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Abstract: Static output feedback design and simultaneous stabilization are difficult control
tasks for which no general efficient algorithm has been designed so far. In this note we show
that, in the special case of scalar plants, the problem of simultaneous stabilization by static
output feedback can however be solved in polynomial time using standard tools of numerical
algebra.
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1. INTRODUCTION

Static output feedback (SOF) design and simultaneous
stabilization (SS) are amongst the most famous basic
control problems for which no general, systematic and
efficient resolution tool is available. Even though there
is no computational complexity result for general SOF
design, the problem was shown to be NP-hard when
the gain matrix satisfies interval constraints (Blondel
and Tsitsiklis, 2000). Similarly, the problem of SS
by output feedback was shown to be NP-hard, the
most negative result in this direction being that the
SS problem for more than two plants is rationally
undecidable (Blondel and Tsitsiklis, 2000).

� This work was supported by the Barrande project No. 2001-031-
1/03080XJ and by the Ministry of Education of the Czech Republic
under project No. LN00B096.

A lot of work has been devoted to SOF design and
SS, but we are not aware of any result on the com-
bined SOF/SS problem. The purpose of this note
is to show that, in the special case of single-input
single-output plants, both SOF design (traditionally
approached with graphical root locus techniques) and
the most intricate problem of SS of a set of plants via
SOF can be solved in polynomial time using standard
routines of numerical linear algebra.

2. PROBLEM STATEMENT

Let

pi�s�

qi�s�
� i � �� � � � � N

denote a set of N single-input single-output plants,
where pi�s� and qi�s� are scalar polynomials of degree
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n. Our objective is to find a scalar static feedback gain
k that simultaneous stabilizes the N plants, i.e. such
that the roots of all the characteristic polynomials

ri�s� � qi�s� � kpi�s�� i � �� � � � � N

belong to some given region of the complex plane
(typically a half plane, a disk or a sector).

3. SOLUTION

The Hermite stability criterion states that a scalar
polynomial r�s� � r� � r�s � � � � � rns

n is stable
if and only if the symmetric matrix

H �
nX

j��

nX
l��

rjrlHjl

is positive definite (henceforth denoted by H � �),
where matrices Hjl of size n depend on the stability
region only. For example, when r�s� is a polynomial
of degree 3 and the stability region is the open left
half-plane, matrix H is given by

H �

�
�
�r�r� � �r�r�
� �r�r� � �r�r� �

�r�r� � �r�r�

�
� �

When r�s� is a polynomial of degree 3 and the sta-
bility region is the open unit disk, matrix H is given
by

H �

�
�

r�� � r�� r�r� � r�r� r�r� � r�r�
r�r� � r�r� r�� � r�� � r�� � r�� r�r� � r�r�
r�r� � r�r� r�r� � r�r� r�� � r��

�
� �

Construction of the matrix H and other forms of
the Hermite stability criterion are reviewed with deep
detail and historical perspective in (Lev-Ari et al.,
1991).

The SOF/SS problem is then solved if and only if
scalar k satisfies the quadratic matrix inequalities

Hi�k� � Hi� � kHi� � k�Hi� � �� i � �� � � � � N

where matrices

Hi� �
nX

j��

nX
l��

qijqilHjl

Hi� �
nX

j��

nX
l��

�qijpil � qilpij�Hjl

Hi� �
nX

j��

nX
l��

pijpilHjl

depend only on coefficients of polynomials pi�s�,
qi�s� and the stability region. SS of the N plants is
then ensured if and only if scalar k is such that the

eigenvalues of the block diagonal symmetric matrix
H�k� � diag fH��k�� � � � �HN �k�g are all positive.

Now consider H�k� as a polynomial matrix of degree
two in the indeterminate k and denote by k�� � � � � km
all the distinct real zeros � ofH�k�, where m � �nN .
Then arrange these numbers in increasing order, such
that

k� � �� � k� � � � � � km � km�� � ���

Let �i denote the number of positive eigenvalues of
H�k� in the open interval Ii ��ki� ki��	 for i �
�� �� � � � �m.

Theorem 1.The scalar SOF/SS problem is solved if
and only if feedback gain k belongs to the union of
intervals Ii for which �i � nN .

Proof.From the definition of the zeros of a polynomial
matrix, in a given open interval Ii the number of
positive eigenvalues of H�k�, denoted by �i, remains
constant. When k is such that �i � nN , it means that
all the matrices Hi�k� are positive definite, hence that
all the characteristic polynomials ri�s� are stable. �

Let us emphasize the fact that the condition in Theo-
rem 1 is necessary and sufficient for scalar SOF/SS,
and not only sufficient.

4. ALGORITHM

Based on Theorem 1, a polynomial time algorithm for
SOF/SS can be derived:

(1) The first step consists in computing (possibly
in parallel) the zeros of quadratic polynomial
matrices Hi�k� for i � �� � � � � N . There ex-
ist several methods to compute the zeros of a
polynomial matrix. Specialized algorithm have
been developed recently to compute the ze-
ros of quadratic symmetric polynomial matrices
(Tisseur and Meerbergen, 2001). This step can be
performed in O�n�N �.

(2) The second step then consists in ordering all the
computed zeros ki and finding the intervals Ii �
�ki� ki��	 for which �i � nN . For this purpose,
it is sufficient to evaluate the inertia of matrix
H�k� at any value of k within the interval Ii. For
obvious numerical reasons, it is recommended
to choose a value of k sufficiently far from the
lower and upper bounds. Due to the special rank-
displacement structure of each Hi�k�, this step
can be performed in O�n�N logn� (Lev-Ari et
al., 1991).

� The zeros of a polynomial matrix are the roots of its determinant.



5. NUMERICAL EXAMPLES

5.1 Aircraft

Consider the problem of simultaneously stabilizing
four operating points of the longitudinal short period
mode of the F4E fighter aircraft . The system is de-
scribed by Ackermann’s state-space model


x �

�
�
a�� a�� a��
a�� a�� a��
� � ���

�
�x�

�
�
b�
�
��

�
�u

where the state-space vector components represent the
normal acceleration, the pitch rate and the elevator
angle (Howitt and Luus, 1991). We assume that the
only output available for feedback is the second state
component, i.e.

y � x��

The values of the parameters a��, a��, a��, a��, a��,
a�� and b� at each operation point are given in (Howitt
and Luus, 1991). The N � � corresponding scalar
transfer functions of order n � � are given by

p��s��q��s� � ������� �����s��
������� � ����s� �����s� � s��

p��s��q��s� � ������� �����s��
������ � ����s� �����s� � s��

p��s��q��s� � ������ �����s��
������ � ����s� �����s� � s��

p��s��q��s� � ������� �����s��
����� � �����s� �����s� � s���

Applying the algorithm described in the previous sec-
tion, we obtain the values of ki and �i given in Table
1. The only interval for which the number of positive

i 0 1 2 3 4
ki �� -0.5764 -0.3219 -0.0466 0.0689
�i 12 11 10 9 7

i 5 6 7 8 9
ki 0.0962 0.1216 0.1543 1.0705 ��

�i 7 7 7 8

Table 1. Real zeros ki and inertias�i for the
aircraft.

eigenvalues of H�k� is equal to nN � �� is the
interval I� therefore the four plants are simultaneously
stabilizable by a static output feedback u � ky for any
finite value of k such that

k � ������

5.2 Reactor

Consider the continuous stirred tank reactor model
studied in (Howitt and Luus, 1991). The non-linear
model is

x� � �x� � ���exp�Ex���x� � ���
��� � u��x� � ����

x� � ��� x� � �x� � ���exp�Ex���x� � ���

where E is a parameter related to the activation en-
ergy. During the life of the reactor, some representa-
tive values of E are ��, � and ��. Assuming that only

y � x�

is available for feedback, the N � � linearized sys-
tems of order n � � to be simultaneously stabilized
are given by

p��s��q��s� � ���� ���s��
���� s � s��

p��s��q��s� � ����� ���s��
������ ���s� s��

p��s��q��s� � ����� ���s��
����� ��s� s���

Applying the algorithm described in the previous sec-
tion, we obtain the values of ki and �i given in Table
2. The only interval for which the number of positive

i 0 1 2 3 4 5 6 7
ki �� -22 -20 -14 -9 -7 -4.5 ��

�i 5 6 4 2 0 1 2

Table 2. Real zeros ki and inertias�i for the
reactor.

eigenvalues of H�k� is equal to nN � � is I� �� �
������	, therefore the three plants are simultaneously
stabilizable by a static output feedback u � ky for any
value of k such that

��� � k � ����

6. CONCLUSION

We have shown that the problem of simultaneously
stabilizing a set of scalar plants by a static output
feedback can be solved very easily with standard tools
of numerical linear algebra. The algorithm described
in the paper will be implemented in the next release
of the Polynomial Toolbox for Matlab (PolyX Ltd.,
2001).

Due to the bilinearity of the Hermite matrix in the
design parameters, there is unfortunately no direct
extension of these results to dynamic output feedback
controllers design. The lack of a polynomial matrix
version of the Hermite criterion also prevents us from
generalizing our results to multi-input and/or multi-
output systems. The only methods that are available
so far for addressing these difficult and open control
problems are heuristics.
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