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Abstract: We consider the problem of minimizing the worst asymptotic output
variance of a control system that is affected by a structurally constrained class of
noise. We discuss how to impose direct size-restrictions on the noise’s covariance
matrices or multiple lower and upper bounds on its spectral density over various
frequency intervals. Technically all these scenarios are translated into parametric-
dynamic optimization problems which have been recently shown to admit efficient
numerical solutions in terms of linear matrix inequalities.
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1. INTRODUCTION

Let us consider a system that is described as

xt+1 = Axt +Bwt, zt = Cxt +Dwt (1)

where A has all its eigenvalues in the open unit
disk and where the disturbance wt is a vector-
valued wide-sense stationary zero-mean stochastic
process with d components. We assume that the
first m+ 1 of all covariance matrices

Rk = E[wtw
T
t+k], k = 0, 1, ...,m

are uncertain whereas all higher-lag covariance
matrices vanish. The goal in this paper is to de-
rive a computationally verifiable criterion which
guarantees that the asymptotic output variance
limt→∞ E[zT

t zt] is bounded by some number γ,
uniformly for all possible noise processes acting
on the system. Moreover, we aim at a characteri-
zation which is amenable to efficient controller de-
sign algorithms. We also point out various impor-
tant extensions and relations to recently suggested
optimization techniques over positive polynomials
(Genin et al., 2000a; Genin et al., 2000b; Alkire
and Vandenberghe, 2001). The hypothesis on the

noise input can be viewed as the opposite ex-
treme of the case considered in (Gusev, 1995a;
Gusev, 1995b; Gusev, 1996; Pransath and Nag-
pal, 2000; Scherer, 2000b) where it was assumed
that the coefficients Rk for j = m + 1,m + 2, ...
are not constrained. Clearly our scenario can be
viewed as a generalization of the H2-criterion
which corresponds to R0 = I, Rk = 0 for k ≥ 1,
whereas the problem with unconstrained tail is
rather related to the H∞-case which corresponds
to noise characterized as Tr(R0) ≤ 1, Rk free for
k ≥ 1.
The notation is standard. We stress that a transfer
matrix T (z) is called (strictly) positive real if all
its poles are contained in the open unit disk, and
if T (z) + T (z)∗ ≥ 0 (> 0) for all |z| = 1. For any
matrix tuple M = (M0,M1, . . . ,Mm) we use the
abbreviations

T (M) =




M0 MT
1 · · · MT

m

M1 M0
. . .

...
...

. . . . . . MT
1

Mm · · · M1 M0
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and

F(M, z) =
1
2
M0 +

1
z
M1 + · · · 1

zm
Mm.

2. ANALYSIS PROBLEM

Let us assume that the restrictions on the first
m + 1 covariance coefficients of the disturbance
wt are modeled as(

E[wtw
T
t ], ..., E[wtw

T
t+m]

)
∈ R (2)

where R denotes some subset of (Rd×d)m+1. We
only need to consider those elements in R ∈
R which do actually correspond to the Toeplitz
matrix of covariance coefficients of a wss noise
process. This is guaranteed if the transfer matrix
F(R) is positive real which is supposed to be true
for all R ∈ R. As two technical properties we
assume that

∃R ∈ R : F(R) is strictly positive real (3)

and

{R0 : (R0, R1, ..., Rm) ∈ R} is bounded. (4)

At this point there is no need to make special
hypothesis on the description of further restric-
tions imposed through R, but for computational
purposes this collection will be assumed to be
represented by the solution set of a linear matrix
inequality (LMI).

The class of disturbances satisfying (2) together
with E[wtw

T
t+k] = 0 for k > m is denoted

as WR. The goal of this section is to obtain a
computationally efficient algorithm which allows
to compute the worst asymptotic output variance

sup
w∈WR

lim
t→∞

E[zT
t zt]. (5)

Let us assume that x0 = 0. With the impulse
response sequence T0 = D and Tν = CAνB,
ν = 1, 2, . . . one easily shows

zt =
(
T0 · · · Tt

)



wt

...
w0




which implies

E[ztz
T
t ] =

(
T0 · · · Tt

)



R0 · · · RT
t

...
. . .

...
Rt · · · R0







TT
0
...

TT
t


 .

Since Tt converges exponentially to zero for t → ∞
and since the sequence Rt is bounded, it follows
from this formula that the limit of E[ztz

T
t ] exists

and that it equals
∞∑

τ=0

TτR0T
T
τ +

∞∑
ν=1

∞∑
τ=0

(
Tτ+νRνT

T
τ + TτR

T
ν TT

τ+ν

)
.

For noise with Rν = 0, ν > m, and with the
abbreviation

Hν =
∞∑

τ=0

TT
τ+νTτ , ν ≥ 0

we infer that

lim
t→∞

E[zT
t zt] = Tr(R0H0)+2

m∑
ν=1

Tr(RνH
T
ν ). (6)

To proceed with our reasoning it is convenient to
rewrite this as

lim
t→∞

E[zT
t zt] = 〈T (M ◦R), T (H)〉

where H = (H0, ...,Hm), M = ( 1
m+1I,

1
mI, ..., I)

(with I of size d), A◦B denotes the Schur product
(element-wise product) of A and B and 〈A,B〉 is
the standard matrix inner product Tr(ATB).

We conclude that the worst output variance is
given by

sup
R∈R

〈T (M ◦R), T (H)〉. (7)

The rather explicit formula (7) for the worst-case
output variance has two major disadvantages, in
particular for the problem of controller synthesis.
First it is formulated in terms of the impulse
response coefficients of the underlying system (1)
and, second, 〈T (M ◦ R), T (H)〉 is only bilinear
as a function of both R and H together. It will
be of crucial importance to have a re-formulation
in which the noise’s covariance matrices and the
system-related impulse response sequence H enter
affinely. This is achieved by observing that (7)
equals

inf
S with T (H)<T (S)

sup
R∈R

〈T (M ◦R), T (S)〉. (8)

The proof relies on the following lemma which
is a consequence of Caratheodory’s well-known
extension theorem and spectral factorization.

Lemma 1. Let R = (R0, ..., Rm) be the covariance
matrices of a wss stochastic process and define M
as above. If H satisfies T (H) > 0 then

〈T (M ◦R), T (H)〉 ≥ 0.

Remark. Note that T (R) is positive semi-definite
and T (M) is indefinite. Hence T (M ◦ R) =
T (M) ◦ T (R) cannot be expected to be semi-
definite in general. However, since F(R) is positive
real, T (R) actually satisfies stronger hypotheses
which might counteract the effect of the element-
wise multiplication with the fixed matrix T (M).
Nevertheless, it is pretty simple to numerically
construct examples for which T (M) ◦ T (R) is
indeed not positive semi-definite. This implies,
by Féjer’s theorem on the dual of the positive
semi-definite cone, that 〈T (M ◦ R), A〉 will not
be nonnegative for arbitrary A ≥ 0 without any



structure which highlights the non-triviality of
Lemma 1.

Proof. Let us choose any H with T (H) > 0.
This implies thatH0, ...,Hm can be extended with
Hm+1,Hm+2, ... such that

f(z) =
1
2
H0 +

1
z
H1 + · · ·

is a proper rational function which has all its
poles in the unit disk and which is positive real.
(This result is classical. The existence of a rational
extension can be easily proved using LMI-based
positive real design arguments.) Therefore there
exists a proper rational stable function g with
proper and stable inverse such that

g(eiτ )∗g(eiτ ) = f(eiτ )∗ + f(eiτ ) for τ ∈ [0, 2π].
If we denote the impulse response coefficients of g
by T0, T1, . . ., we observe that they are related to
H as in the above construction. This guarantees
that 〈T (M ◦R), T (H)〉 just equals the asymptotic
output variance of the filter defined by g if driven
with a noise input w whose covariance coefficients
are given by R0, ..., Rm. We can thus conclude
〈T (M ◦R), T (H)〉 ≥ 0.

Lemma 2. The values (7) and (8) are identical.

Proof. Let S satisfy T (H) < T (S). According to
Lemma 1, 〈T (M ◦R), T (S)〉 ≥ 〈T (M ◦R), T (H)〉.
This implies (8) ≥ (7). Conversely, let us choose
Sε with T (Sε) = T (H) + εI, ε > 0. This implies

sup
R∈R

〈T (M ◦R), T (Sε)〉 =

= sup
R∈R

〈T (M ◦R), T (H)〉+ ε sup
R∈R

Tr(R0).

By hypothesis (4), the limit for ε → 0 thus equals
supR∈R〈T (M ◦ R), T (H)〉 which proves that (8)
and (7) actually coincide.

Let us finally overcome the problem that all the
derived conditions are formulated in terms of the
impulse response coefficients. This last step is
instrumental for an elegant state-space synthesis
procedure.

Lemma 3. The inequality T (S) > T (H) holds iff
there exists a proper rational stable Q(z) such
that

[F(S, z)+
1

zm+1
Q(z)]+[F(S, z)+

1
zm+1

Q(z)]∗−

− T (z)∗T (z) > 0 for all |z| = 1. (9)

Proof. By comparing coefficients, (9) can be seen
to be equivalent to strict positive realness of

1
2
(S0−H0)+

1
z
(S1−H1)+· · ·+ 1

zm
(Sm−Hm)+

+
1

zm+1
(Q0−Hm+1)+

1
zm+2

(Q1−Hm+2)+ · · ·

where Qj denote the impulse response coefficients
of Q(z). Therefore the result follows from the
rational version of the Caratheodory extension
theorem.

We arrive at the following main analysis result
which is an immediate consequence of Lemmas 2-
3 and the equivalence of (9) and (11) (Schur).

Theorem 4. The asymptotic worst-case output
variance (5) of system (1) is strictly smaller than
γ if and only if there exists a strictly proper stable
Q and some S = (S0, ..., Sm) with

sup
R∈R

〈T (M ◦R), T (S)〉 < γ (10)

that renders

1
2
I T (z)

0 F(S, z) +
1

zm+1
Q(z)


 (11)

strictly positive real.

3. CONTROLLER ANALYSIS AND
SYNTHESIS ALGORITHMS

3.1 Support Functionals

Let us recall that

〈T (M ◦R), T (S)〉 =

= Tr(R0S0) + 2
m∑

ν=1

Tr(RνS
T
ν ).

Hence (10) means, by definition (see Section A),
nothing but (S0, 2S1, ..., 2Sm) belonging to the
sub-level set of the support functional ofR (where
one identifies linear functionals with space ele-
ments as usual in Hilbert spaces).

Let us now sketch various typical practical con-
straints on the set R and how they translate
into LMI constraints for the coefficients R0,...,Rm.
For any combination of such requirements it is
routine, according to Appendix A, to derive the
corresponding LMI constraints for the coefficients
S0, ..., Sm.

• First recall that each element R of R needs
to render F(R) positive real. Since we actually
require (3), it suffices to constrain the coefficients
such that F(R) is strictly positive real (because
including or neglecting accumulation points is ir-
relevant for computing support functionals). With
the realization

[
Ap Bp

Cp(R) Dp(R)

]
=




0 I · · · 0 0
...

. . . . . .
...

...

0
. . . . . . I 0

0 0 · · · 0 I
Rm Rm−1 · · · R1 0.5R0






we can apply the positive real lemma (since Ap

is stable) to infer the equivalence of strict positive
realness of F(R) with the existence of P such that(

AT
p PAp − P AT

p PBp + Cp(R)T

BT
p PAp + Cp(R) BT

p PBp + Dp(R) + Dp(R)T

)
< 0.

For the direct implementation of this constraint
it is instructive to consult (Alkire and Vanden-
berghe, 2001).

• One can model the fact that noise compo-
nents are uncorrelated by imposing structural con-
straints on the coefficients. For some fixed R0, this
can be expressed as X = R − R0 belonging to
some suitably chosen subspace X . It then simply
suffices to perform the dualization as described in
Appendix A with respect to this subspace X .
• Let us assume that R is finitely generated as
R = convex hull{R1, . . . , RN}. By linearity (10)
is guaranteed iff 〈T (M ◦ Rj), T (S)〉 < γ for all
j = 1, . . . , N , where the latter is just a finite set
of affine inequalities.

• If imposing element-by-element constraints on
matrices as in the previous item the corresponding
system of affine inequalities can be pretty large.
This can be circumvented if relying on matrix
norm-bounds. Since the inequalities

m∑
j=1

‖Rj‖ < 1 or
m
max
j=1

‖Rj‖ < 1

(where ‖.‖ either denotes the spectral or the
Frobenius norm) have LMI representations, the
same is true of the corresponding support func-
tionals, and one can systematically derive a suit-
able description by dualization as in Appendix A.

• Colored noise is modeled as the output of
some filter H(z) whose input is white. Noise
property variations can then be seen as result-
ing from a whole family of filters, which are
e.g. parameterized by real structured uncertain-
ties. In practice it is often more realistic to de-
scribe such filter families by imposing different
lower and upper bounds on the filter’s frequency
response magnitude |H(eiτ )| (for SISO filters)
over different τ -intervals, thus directly imposing
bounds on the output noise’s spectral density over
these intervals. For MIMO filters such bounds
are imposed as αj < λmin(H(eiτ )∗H(eiτ )) and/or
λmax(H(eiτ )∗H(eiτ )) < βj for all τ ∈ [τ j , τ j ].
Such constraints are not directly convex in the
coefficients describing H. However, after the re-
parameterization

F(R, eiτ ) + F(R, eiτ )∗ = H(eiτ )∗H(eiτ ),

they read as

αjI < F(R, eiτ ) + F(R, eiτ )∗ < Iβj

for all τ ∈ [τ j , τ j ]. Such a family of constraints
then do admit LMI formulations in the coefficients

<

h

r `

j
d

>wCD

L j
1

F
1

F
d

Fig. 1. Analysis Configuration

R as made explicit in (Wu et al., 1998; Genin
et al., 2000b; Alkire and Vandenberghe, 2001).
At this point we would like to stress that this
insight is also a rather immediate consequence
of older results in robust control. Indeed by a
Cayley transformation positivity constraints on
unit circle segments can be written as positivity
constraints of a rational function in one real
variable confined to some interval. The abstract
version of the full-block S-procedure (Scherer,
2001) applies in order to to translate such a robust
positivity constraint in one real variable into an
LMI-constraint, and the results of (Meinsma et
al., 1997; Iwasaki et al., 2000) reveal that the
resulting characterization is indeed lossless.

3.2 Analysis

If defining

P (z) =


 0.5I T (z) 0

0 0 z−m−1

0 I 0


 ,

we observe that (11) is the interconnection of
 z1

z2

y


 = P


 w1

w2

u


+


 0

F(S)
0


w2

with u = Qy. Therefore, the analysis prob-
lem amounts to characterizing the existence of a
proper stable dynamic Q and parameters S sub-
ject to LMI constraints which render this latter in-
terconnection strictly positive real. Let us observe
that the interconnection can be depicted as in
Figure 1, and that F(S) actually depends affinely
on S. Therefore, this latter problem nicely fits into
the general parametric model-matching synthesis
framework as formulated in (Scherer, 2000a). This
leads us to efficient LMI-algorithms for comput-
ing the worst-case asymptotic output variance for
system (1) against pretty general classes of (struc-
tured) uncertain stochastic signals.

3.3 Output Feedback Controller Design

Let us view (1) as the state-space realization of
the interconnection of



(
z
y1

)
=

(
P11 P12

P21 P22

) (
w
u1

)
(12)

with an internally stabilizing output-feedback
controller u1 = Ky1. If we now define

Pe(z) =



0.5I P11(z) P12(z) 0
0 0 0 z−m−1

0 P21(z) P22(z) 0
0 I 0 0




then (11) can be seen as


z1

z2

y1

y2


 = Pe




w1

w2

u1

u2


+




0
F(S)
0
0


w2 (13)

interconnected with the structured controller(
u1

u2

)
=

(
K 0
0 Q

)(
y1

y2

)
.

We arrive at yet another motivation for investi-
gating structured controller design problems. A
general direct LMI solution for structured syn-
thesis is not known. Instead one can parame-
terize Q(z) as Q0 + Q1/z + · · ·Qν/z

ν with ma-
trix coefficients Qj . Due to the specific structure
of (u1, u2) → (y1, y2) in (13), the coefficients
Q0, ..., Qν enter the interconnection affinely, sim-
ilarly as S0, ..., Sm. Hence we can again apply
the algorithm in (Scherer, 2000a) in order to
compute both these parameters and the dynamic
controller K to find the optimal achievable worst-
case output variance bound γν for this particular
Q-parameterization. Clearly, for ν → ∞ the se-
quence γν converges from above to the actually
achievable bound γ∗ for general Q. Let us observe
that the techniques described in (Scherer, 1999)
do allow to compute another sequence of lower
bounds of γ∗ which converges to this value. This
gives rise to efficient stopping criteria since one
can numerically estimate the conservatism caused
by introducing the FIR-expansion of Q.

Let us conclude this section with the follow-
ing interesting observation which allows a non-
conservative direct LMI-solution of the problem
discussed in this paper. After introducing the
Youla parameterization for (12), all controlled
transfer matrices can be written as T1 + T2RT3

with proper and stable R. If facing a two-block
problem, translating into T3 = I without any
further hypothesis on T2, one can circumvent the
FIR-parameterization of Q and arrive at a full
direct problem solution. One just needs to observe
that (11) can now be described as the interconnec-
tion of

 z1

z2

y


 =


 0.5I T1(z) T2(z) 0

0 F(S, z) 0 z−m−1

0 I 0 0







w1

w2

u1

u2




with (
u1

u2

)
=

(
R
Q

)
y.

Similarly as for analysis, we now arrive at the
problem of parametric dynamic optimization with
an unstructured controller and this is amenable to
the techniques of (Scherer, 2000a). This guaran-
tees an a priori bound on the McMillan degree of
R and Q, and hence on that of the to-be-designed
controller K.

4. EXTENSIONS AND CONCLUSIONS

The main purpose of this paper was to com-
plement the results of (Gusev, 1995a; Gusev,
1995b; Gusev, 1996; Pransath and Nagpal, 2000;
Scherer, 2000b) to an extension of robust H2-
control against structured classes of noise with
a variety of practically relevant interpretations.
Both controller analysis and synthesis could be
reduced to LMI-computations. For general plants,
approaching optimality will generally lead to an
explosion of the controller’s McMillan degree,
whereas for two-block-plants it could be shown
that this explosion can be fully avoided.

The approach in this paper circumvents some
of the technical delicacies of previous work and
hence admits a rather immediate extension to
systems described in continuous time. Moreover,
it is not difficult to extend the results to imposing
asymptotic output variance bounds on more than
one output signals as required in multi-objective
control. The consequence of our results for H2-
control of linear parameter-varying systems is
presently under investigation.
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Appendix A. SUB-LEVEL SETS OF SUPPORT
FUNCTIONS

Let A : X → Y be a bounded linear mapping
from the normed space X into the normed space
Y which is equipped with a positive cone with
nonempty interior (Luenberger, 1969). For a fixed
y0 ∈ Y consider the convex set

X := {x ∈ X : y0 +Ax ≤ 0}

which clearly is a generalization of the solution set
set of a finite-dimensional linear matrix inequality.
Let us assume that

∃x ∈ X : y0 +Ax < 0. (A.1)

We are specifically interested in the support func-
tion of this set, which is defined on the dual space
X∗ as

sX (x∗) := sup
x∈X

x∗x.

Our intention is to show that the sub-level sets of
sX can be described as the solution set of affine
inequalities in Y ∗, defined in a natural fashion by
cone duality. (If P is the positive cone in Y , then
P ∗ is defined as P ∗ := {y∗ : y∗y ≥ 0 for all y ∈
P}.) A simple Lagrange duality argument is at
the heart of the reasoning.

Indeed suppose that x∗
0 satisfies sX (x∗

0) < γ or

inf
x∈X, y0+Ax≤0

−x∗
0x > −γ.

Due to the constraint qualification (A.1) we can
apply a general theorem on Lagrange duality
(Luenberger, 1969) to infer

max
y∗≥0

inf
x∈X

y∗(y0 +Ax)− x∗
0x > −γ.

By using the dual mapping A∗ : Y ∗ → X∗, we can
rearrange the functional to ‘sort for the variable
x’ which leads to

max
y∗≥0

inf
x∈X

y∗y0 + (A∗y∗ − x∗
0)x > −γ.

The inner infimum can only be finite if A∗y∗ = x∗
0,

and then its value just equals y∗y0. We infer

max
y∗≥0, A∗y∗=x∗

0

y∗y0 > −γ.

This dualization argument lets us conclude that

{x∗ ∈ X∗ : sX (x∗) < γ} =
= {x∗ ∈ X∗ : ∃y∗ ≥ 0, A∗y∗ = x∗, y∗y0+γ > 0}.
Hence sub-level sets of the support functional
sX are indeed described by affine equation and
inequality constraints defined by the two linear
mappings A∗ and y0 (viewed as acting on Y ∗) .

Let us finally make this description explicit for the
standard form linear matrix inequality

F0 + x1F1 + · · ·xNFN ≤ 0 (A.2)

(with X = R
N and Y the space of real sym-

metric matrices of a fixed dimension, equipped
with the positive semi-definite cone) which is
assumed to be strictly feasible. Hence a vector
x0 = (x01, ..., x0N ) ∈ R

N satisfies

xT
0 x < γ for all solutions x of (A.2)

iff

∃Z ≥ 0 : Tr(ZFj) = x0j , Tr(ZF0) + γ > 0.

In summary, the sub-level sets of a support func-
tional has an LMI description if the underlying set
itself does admit an LMI description with strict
feasibility.


