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Abstract: Proposed is a technique of adaptive control for a multivariable plant in the

presence of bounded polyharmonic disturbance with in�nity number of harmonics and

with the unknown amplitudes and frequencies. The control objective is to provide

the prescribed tolerances on forced oscillation of the plant and controller outputs.
The adaptation process is based on the �nite-frequency identi�cation of the plant

and closed-loop system. Adaptation terminates when the coe�cien ts of the identi�ed

plant-controller system is close to those of the identi�ed closed-loop system. Con-

vergence conditions of the adaptation procedure are derived. They can be tested

experimentally. Copyright c2002 IFAC

Keywords: Multivariable plant, adaptive control, unknown-but-bounded disturbance,

test signal.

1. INTRODUCTION

In adaptive control it may be extracted two direc-
tions that are di�ered by assumptions on external

disturbance.

In the framework of the �rst direction the exter-
nal disturbance is absent (Anderson et al., 1986)

or it is a \white-noise" (Iserman, 1981). The di-

rection has large history connected, in particular,

with the model reference adaptive systems and the

least squares techniques. The last survey of this
direction is given in (Landau, 1997).

Since early 80's the second direction where distur-

bance is unknown-but-bounded time function is
being developed: method of the recurrent target-

ed inequalities (Yakubovich, 1988), least squares

estimation algorithm with dead zone (Zhao

and Lozano, 1993), frequency adaptive control

(Alexandrov, 1998), and so on. The control aim

in these techniques of second direction is described

by a polynomial with prescribed poles placement.

For many practical cases the control aim is the

prescribed tolerances on the deviation of the plant

output from zero. Technique of controller design

for this case has been proposed in (Alexandrov and

Chestnov, 1997, 1998). In this case the plant coef-
�cients are known and the disturbance is a bound-

ed polyharmonic function with known number of

harmonics of unknown amplitudes and frequen-

cies.

In the present paper this technique is being devel-

oped for a plant with unknown coe�cients and the

disturbance with in�nity number of harmonics.

Unlike the above mentioned papers of the second

direction, where single-input-single-output plant
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is considered, this paper deals with multivariable

plant. It is well known (Guidorzi, 1975; Gauthier

and Landau, 1978) that identi�cation problem of

multivariable plant has not unique solution. In the

paper (Orlov, 2000) a structure, for which �nite-
frequency identi�cation gives unique solution, has

been obtained and it is used below to design an

algorithm of adaptive control.

The paper is organized as follows. In section 2 a

problem of adaptive control design is formulated

and its solution for known coe�cients of plant is

given in section 3. In sections 4 and 5 adapta-

tion algorithm, which is based on �nite-frequency

identi�cation of the plant and closed-loop system,
is derived. Conditions of adaptation convergence

is studied in section 6.

2. PROBLEM STATEMENT

Consider a linear time-invariant system described
by the following equations

_x=Ax+B(u+w); y= z=Cx; t� t0; (1)

_xc = Acxc +Bcy; u = Ccxc; (2)

where x(t) 2 Rn is the state vector of plant

(1), xc(t) 2 R
n is the state vector of controller

(2), u(t) 2 R
m is the input to be controlled,

y(t) 2 Rr is the measurable output, z(t) 2 Rr

is the controlled output, w(t) 2 Rm is the exter-

nal unmeasurable disturbance, A , B , C , Ac ,

Bc , Cc are unknown constant matrices. The

pair (A;B) is controllable and pair (A;C) is ob-

servable. The disturbance components are bound-
ed polyharmonic functions

wj(t) =

1X
k=1

wjk sin(!kt+  jk); j = 1;m; (3)

where the frequencies !k and the phases  jk�
j = 1;m; k = 1;1

�
are unknown numbers and

amplitudes wjk satisfy the conditions

1X
k=1

w2
jk � w�2j ; j = 1;m; (4)

where w�j
�
j = 1;m

�
are given numbers.

As t !1 forced oscillations of outputs of plant
and controller are described by expressions

zi(t) =

1X
k=1

ai(!k) sin[!kt+�i(!k)]; i=1; r; (5)

uj(t) =

1X
k=1

bj(!k) sin[!kt+�j(!k)]; j=1;m: (6)

The matrices A , B and C of plant (1) have the

following property: there exist matrices Ac , Bc

and Cc of controller (2) such that the amplitudes

of forced oscillations of the plant and controller

outputs satisfy the following conditions

1X
k=1

a2i (!k)�a
�2
i ; i=1; r;

1X
k=1

b2j(!k)�b
�2
j ; j=1;m;(7)

where a�i and b�j
�
i = 1; r; j = 1;m

�
are given

numbers.

Since the matrices A , B and C are unknown,

adaptive control must be used. In this case, con-

troller (2) is described by the following equations

with piecewise-constant coe�cients

_xc = A
[�]
c xc +B

[�]
c y +Lv

[�]; u = C [�]
c xc;

t��1 � t < t� � = 1; N;
(8)

where �
�
� = 1; N

�
is the number of adaptation

interval, t� is the termination time of the � -th

interval; t� as well as the number N and the

matrices A[�]
c , B[�]

c and C[�]
c are found dur-

ing the adaptation process; L is a given matrix;
v[�](t) 2 Rm is a test signal, whose components

are de�ned below.

The adaptation process is terminated (at moment
tN ) and the controller is described by the equa-

tions (2) where Ac = A[N ]
c , Bc = B[N ]

c and

Cc = C
[N ]
c .

Problem 1 Find an adaptation algorithm for the

coe�cients of controller (8) such that the system
(1), (2) meet the requirements (7) for steady-state

amplitudes of forced oscillations.

3. CONTROL OF AMPLITUDES OF FORCED
OSCILLATIONS FOR KNOWN PLANT

If the matrices A , B and C of plant (1) are

known, the matrices of controller (2), which solves

problem 1 is found from the expressions

Ac=A�B(R�1��2Q1)B
T
P�KfC; Bc=Kf;

Cc=�R
�1BTP ; Kf=(En�

�2Y P )�1Y CT;
(9)

where the square non-negative matrices P and
Y of size n� n are the solution of the Riccati

equations

ATP+PA�PB(R�1��2Q1)B
TP=�CTQC;(10)

AY+Y AT�Y CT(Er�
�2Q)CY =�BQ1B

T;(11)

where number  satis�es the condition

�max(PY ) < 2; (12)

and �max(M ) is the maximal eigenvalue of the

non-negative matrix M . For Q = Er and

R = Q1 = Em (E� is an identity matrix of



an appropriate size) equations (10) and (11) coin-

cide with the equations of H1 -suboptimal con-

trol (Doyle, et al. 1989) (under the condition that

B1 = B2 = B and C1 = C2 = C ).

Let Q= diag[q1; : : : ; qr ] , R= diag[r1; : : : ; rm ] ,

and Q1 = Em .

Assertion 1 If the elements of diagonal matrices

Q and R satisfy the inequalities

qi�
1

a�2i

mX
k=1

w�2k ; i=1; r; rj�
1

b�2j

mX
k=1

w�2k ; j=1;m;(13)

the steady-state amplitudes of forced oscillations

of system (1), (2) with matrices (9-11) satisfy the
inequality

rX
i=1

1

a�2i

1X
k=1

a2i (!k)+

mX
j=1

1

b�2j

1X
k=1

b2j(!k)�
�2; (14)

where � is the least value of  , such that P

and Y are non-negative matrices and condition
(12) holds.

From inequality (14) it follows that, if � � 1 ,
system (1), (2) with coe�cients (9) satisfy require-

ment (7) on amplitudes of forced oscillations.

The assertion is a generalization of the theorem
5 in (Alexandrov and Chestnov, 1998, part II)

whose proof based on a lemma in (Alexandrov and

Chestnov, 1998, part I). If in proof of lemma a fre-

quencies number ( p ) is equal to in�nity ( p =1 )

and Cauchy-Bunyakovski's inequality is not used

then proof the assertion is a repetition of proof of
theorem 5.

4. THE FIRST INTERVAL OF ADAPTATION

4.1 Frequency Domain Parameters of Plant.

Let, for simplicity, plant (1) be asymptotically sta-

ble and its observability indices �i
�
i = 1; r

�
are

known. To �nd matrices A , B and C the plant

is excited by the following test signals

uj(t) =

nX
k=1

�ujk sin!
u
k t � ej;

t0 + (j � 1)� [1] � t < t0 + j� [1];

j = 1;m; (15)

where �ujk
�
j = 1;m; k = 1; n

�
is the speci�ed

amplitude of the k -th harmonics of test signal
for the j -th experiment, !uk

�
k = 1; n

�
is the

speci�ed test frequency [!uk 6= 0
�
k = 1; n

�
and

!ui 6= !uj (i 6= j) ], ej is the j -th column of a

identity matrix Em , � [1] is a duration of the j -
th experiment, � [1] is a given number such that

t0 + m� [1] = t1 . This number may be found by

experiment on the base of necessary conditions of

identi�cation convergence.

Plant outputs yj(t)
�
j=1;m

�
are applied to in-

puts of the Fourier's �lter, whose outputs give the

estimates

�̂ijk =
2

�ujk�
[1]

t0+j�
[1]Z

t0+(j�1)� [1]

yji(t) sin!
u
k (t � t0) dt;

�̂ijk =
2

�ujk�
[1]

t0+j�
[1]Z

t0+(j�1)� [1]

yji(t) cos !
u
k (t� t0) dt;

i = 1; r; j = 1;m; k = 1; n;

(16)

for elements �ijk and �ijk of matrices AAAAk =

ReW (|!uk ) and BBBBk = ImW (|!uk )
�
k=1; n

�
which are named Frequency Domain Parameters

(FDP) (Alexandrov, 1989) of plant (1), where

W (s) = C(Es �A)�1B is its transfer matrix.

4.2 Plant Identi�cation.

The estimates of matrices A , B and C of

plant (1) are searched in Luenberger's canonical

form and these are denoted Â
K
, B̂

K
and Ĉ

K
.

Blocks Â
K

ij and ĉKij
�
i; j = 1; r

�
of matrices Â

K

and Ĉ
K

have the following structure

Â
K

ii =

0
BBBBBB@

0 0 � � � 0 �d̂
(0)

ii

1 0 � � � 0 �d̂
(1)

ii

0 1 � � � 0 �d̂
(2)

ii
...

...
. . .

...
...

0 0 � � � 1 �d̂
(�i�1)

ii

1
CCCCCCA
;

Â
K

i6=j =

0
BBBBBB@

0 0 � � � 0 �d̂
(0)

ij

0 0 � � � 0 �d̂
(1)

ij

...
...

. . .
...

...

0 0 � � � 0 �d̂
(�ij�1)

ij

0 0 � � � 0 0

1
CCCCCCA
;

ĉ
K
ii =

�
0 � � � 0 1

�
; �ij = min(�i; �j);

ĉ
K
i>j =

�
0 � � � 0 �d̂ij

�
; ĉKi<j = 0:

(17)

To �nd the coe�cients of matrices A[1] = Â
K
,

B[1] = B̂
K

and C [1] = Ĉ
K

the following fre-

quency equations of identi�cation (Orlov, 2000)

mX
i=1

�k�1X
j=0

i
(j)

i ĝ
(j)

ki+

rX
i=1

��ki�1X
j=0

ĥ
(j)

i f̂
(j)

ki =�ĥ
(�k)

k ; k=1; r(18)

are solved and coe�cients d̂
(k)

ij and d̂ij are cal-

culated as

d̂
(k)

ij = f̂
(k)

ij �

rX
l=j+1

f̂
(k)

il d̂lj

k = 0; �ij � 1 i = 1; r j = 1; r:

(19)

d̂ij �

i�1X
k=j+1

d̂ik � f̂
(��kj�1)

kj
+ f̂

(��ij�1)

ij = 0

i = j + 1; r j = 1; r� 2;

(20)



Here i
(j)

i =
�
Re s

j
1ei Im s

j
1ei � � � Re s

j
nei Im sjnei

�
T

and ĥ
(j)

i =
�
Re[s

j
1ŵi(s1)] Im[s

j
1ŵi(s1)] ��� Re[s

j
nŵi(sn)]

Im[sjnŵi(sn)]
�
T , ei and ŵi(sk) are the i -th row

of a matrices Em and cW (sk) = ÂAAAk + |B̂BBBk re-
spectively, sk = |!uk

�
k = 1; n

�
, ��k<i = �ki and

��k>i = min(�k + 1; �i) , ĝ
(j)

ki are coe�cients of

matrix B̂
K
. For convenience, equations (18) are

derived in appendix.

4.3 Hypothetical model of closed-loop system.

Matrices A[2]
c , B[2]

c and C [2]
c of controller (8)

for the second interval of adaptation are found by

formula (9) after solution of Riccati equations (10)

and (11) in which matrices A = A
[1] , B = B

[1]

and C = C [1] , the components of matrices Q

and R are determined from inequalities (13),

Q1 = Em and  = � .

The plant and controller

_x=A[1]x+B [1](u+w); y=z=C [1]x; t�t1; (21)

_xc = A
[2]
c xc +B

[2]
c y +Lv

[2]; u = C [2]
c xc (22)

are named the hypothetical closed-loop system. In

Luenberger's canonic form this system has the fol-

lowing view

_�x = �A�x + �Lv[2] + �Bw; y = �C�x; (23)

whose blocks �Aij and �cij
�
i = 1; r; j = 1; r

�
have view (17) where d̂

(k)

ij , d̂ij , �ij and �i are

substituted by �d
(k)

ij , �dij , ��ij and ��i ; ��i are in-

dices of an observability of the hypothetical sys-

tem (
Pr

i=1 ��i = 2n) .

5. THE SECOND INTERVAL OF

ADAPTATION

5.1 The Frequency Domain Parameters of Closed-

loop System.

Let system (1), (22) be excited by m -vectors of

test signals

v
[2]

j (t) =

2nX
k=1

�vjk sin!
v
kt � ej ;

t1 + (j � 1)� [2] � t < t1 + j� [2];

j = 1;m; (24)

where �vjk
�
j = 1;m

�
is amplitude and !vk is fre-

quency of the k -th harmonic
�
k = 1; 2n

�
of test

signals [ !vk 6= 0
�
k = 1; 2n

�
and !vi 6= !vj (i 6=

j) ], t1+m�
[2] = t2 . Duration of each experiment

� [2] = � [1] +K; (25)

where K is a given positive number.

Components of vectors yj(t)
�
j = 1;m

�
are ap-

plied to inputs of the Fourier's �lter whose outputs

give the estimates

�̂ijk=
2

�vjk�
[2]

t1+j�
[2]Z

t1+(j�1)� [2]

yji(t) sin!
v
k(t�t1) dt;

�̂ijk=
2

�vjk�
[2]

t1+j�
[2]Z

t1+(j�1)� [2]

yji(t) cos !
v
k(t�t1) dt;

i = 1; r; j = 1;m; k = 1; 2n;

(26)

for elements �jik and �jik of matrices VVVVk =

RefW (|!vk) and MMMMk = ImfW (|!vk)
�
k = 1; 2n

�
of Frequency Domain Parameters (FDP) of the

closed-loop system. Here

fW (s) = [Er�W (s)W c(s)]
�1W (s)W v(s); (27)

where W c(s) = C
[2]
c

�
Es �A[2]

c

��1
B

[2]
c ;

W v(s) = C [2]
c

�
Es �A[2]

c

��1
L:

5.2 Closed-loop System Identi�cation.

Solve the following system of frequency equations

mX
i=1

��k�1X
j=0

~i
(j)

i
~̂l
(j)

ki +

rX
i=1

��ki�1X
j=0

~̂h
(j)

i
~̂f
(j)

ki =�
~̂h
(��k)

k ; k=1; r;

(28)

where ~i
(j)

i =
�
Re ~s

j
1ei Im ~s

j
1ei � � � Re ~s

j
2nei

Im ~s
j
2nei

�
T and ~̂h

(j)

i =
�
Re[~s

j
1 ~̂wi(~s1)] Im[~s

j
1�

� ~̂wi(~s1)] � � � Re[~s
j
2n ~̂wi(~s2n)] Im[~s

j
2n ~̂wi(~s2n)]

�
T,

ei and ~̂wi(~sk) are the i -th row of matrices

Em and
cfW (~sk) = bVVVVk + |cMMMMk respectively,

~sk = |!vk
�
k = 1; 2n

�
, ��k<i = ��ki and ��k>i =

min(��k + 1; ��i) . It gives the coe�cient estimates

~̂d
(k)

ij

�
k = 0; ��ij � 1; i = 1; r; j = 1; r

�
and ~̂l

(k)

ij�
k = 0; ��i � 1; i = 1; r; j = 1;m

�
of the closed-

loop system in the Luenberger's canonic form

_~x = ~̂A~x + ~̂Lv[2] + ~̂Bw; y = ~̂C~x; (29)

whose blocks ~̂Aij and ~̂cij
�
i = 1; r; j = 1; r

�
have view (17) where d̂

(k)

ij , d̂ij , �ij and �i are

substituted by ~̂d
(k)

ij , ~̂dij , ��ij and ��i , where ~̂d
(k)

ij

and ~̂dij are found on the base of expressions which

is analogous (20) and (19).

5.3 Conditions of adaptation completion.

Compare the hypothetical and identi�ed systems

(23) and (29) and examine the following inequali-
ties

�d
(k)

ij �
~̂d
(k)

ij � "d; k=0; ��ij�1; i=1; r; j=1; r;

�l
(k)

ij � ~̂l
(k)

ij � "l; k=0; ��i�1; i=1; r; j=1;m;

�dij � ~̂dij � "d; i = j + 1; r� 1 j = 1; r� 1;

(30)



where "d and "l are given numbers, symbol \�"

means as follows a � b = ja � bj=jbj if b 6= 0 or

a � b = jaj if b = 0 .

If these inequalities are ful�lled then adaptation

is ended and therefore N = 2 and matrices of

controller (2) are: Ac = A
[2]
c , Bc = B

[2]
c and

Cc = C
[2]
c .

If the contrary is the case (which means that iden-

ti�cation accuracy which is obtained on the �rst
interval of adaptation is not su�ciently) two sit-

uations are possible: a) system (1), (22) is stable,

b) this system is unstable. Consider each of these

situations.

In the case a) matrices bVVVVk and cMMMMk of the
closed-loop FDP estimates are used for im-

provement matrices ÂAAAk and B̂k
�
k = 1; n

�
of the plant FDP estimates. To this e�ect

the following almost obvious relation serves

AAAAk + |BBBBk = [VVVVk + |MMMMk]�

�fW c(~sk)[VVVVk+|MMMMk]+W v(~sk)g
�1 k=1; n:(31)

Replacing in expression (31) the matrices VVVVk
and MMMMk by their estimates, the newmatrices

ÂAAAk and B̂BBBk
�
k = 1; n

�
are calculated and

matrices A[2] , B[2] and C [2] are found as

a solution of frequency equations (18). Then
the Riccati equations (10) and (11) are solved

and matrices A[3]
c , B[3]

c and C[3]
c are calcu-

lated and so on.

In the case b) it need disconnect controller (22)
and on the third interval the plant (1) is ex-

cited by test signals (15). However, duration

of each test � [3] has to be more then the du-

ration of the �rst interval and that is why

� [3] = � [2] +K: (32)

Under this condition the plant (1) is identi-

�ed, matrices A[3], B[3] and C [3] are found

and so on.

6. ADAPTATION PROCESS

CONVERGENCE

Introduce the �lterableness functions (Alexan-

drov, 1998)

`�ijk(� ) =
2

�jk�

t0+j�Z
t0+(j�1)�

�yji(t) sin!k(t� t0) dt;

`
�
ijk(� ) =

2

�jk�

t0+j�Z
t0+(j�1)�

�yji(t) cos !k(t� t0) dt;

i = 1; r; j = 1;m; k = 1; �n;

(33)

for multivariable plants.These are Fourier's �lter

outputs, whose the inputs are the \natural" out-

puts of plant (1), when u = 0 (or system (1), (8),

when v[�] = 0 ); �jk = �ujk , !k = !uk , � = 1 (or

�jk = �vjk , !k = !vk , � = 2 ).

A disturbance w(t) is named FF-�lterable if there

exists time of �ltering �� such that the following

conditions hold

j`�ijk(� )j

j�ijk(� )j
� "�k ;

j`
�

ijk(� )j

j�ijk(� )j
� "

�
k ;

i = 1; r; j = 1;m; k = 1; �n; � � ��;

(34)

where "�k and "�k
�
k=1; �n

�
are given numbers.

Disturbance w(t) is strong FF-�lterable when

lim
�!1

`�ijk(� ) = lim
�!1

`
�

ijk(� ) = 0;

i = 1; r; j = 1;m; k = 1; �n:
(35)

If disturbance is FF-�lterable then errors ��ijk =

�ijk � �̂ijk and ��ijk = �ijk � �̂ijk
�
i=1; r;

j=1;m; k = 1; �n
�
satisfy the following inequal-

ities

j��ijk(� )j

j�ijk(� )j
� "�k ;

j��ijk(� )j

j�ijk(� )j
� "

�

k ;

i = 1; r; j = 1;m; k = 1; �n; � � �?;

(36)

and for the strong FF-�lterable disturbance

lim
�!1

��ijk(� ) = lim
�!1

��ijk(� ) = 0

i = 1; r; j = 1;m; k = 1; �n:
(37)

For errors ��ijk and ��ijk the expression anal-

ogous (36) and (37) takes place.

It is easly examined that if frequencies of a distur-

bance and test signals do not coincide:

!k 6= !ui ; !k 6= !vj
i = 1; n; j = 1; 2n; k = 1;1;

(38)

then w(t) is strong FF-�lterable.

Adaptation process converges if a time �� > �?

is reachable. From expression (25) and (32) for

determination of test duration it follows that for
any given value K there always exists number N

such that any �� is reached.

It is almost obvious as follows

Assertion 2 If disturbance w(t) is strong FF-

�lterable and

� [�] = � [��1] +K; � = 1; N; (39)

then adaptation process converges and require-

ments (7) hold, if the disturbance is FF-�lterable

then ful�lment of (7) depends on numbers "�k
and "

�

k

�
k = 1; �n

�
and on analogous numbers for

closed-loop system.



Remark 1 The \natural" outputs of the plant and

system �yji(t);
�
i = 1; r; j = 1;m

�
use for choice

of amplitudes of test signal from the following con-

ditions (Alexandrov, 1998) of \small excitation"

�yji(t) � yji(t) � �"; i = 1; r; j = 1;m;

where �" is a given number.

7. CONCLUSION

In this paper a new technique of adaptive con-

trol for a multivariable plant in the presence of

the bounded polyharmonic disturbance (3) is pro-

posed. The adaptive control is provided the re-

quirements (7) to accuracy.

The technique is based on an experimental deter-

mination of the plant and closed-loop system FDP

excited by \su�ciently small" test signals.

It consists of intervals on which the plant or

closed-loop system are identi�ed. Adaptation pro-

cess is stopped when requirements (30) to nearness
of the hypothetical and identi�ed closed-loop sys-

tem are ful�lled. Convergence of adaptation is

proved.
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APPENDIX

System (18) follows from input-output description

of polynomialmatrices W (s) = F�1(s)G(s) that

may be rewritten as�
G(0)T +G(1)T s+ � � �+G()T s

�
�

�W T (s)
�
F (0)T+F (1)Ts+� � �+F (�)Ts�

�
=0:

(A.1)

Substituting in (A.1) s = sk = |!k , W (sk) =

WWWWk = AAAAk + |BBBBk
�
k = 1; n

�
, it is easily obtained

the following system

X
j=0

Re s
j

kG
(j)T�

�X
j=0

h
Re s

j

kAAAA
T
k �Im s

j

kBBBB
T
k

i
F (j)T =0

X
j=0

Im s
j

kG
(j)T�

�X
j=0

h
Ims

j

kAAAA
T
k +Re s

j

kBBBB
T
k

i
F (j)T =0

k=1; n:

The system has a in�nity set of solutions: F (j) =hh
f
(j)�

ik

ii
2 Rr�r

�
i = 0; �

�
and G(j) =

hh
g
(j)�

ik

ii
2

Rr�m
�
i = 0; 

�
. It is proved (Orlov, 2000) that

solution of this system is unique if coe�cients of

polynomial matrices F (s) and G(s) is searched
in the following form

fii(s) = f
(0)

ii + f
(1)

ii s + � � �+ f
(�i�1)

ii s�i�1 + s�i

fi6=j(s) = f
(0)

ij + f
(1)

ij s+ � � �+ f
(�ij�1)

ij s��ij�1

gik(s) = g
(0)

ik + g
(1)

ik s+ � � �+ g
(�i�1)

ik s�i�1

i = 1; r; j = 1; r; k = 1;m:

(A.2)


