1(t) admits the following poly-
topic state-space representation

G1:a(t)S1 + (1 —a(t))Ss (8)
with
SO = (407 Ba CJ 02><2)
'5:1 = (A17B7CJ 02><2)
Ao = Ao + wminds (9)
Al = AO + wmawAl
0<a(t) = w(t) = Wmin_ <1
Wmaz — Wmin
isref €s Us is
Klpv Gl
+ _

Fig. 2. Current feedback

The robust multivariable LPV controller K, has
to provide satisfactory performance over the en-
tire operating range of the motor (i.e. when w
varies). The design problem is tackled using the
one-degree-of-freedom control structure depicted
in figure 2. A mixed-sensitivity 7'/S loop shaping
quadratic-gain H,, optimization is proposed for
the design of the polytopic regulator Kjp,. The
optimization problem is to find a stabilizing con-

trol law Kj,, to minimize, for all w in (7), in a
quadratic H,, sense, the cost function

I w

Ws and Wr are used to shape the output sen-
sitivity function S = (I + G1Kjp,)™! and the
complementarity sensitivity function 7':=1 — S.

s+ wpsAs

Ws = diag(wg,ws), wsg = —————
S 9(ws,ws),ws 1/Mss + wps

(11)

with Ag = 1/500, Ms = 2, wps = 550. The
following constant weight was chosen

Wr = diag(0.8,0.8) (12)

The polytopic regulator K;,, was computed using
the function hinfgs in the LMI control toolbox
(Gahinet and al, 1995). The H,, performance,
1, was approximately 1.37. The closed-loop time-
responses of the current controlled system for a
1 A step demand in i, along the rotor speed
trajectory

w(t) = 1000t (13)

are given in figure 3. The decoupling is excellent.
The settling time is about 60ms and the overshoot
of 1.1 A is small. The overshoot on the control
input is about 27 V which can be considered
satisfactory.

Fig. 3. Unit step closed-loop responses of the
current gain scheduled feedback system along
the rotor speed trajectory given in (13). Sta-
tor currents (left) and corresponding stator
tensions (right)

3.2 Input-ouput linearization

Let Y = [w,®] with & = /¢2 + ¢7. For the
induction motor, the relative degree is well defined
and the zero dynamics are stable; thus the input-
output linearization can be performed. Let us
consider the three first equations of (1). Assuming
that the rotor speed and the flux vector ¢ are
available for measurement, our aim is to construct
a non-linear relation to produce an ideal reference
stator current vector ¢,y to make the closed-loop




input-output map T, y linear.
Let vy be the first derivative of the flux. From (1)
and using the definition of ®, we get

¢a (a4¢a + a5iaref) + ¢b (a4¢b + c_15Z'bref)

d =
®

=V (14)

Let v be the first derivative of the rotor speed

w = x1. v is given by

w=am (d’aibref - d)biaref) + asw + asTr

=n

(15)

(14) and (15) can be rewritten as

[ bals ¢b65] [iaref] _ [ ®(vy —ay®) ]
—a1¢p  10q | | Gores V1 — a3Tr — Qaw
(16)
Thus,
iaref
-F'io y @, = .
(w0 o= [ |
_ 1 a1¢a  —Pvas P(vy — a49®)
a1a592 | a1y 9405 V1 — azTp — aaw
(17)

The nonlinear state feedback control law ispey =
[iarefsibres]t given in (17) is well defined when-
ever ® # 0 and results in

W =1
Gy:{ =1 (18)
YV = [w, ®]
w
G Y= [é]
& H
¢
F.
%0 U= [Vl
Vo

Fig. 4. Input-Ouput linearization

3.3 LPV flux observer design

An LPV flux estimator can be designed using both
tension and current measurements. The design is
based on the plant G3 which is equal to G; but
with C' = I, where a4 is the uncertain parameter
which is linearly dependent on the rotor resis-
tance. The aim is to design an observer able to
maintain a good flux estimation at any speed de-
spite uncertainty in the rotor resistance. We know
that G admits a polytopic representation (Sg, S1)
where a4 enters linearly in Sy and S;. Therefore,

we can extract a4 from the polytopic representa-
tion using the concept of Linear Fractional Trans-
formations (see e.g (Zhou et al., 1995)). Our aim
is to take explicitly into account the uncertainty
due to the rotor resistance variation in the design
of the flux observer. Let us consider the block
diagram of figure 5. The matrix dI; represents
the rotor resistance uncertainty. It is normalized
in such a way that ||0]|,, < 1.
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Fig. 5. Flux observer interconnection structure

More precisely, the uncertain parameter a4 can
be rewritten as as = @4(1 + da), |0a| < Omaw,
Omaz = W Let us consider, the fol-
lowing LTT system which corresponds to Sy (the
vertex for w = wmin)-

T = (64142 + wminAl)x + P12u6/6maw + Bu

SO& : Ys = P21$
y=z
with
1 0 —Lg, 0
4 0 1 9 —Lg,
= Lsr L,
2 _a'LSLT 0 oLsL, 02
Lsr Ly
0 oLsL, 0 oL,L
10 —k= 0 \7
Py = oLaLs L (21)
01 0 ~oL.L»
1 0 —L,, 0
P = (0 1 0 —Lsr) (22)

and where A; and B are given in (5) and (6)
respectively.

It is easy to show that

So = Fi(612, Sos) (23)

and

S1 = Fi(013, S15) (24)

where S5 is the same as Sys if one replaces wp,in
by Wmaz in (19) and where § := 8, /dmaz-

(19)

(20)



Magnitude

The observer design is based on the intercon-
nection of figure 5. The regulated output is the
weighted flux estimation error e4. The measured
outputs are the current vector and the supply
voltage. Set

_ | Us _ | Y _ 2
oo [u] = 8] v
The observer design consists of finding u = G5y
to minimize, for all admissible speed trajectories,
the closed-loop quadratic H., performance from
w to z (7y3). According to the small gain theorem,
robust stability and robust performance will be
achieved whenever y3 < 1. As is customary in
p-synthesis e.g. (Zhou et al., 1995), (Balas and
al, 1993),(Boyd et al, 1994) we can enforce a
better minimization of T, .,, by scaling us by
ds = diag(dy,ds) with d; > 0, do > 0 and ys by
d;! without affecting performance and stability.

v=1] e

s

Wy was chosen as the identity matrix and after
some trial and error d, was selected as

ds = diag(3.7,3.7) (26)

The H, performance, 73, was approximately
1.17. It is easy to check that ||Ty; .|, < 1.
Therefore the observer is robustly, quadratically
stable (i.e. stable for any variation of the rotor
resistance and for any speed trajectory). The fre-
quency responses of T, ,, for various values w
and a4 as given in figure 6.
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Fig. 6. Singular value plot of T, ,, for 5 and 4
equally spaced values of w and ay4

3.4 Control of the speed and the fluzx

To control the speed and the flux, one has to
consider the plant G2 given in (18). It is a chain
of 2 integrators, representing the nominal closed-
loop input-output map 7y,, when the condition

is = dgres holds. The regulator can be designed
using any classical linear method. In this exam-
ple, a simple diagonal gain was found to pro-
vide good tracking and sufficient robustness. Trial
and error led to Kj;,, = —diag(343,286), for
which the closed-loop bandwidth is approximately
300rad/s.

4. SIMULATION RESULTS

Full non-linear simulations were carried out for
the speed and flux step demand profiles and for
parameter variations shown in figure 7. Figure 7
represents the worst case rotor resistance changes
which may correspond to breaks in the rotor bars.
Saturation limits on the stator tensions and on the
the reference currents were included to prevent
peaks especially at initialization. Zero-order holds
with a sampling frequency of F; = 4kHz and a
unit time delay T = 1/F; were added in the feed-
back loop to simulate a digital implementation.
The saturation limits on the reference current
components were taken as

lisrefi| <TA, i=1,2 (27)
and for the control signal
lu;] <210V, i=1,2 (28)

The flux and speed demands were filtered through
the following second order filters

w2

. (29)

Frog i = 5—-"7"——
el T 62 2bwns + w2

with w, = 8, £ = 0.8.
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Fig. 7. Load torque and rotor resistance variations

4.1 Controller using the LVP observer

The estimation of the flux is provided by the LPV
observer. The response of the rotor speed, given
in figure 8. Figure 9 shows that the modulus
of the control signal (us) stays within the limits
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Fig. 8. Speed and flux tracking with
observer Gps
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Fig. 9. Stator voltage modulus ||us|| and stator
current modulus ||is|| with limits (LPV ob-
server)

except between t = 2s and ¢t = 3s when the speed
demand is 110rad/s. The stator current modulus
remains below the limit of 124 .

5. CONCLUSIONS

This paper has presented a non-linear controller
design for an induction motor. It was assumed
that only the stator currents and the rotor speed
were available for measurement. The controller
has a structure made up of four different sub-
systems: an LPV feedback current loop, a non-
linear linearizing state feedback, an LPV observer
and an LTT regulator. An LMI-based approach,
has been proposed to design a quadratically stable
flux observer and an output feedback regulator to
track the stator currents. In both cases we have
obtained a scheduled time varying system (LPV)
which ensures a finite Ly attenuation for a given
closed-loop transfer function which represents the
design requirements (tracking robustness for the

LPV current regulator and flux estimation error
for the LPV observer). The main advantage of
using LPV methods is that they provide a sys-
tematic way of designing an H,, flux observer
for the induction motor assuming that the rotor
speed is available. Stability of the flux estimator
was demonstrated using small-gain based analy-
sis. The results for the benchmark were found to
be satisfactory. Due to the very low order of the
its components (Kj,, is a 2 by 2 speed dependent
regulator with only 6 states, the speed dependent
flux observer has only 4 states, 4 inputs and 2
outputs) the proposed control law is easy to im-
plement and can work with relatively slow DSP
cards. A drawback of the proposed controller is
that it requires a measure of the rotor speed to
update the LPV parts of the control law.
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