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Abstract: A simple technique of designing a robust model reference discrete-time
variable structure output tracking controller for a class of perturbed MIMO linear
systems is proposed in this paper. Both an adaptive mechanism and a perturbation
estimation process are embedded in the proposed control scheme so that the upper
bound of the perturbation estimation error is not required. It is shown that the
tracking error will be constrained in a small bounded region, and the stability of the
overall controlled system is guaranteed. A numerical example is given to demonstrate
the feasibility of the proposed control scheme. Copyright c© 2002 IFAC

Keywords: model reference, variable structure control, perturbation estimation

1. INTRODUCTION

Sliding mode control (SMC) has been studied
since early sixties. This control technique is well
known to have the invariant property for matched
model uncertainties, parameter variations and ex-
ternal disturbances (Utkin, 1977). Lots of re-
searchers have applied SMC to many practical ap-
plications, such as servo, robot, and flight control
systems (Chern et al., 1996; Fu and Liao, 1990;
Singh and Coelho, 1984). Due to the fast develop-
ment of the personal computers and DSP chips,
the usage of computers has appeared in many
control applications. Therefore, the design of ro-
bust discrete-time variable structure controllers
becomes more and more important nowadays.

For solving multi-input discrete-time regulation
problems, Spurgeon (1992) proposed a hyperplane
design technique for discrete-time variable struc-

1 Corresponding author. E-Mail: chengcc@ee.nsysu.edu.tw

ture control systems. Fujisaki et al. (1994) pro-
posed a controller which consists of a linear state
feedback and a switching feedback for systems
without perturbation, and select a small switching
gain to eliminate the chattering phenomenon. El-
mali and Olgac (1992) designed a sliding mode
controller with perturbation estimation so that
the knowledge of upper bound of perturbation
does not required. Cheng et al.(2000) designed
sliding mode controllers for systems with bounded
matching perturbations without the information
of upperbound of perturbation.

Some researchers also proposed discrete-time slid-
ing mode adaptive controller for solving stabiliza-
tion problems. Chen and Fukuda (1999) employed
an adaptive sliding mode controller for linear
multi-input discrete-time systems with bounded
perturbation. Bartolini et al.(1995), Chan (1999)
transformed a class of continuous-time systems to
discrete-time systems, and then designed adaptive
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controller for linear systems with parameter vari-
ation.

The objective of this paper is to provide a simple
design technique of discrete variable structure
controllers for a class of perturbed MIMO linear
systems for solving output tracking problems.
An adaptive mechanism is employed to overcome
the unknown upperbound of the perturbation
estimation error, so that the knowledge of the
upper bounds of perturbations is not required.
In order to increase the tracking accuracy, a
perturbation estimation scheme is utilized in the
controller. Finally, the stability of the overall
controlled system is proved under the proposed
control scheme.

2. SYSTEM DESCRIPTIONS AND PROBLEM
FORMULATIONS

Consider a class of perturbed MIMO linear
discrete-time systems, whose dynamic equation
can be described by

x(k + 1) = Ax(k) + Bu(k) + ∆P(x(k), k),

y(k) = Cx(k), (1)

where x(k) ∈ �n, u(k) ∈ �m, y(k) ∈ �p are
the state vector, control input, and output vec-
tor respectively. A ∈ �n×n, B ∈ �n×m, C ∈
�p×n are known constant matrices. The vector
∆P(x(k), k) ≡ [∆P1(x(k), k) ∆P2(x(k), k) · · ·
∆Pn(x(k), k)]T ∈ �n represents the lumped mod-
eling uncertainty, parameter variation, nonlinear-
ity and/or disturbance.

For achieving the purpose of model reference
control, a reference model is given by

xm(k + 1) = Amxm(k) + Bmr(k),

ym(k) = Cmxm(k), (2)

where xm(k) ∈ �q is the reference state variable,
r(k) ∈ �l is bounded reference input, ym(k) ∈ �p

is the desired reference output. Am ∈ �q×q, Bm ∈
�q×l, Cm ∈ �p×q are known constant matrices.
The following assumptions are assumed to be valid
throughout this paper :

A1. The states of the system (1) are all measur-
able, and m ≥ p.

A2. The pair (A,B) is completely controllable.

A3. There exist matrices G ∈ �n×q and H ∈
�m×q satisfying the following equation (Shyu and
Liu, 1997) (

A B
C 0

) (
G
H

)
=

(
GAm

Cm

)
(3)

A4. There exists an unknown positive constant g0

such that

‖∆P(x(k), k)‖ ≤ g0.

Remark 1 : (Shyu and Liu, 1997) If (3) has
no solution for G, another Am for the reference
model should be chosen.

The objective of control is to design a robust
controller so that the output y(k) can track the
reference output ym(k) in spite of the existence of
perturbation ∆P(x(k), k).

3. DESIGN OF CONTROL SCHEME

The design procedures of the proposed control
scheme are described as follows.
Step 1: Design of switching surface
Let the tracking error be

e(k) ≡ x(k) − Gxm(k). (4)

If e(k) = 0, then from (2) and (3) one can obtain
y(k) = Cx(k) = CGxm(k) = ym(k). In order to
track the reference output ym(k), the switching
surface is designed as

σ(k) = De(k) − D(A + BK)e(k − 1), (5)

where D ∈ �m×n is a full rank matrix with
constant elements, and DB ∈ �m×m is invertible.
The matrix K ∈ �m×n is designed such that all
the eigenvalues of (A + BK) are placed in a unit
circle, i.e.,

|λ(A + BK)| < 1. (6)

If the matrices D and K are designed appropri-
ately, and the proposed controller can drive the
trajectory of the switching variable σ(k) into a
small bounded region (which will be shown in
next section), then from (5) one can show that the
output y(k) will closely track the reference output
ym(k). Then according to (4), it also implies that
the stability of the proposed control system is
guaranteed.
Step 2: Design of controller
The main purpose of this step is to design a
control effort so that the trajectory of σ(k) will
be driven toward zero or into a small bounded
region. Before designing the proposed controllers
and using the discrete Lyapunov stability theorem
for analyzing the stability of the proposed control
scheme, a variable ∆σ(k + 1) is first defined as

∆σ(k + 1) ≡ σ(k + 1) − σ(k), (7)
from which the proposed controllers can be de-
signed.

By using (2), (3) and (5), (7) is rewritten as

∆σ(k + 1)≡φ(k)+DBu(k)+D∆P(x(k), k)(8)

where

φ(x(k), k)

≡ [φ1(x(k), k) φ2(x(k), k) · · · φm(x(k), k)]T

=DAx(k)−DGAmxm(k)−DGBmr(k)−De(k)



−D(A + BK)e(k) + D(A + BK)e(k − 1)

is a vector which is computable.

Now, according to (8), a robust discrete variable
structure controller for the perturbed system (1)
is proposed as

u(k) = uf (k) + uest(k) + us(k) + uadp(k), (9)

where uf (k) represents the feedback control part
for eliminating the functions φ(x(k), k), uest(k) is
the estimation of perturbation, us(k) denotes the
switching control part, and uadp(k) symbolizes the
adaptive control mechanism for overcoming the
perturbation estimation error. These four control
parts uf (k), uest(k), us(k) and uadp(k) are de-
signed respectively as

uf (k) =−(DB)−1φ(x(k), k), (10)

uest(k) =−(DB)−1D∆Pest(x(k), k), (11)

us(k) =−(DB)−1 [qσ(k) + εsat(σ(k))] ,(12)

uadp(k)=−(DB)−1[Ka(x(k), k)sat(σ(k))],(13)

where q and ε are designed constants and satisfy
0 < q < 1, ε > 1−q

4q respectively, ∆Pest =
[∆P1,est ∆P2,est · · · ∆Pn,est]T ∈ �n×1 is the
vector of perturbation estimation, which will be
introduced in Step 3. The vector sat(σ) is defined
as sat(σ) ≡ [sat(σ1) sat(σ2) · · · sat(σm)]T ∈
�m×1,

sat(σi) =




1, if σi >
ε + ai(k)

1 − q
1 − q

ε + ai(k)
σi, if |σi| ≤ ε + ai(k)

1 − q

−1, if σi < −ε + ai(k)
1 − q

and the adaptive gain matrix Ka(x(k), k) is given
by Ka(x(k), k) = diag[ai(k)], where

ai(k) = r̂i(k) +
αi

2
. (14)

The adaptive rule of r̂i(k) with initial condition
r̂i(0) = 0 is designed as

r̂i(k + 1)=




r̂i(k) + αi , |σi(k)| >
ε + ai(k)

1 − q
r̂i(k) , else

(15)

for i = 1, 2, · · · , m, αi is positive constant speci-
fied by the designer.
Step 3: Estimation of Perturbation ∆P
According to (1), the state equation can be writ-
ten as

∆P(x(k), k) = x(k + 1) − Ax(k) − Bu(k)

≡ x(k + 1) − x̄(k + 1) (16)

where x̄(k) ≡ Ax(k − 1) + Bu(k − 1). (16) also
indicates

∆P(x(k − 1), k − 1) = x(k) − x̄(k) (17)

(17) implies the perturbation of the previous stage
can be computed from the present state infor-
mation. Note that x̄(k) is calculable since state

variable x(k−1) is measurable. The estimation of
the present perturbation ∆P(x(k), k) can be done
using the same procedure as proposed in Cheng
and Chu (2000), i.e.,

∆Pest(k)=∆P(k − 1)+
∞∑

n=1

1
n!

∆P(n)(k − 1),(18)

where

∆P(n)(k − 1) =
n∑

λ=0

(−1)λCn
λ∆P(k − λ − 1),

provided that the following assumption is valid :

A5. The function ∆P(n+1)(x(k), k) exists for
every x(k) and k, and

lim
n→∞ ‖ 1

(n + 1)!
∆P(n+1)(x(k), k)‖ = 0.

The above assumption also means that the Taylor
series of ∆P should converge.

(18) clearly shows that we can use the previous in-
formation of perturbation to estimate the present
perturbation. In general, the more previous infor-
mation is utilized, the more precise estimation one
can make.

Remark 2 : Assumption A5 is a mild assumption.
One still can use (18) to estimate the pertur-
bation without assumption A5. If the proposed
perturbation estimation scheme is not used in the
controller, the stability of the controlled system
can still be guaranteed.

4. ROBUSTNESS OF SYSTEM’S STABILITY

Before proving that the proposed controller (9)-
(13) will drive the trajectory of switching variable
σi(k) into a region Rσi

≡ {σi(k) ∈ � : |σi(k)| ≤
ε+ai(k)

1−q }, a definition of the equivalent control ueq

is given first.

Definition : Let the trajectory of σi(k) in the re-
gion Rσi

be θi(k), which means |θi(k)| ≤ ε+ai(k)
1−q .

An equivalent control ueq(k) is defined such that
the trajectory of σi(k+1) driven by ueq(k) is in the
region Rσi

. �
Now the theorem of system’s stability and its
proof are presented as follows.

Theorem 1: Consider the perturbed system (1)
with all the aforementioned assumptions. Sup-
pose that there exist unknown positive constants
ri, i = 1, 2, · · · , m such that |∆P̄i(x(k), k)| ≤
ri is satisfied for all(x(k), k) ∈ �n ×�, where

∆P̄i(x(k), k)≡ 2σi(k)∆P̃i + ∆P̃ 2
i − 2qσi(k)∆P̃i

− 2(ε + ai(k))sat(σi(k))∆P̃i, (19)

and ∆P̃ = [∆P̃1 ∆P̃2 · · · ∆P̃m]T ≡ D(∆P−
∆Pest) is the perturbation estimation error. If



the proposed controller (9)-(13) and the switching
surface function (5) are used, then the trajectory
of switching variable σi(k) will be driven into
the bounded region Rσi

, and the stability of the
proposed controlled system is guaranteed.

Proof: Substituting the proposed control (9)-(13)
into (8) yields

∆σ(k + 1) = −qσ(k) − εsat(σ(k))

−Ka(x(k), k)sat(σ(k)) + ∆P̃ (20)

Let r̃i(k) ≡ r̂i(k) − ri be the errors of adaptive
gains, and a Lyapunov function candidate V(k) ≡
[V1(k) V2(k) · · · Vm(k)]T be

Vi(k) = σ2
i (k) +

α−1
i

2
r̃2
i (k).

Then

Vi (k + 1) − Vi(k) = σ2
i (k + 1) − σ2

i (k)

+
α−1

i

2
[
r̃2
i (k + 1) − r̃2

i (k)
]
. (21)

By using (20), the first two terms of (21) is
computed as

σ2
i (k + 1) − σ2

i (k)

=−2qσ2
i (k) − 2(ε + ai(k))σi(k)sat(σi(k))

+q2σ2
i (k) + (ε + ai(k))2sat2(σi(k))

+2q(ε + ai(k))σi(k)sat(σi(k))

+∆P̄i(x(k), k) (22)

If |σi(k)| > ε+ai(k)
1−q , then from (15), the third term

of (21) can be simplified as

r̃2
i (k + 1) − r̃2

i (k) = 2αi [r̂i(k) − ri] + α2
i , (23)

Now using (22), (23) and (19), if |σi(k)| > ε+ai(k)
1−q ,

from (21) it is seen that

Vi(k + 1) − Vi(k)

=−2qσ2
i (k) − 2(ε + ai(k))|σi(k)| + q2σ2

i (k)

+(ε + ai(k))2 + 2q(ε + ai(k))|σi(k)|
+∆P̄i(x(k), k) + [r̂i(k) − ri] +

αi

2
≤−2qσ2

i (k) − 2(ε + ai(k))|σi(k)| + q2σ2
i (k)

+(ε + ai(k))2 + 2q(ε + ai(k))|σ(k)| + ri

+ [r̂i(k) − ri] +
αi

2
=−2qσ2

i (k)(1 − q) − 2(ε + ai(k))|σi(k)|(1 − q)

−q2σ2
i (k) + (ε + ai(k))2 + ai(k)

<−2q

[
ε + ai(k)

1 − q

]2

(1 − q) + (ε + ai(k))2

−2(ε + ai(k))
[
ε + ai(k)

1 − q

]
(1 − q) + ai(k)

=
−2q

1 − q
(ε + ai(k))2 − 2(ε + ai(k))2

+(ε + ai(k))2 + ai(k)

<
−2q

1 − q
(ε2 + a2

i (k)) +
−2q

1 − q
2
1 − q

4q
ai(k) +ai(k)

=
−2q

1 − q
(ε2 + a2

i (k)) < 0

The previous derivation clearly shows that, as k
increases, Vi(k) is a decreasing function if the
trajectory of σi(k) is outside the region Rσi

.
If σi(0) is outside the region Rσi

, then there
exists a finite time k1 such that the trajectory
of σi(k) will enter the region Rσi

at time k1

(even if the region Rσi
, or ai(k), is increasing

during k ∈ [0, k1]). Note that Vi(k) is a bounded
function since Vi(k) < Vi(0), k ∈ [0, k1]. Once the
trajectory of σi(k) enters the region Rσi

, from (15)
one can see that r̂i(k) is bounded, then according
to (14), ai(k) is also bounded. If σi(0) is inside
the region Rσi

, then obviously ai(k) is bounded in
accordance with (14) and (15). All these analyse
show that σi(k) is bounded and will be driven into
the region Rσi

eventually.

On the other hand, one can show that the error
function e(k) is also bounded under the proposed
control strategy. According to (1), (2), (3) and (4),
the error function e(k + 1) can be written as

e(k + 1) = Ae(k) + Bu(k) + ∆P(x(k), k)

−BHxm(k) − GBmr(k) (24)
Substituting (24) into (5) yields

σ(k + 1) = DBu(k) + D∆P(x(k), k)

−DBHxm(k)−DGBmr(k)−DBKe(k)(25)
According to the definition of ueq, the ueq(k) can
be solved from (25) as

‖σ(k + 1)‖ = ‖DBu(k) + D∆P(x(k), k)

−DBHxm(k) − DGBmr(k) − DBKe(k)‖
≤ ‖ε + Ka(x(k), k)

1 − q
‖,

which indicates

ueq = Hxm + Ke− (DB)−1D∆P

+(DB)−1DGBmr + (DB)−1θ (26)

Hence the closed-loop error dynamic equation af-
ter system entering the region Rσi

can be obtained
by substituting (26) into (24), and the resultant
equation is

e(k + 1) = (A + BK)e(k) + ρ(k) (27)

where

ρ(k)≡−B(DB)−1D∆P + B(DB)−1DGBmr

+∆P − GBmr + B(DB)−1θ

is a bounded function. (27) clearly shows that the
tracking error e(k) is a bounded function if (6)
is satisfied, and hence (4) implies x(k) is also
bounded. Therefore, one can conclude that the
robust stability is guaranteed under the proposed
control scheme. �
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Fig. 1. Tracking error e (no estimation of pertur-
bation).

According to (14) and (15), one can easily see that
larger value of q and smaller values of αi and ε
will in general reduce the upperbound of σi(k),
which also means that the tracking accuracy will
be increased. However, the adaptive speed will be
reduced when smaller αi is used.

5. EXAMPLE AND SIMULATION

Consider the following unstable linear discrete-
time system

x(k + 1) =


0 1 0

0 2 4
0 3 1


x(k)+


0 0

1 1
1 0


u(k)+∆P(k)

y(k) =
(
1 0 0

)
x(k),

where x =
(
x1 x2 x3

)T , u =
(
u1 u2

)T , ∆P(k) =(
d1(k) d2(k) d3(k)

)T , and the unknown perturba-
tions are assumed to be d1(k) = 0.02 sin (0.1k),
d2(k) = 5e−(0.1k−2)2/0.2 + 0.5 cos (0.1k), and
d3(k) = 0.5x2 cos (0.1k) + sin x1. Note that there
is an unexpected large disturbance in d2(k) at
k = 20.
The desired reference model is given by

xm(k + 1) =
(

0 1
−0.25 1

)
xm(k) +

(
0
1

)
r(k)

ym(k) =
(
1 0

)
xm(k), r(k) = 0.2 sin (0.1k)

The objective is to employ the proposed control
technique so that the output y(k) can track the
reference signal ym(k).
The switching surface σ is given by (5), where

D=
(

0 1 0
1 0 1

)
, K=

(
0 −3 −1.5

0.3 0.5 −2.5

)
. The matrix G

in (3) is
(

1 0 0
0 1 −1

)T

. The controller is given by

(9), where q = 0.99, ε = 0.003 and αi = 0.0005.
If only one previous stage information is used to
estimate the perturbation ∆P(k), then according
to (18), the perturbation estimation ∆Pest is

∆Pest(k) = ∆P(k − 1) = x(k) − x̄(k).

If five previous stages information are used to es-
timate the perturbation ∆P(k), the perturbation
estimation ∆Pest is designed as
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Fig. 2. Control effort u (no estimation of pertur-
bation).
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Fig. 3. Tracking error e (controller has perturba-
tion estimation).

∆Pest(k) =
65
24

∆P(k − 1) − 8
3
∆P(k − 2)

+
5
4
∆P(k − 3) − 1

3
∆P(k − 4) +

1
24

∆P(k − 5)

Noted that 2-norm is used to compute ‖x‖. The
simulation results are given from Fig. 1 to Fig. 6
with initial condition x(0) = (0.3 − 0.1 0.1)T .

Fig. 1 to Fig. 2 show the results of the proposed
control scheme without the estimation of pertur-
bation. Fig. 3 to Fig. 4 show the results of the
proposed control scheme with five stages of previ-
ous information being utilized in the estimation
of perturbation. Obviously, the controller with
the estimation of perturbation can achieve better
tracking accuracy even when an unexpected large
disturbance d2 happens around k = 20 in this
case. The control input are shown in Fig. 2 and
Fig. 4. It is clearly shown that there is a peak at
k = 20 for the case when the perturbation estima-
tion algorithm is not employed, whereas this peak
is effectively reduced if the estimation process is
utilized. Fig. 5 shows the adaptive gains, both two
gains approach to a constant, respectively. Fig. 6
shows the comparison of tracking errors between
one stage and five stages of previous information
being utilized in the estimation of perturbation.
It is clearly shown that more stages of previous
information are used in the perturbation estima-
tion process, the perturbation estimation’s error
is in general smaller, and the tracking accuracy
can also be increased in this case.
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Fig. 4. Control effort u (controller has perturba-
tion estimation).
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Fig. 5. Adaptive gain r̂ (controller has perturba-
tion estimation).
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Fig. 6. Tracking error e with different previous
stage information.

6. CONCLUSIONS

A discrete variable structure control method is
successfully proposed to solve the robust tracking
problem for a class of perturbed MIMO linear
discrete time systems. Due to the utilization of the
adaptive mechanism in the proposed controller,
the knowledge of the upper bound of perturbation
is not needed beforehand, the adaptive gain of
the proposed control scheme needs only to over-
come the upper bound of perturbation estimation
error instead of that of the perturbations. The
advantages of using the perturbation estimation
is that in general the control energy can be re-
duced as well as the tracking accuracy can also be
increased. The disadvantages of the proposed per-
turbation estimation scheme is that it is not quite
effective for estimating faster varying perturba-
tions, and it has to store the previous information
of state variables. For increasing the tracking ac-
curacy, more memory devices are needed.
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