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Abstract: In this paper, a Linear Parameter Varying (LPV) model of the Furuta pendulum
is derived. Based on this model, a balancing controller is designed using robust predictive
control techniques. Invariant set theory is used to accurately characterise the region of the
state space in which the balancing controller is effective. An energy-based control law is
used to swing up the pendulum. Invariant sets calculated for the balancing controller can
be exploited to systematically determine the switching condition between swing up and
balancing controllers. In practice, the pendulum may be swung towards the upright position
with varying speed and the speed of the rotating arm may also vary. Based on this physical
insight, the speed of the rotating arm is chosen as gain scheduling variable. It is shown that
this strategy is effective in achieving a more consistent swing up and balancing behaviour
which is not sensitive to the performance of the swing up controller.
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systems.

1. INTRODUCTION

The inverted pendulum has been a classic benchmark for
illustrating various control ideas and techniques. In this
work, swing up and balancing of the Furuta pendulum
is considered. The Furuta pendulum has the pendulum
attached to a rotating arm instead of a cart moving on
a straight line. This gives a nice property that there are no
end points which makes it convenient for experimentation
and especially when velocity control of the arm speed is
performed. The pendulum is open loop unstable in the
upright configuration and the motor driving the rotating
arm has limited authority. Thus the pendulum serves as a
suitable process for the study of an unstable system with
actuator saturation.

1 The first author would like to thank the Association of Common-
wealth Universities for the fellowship at Cambridge University Engi-
neering Department where this work was carried out.

To design a control strategy for swinging up and bal-
ancing the Furuta pendulum, it is advantageous to split
the control problem into two sub-problems: swing up
and balancing, since systematic design methodologies of
these low-level controllers are available. In this paper,
the energy-based approach proposed in (Astrom and Fu-
ruta, 1999) is used to swing up the Furuta pendulum while
predictive control techniques (Chisciet al., 2001a; Chisci
et al., 2001b) are employed to design the balancing con-
troller. To perform the task of swing up and balancing
the pendulum at its upward position, it is necessary to
determine the switching condition so as to guarantee
that the balancing controller can catch and balance the
pendulum. In (Fierroet al., 1999), Lyapunov theory is
used to determine the switching boundaries. In this work,
the switching boundaries are calculated using the ap-
proach of invariant sets (Blanchini, 1999). Invariant sets
can be used to calculate the region of the state space in
which the balancing law is guaranteed stabilisable. This
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Fig. 1. Schematic diagram of the Furuta pendulum

requires an accurate description of the Furuta pendulum
which exhibits nonlinear dynamics. A Linear Parameter
Varying (LPV) model of the Furuta pendulum is derived
for this purpose and is used in the design of the bal-
ancing controller. Polytopic techniques, which assume
that the state-space coefficients evolve in a prescribed
(bounded) polytope, are used to account for the time-
varying and nonlinear nature of the plant. Robust model
predictive control techniques are employed to guarantee
robust stability as the parameters of the model change
with time and with operating points, while statisfying
the constraints imposed by the motor driving the rotat-
ing arm. A larger region of the state space in which the
balancing controller is applicable means that the swing
up and balancing performance will be less sensitive to
the values of the parameters chosen for the swing up law.
To enlarge this region, the speed of the rotating arm is
selected as the scheduling variable since the dynamics of
the plant system is influenced by the speed of the rotating
arm. The LPV synthesis technique provides a framework
to incorporate gain scheduling strategies in the controller
(Kajiwaraet al., 1999). Simulation results show that with
this gain scheduling strategy, the swing up and balancing
behaviour of the pendulum is less sensitive to the changes
in the parameters of the swing up law.

2. MODELLING OF THE FURUTA PENDULUM

In this section, we will show how an LPV model can
be obtained from the nonlinear model of the Furuta pen-
dulum. The LPV model will then form the basis for the
robust predictive control strategy described in Section 4.
Fig. 1 shows a schematic and the co-ordinate system used
for the derivation of the dynamic model for the Furuta
pendulum. The pendulum system consists of two sec-
tions, namely the rotating arm and the pendulum whose

angular positions are denoted respectively byα andψ 4
=

θ−π (ψ = 0 in the upward position). Using the method
of Lagrange, the nonlinear model of the Furuta pendulum
is

J(ψ)
[

α̈
ψ̈

]
+C(ψ, ψ̇, α̇)

[
α̇
ψ̇

]
=

[
t3v

t6sinψ

]
(1)

where

J(ψ)
4
=

[
1+ t7 sin2 ψ −t1 cosψ
−t4 cosψ 1

]
(2)

C(ψ, ψ̇, α̇)
4
=

 t2 +
1
2

t7ψ̇sin2ψ t1ψ̇sinψ+
1
2

t7α̇sin2ψ

−1
2

t8α̇sin2ψ t5

 (3)

ti , 1≤ i ≤ 8, are suitable coefficients depending on the
physical parameters of the system andv is the motor
voltage input.

2.1 Feedback pre-compensation

To obtain an LPV model for the Furuta pendulum, we
first use feedback pre-compensation to obtain a simpler
dynamics. {

α̈ = u
ψ̈ = f (ψ, ψ̇, α̇,u) (4)

This can be achieved by a suitable feedback pre-compensation
u = g(ψ, ψ̇, α̇,v) where

g(ψ, ψ̇, α̇,v) =
t3v− f2

f1

4
= u

f1 = (1− t1t4 +(t7 + t1t4)sin2(ψ))

f2 =−t1t6cos(ψ)sin(ψ)− 1
2

t1t8α̇2sin(2ψ)cos(ψ)+

+t1t5ψ̇cos(ψ)+ t2α̇+ t7α̇ψ̇sin(2ψ)+ t1ψ̇2sin(ψ)

(5)

and it turns out that

ψ̈ = t6sin(ψ)+ t4cos(ψ)u+ t8α̇2sin(ψ)cos(ψ)− t5ψ̇ (6)

At equilibrium, u = 0. Thus there is a continuum of
equilibria ψe = 0 or π, ψ̇e = 0, α̇e = t3

t2
ve whereve is

arbitrary. Since, from physical considerations,t1t4 ≤ 1,
it turns out thatf1 6= 0, ∀ψ. This implies that the rela-
tionship between the actuator inputv andu is invertible.
It is proved in (Teel, 1996) that stabilising the system (4)
implies stabilising the system (1).

2.2 Quasi-LPV Model and LPV Relaxation

From (4), we obtain the state space model α̈
ψ̈
ψ̇

 =

 0 0 0
0 −t5 φ1(t)
0 1 0

 α̇− α̇e

ψ̇
ψ

+

 1
t4φ2(t)

0

u (7)

with state vectorx = [α̇− α̇e, ψ̇, ψ]′. Thus, the dynam-
ics of the Furuta pendulum is characterised by two time-
varying parameters

φ1(t) = (t6 + t8α̇2 cos(ψ))
sin(ψ)

ψ
, φ2(t) = cos(ψ) (8)

Note that the system described by (7) is known as a
“quasi-LPV” model (Tu and Shamma, 1998) since its
parameters are functions of the states. However, in LPV
modelling, the state dependence of the parameters is
relaxed, i.e.φ1 andφ2 are treated as independent, in the
hope that the relaxed model behaves closely to the quasi-
LPV model (7).



2.3 Discretisation and Constraints

Since the aim is to implement the control on a digital
computer and construct the control action on-line, we
discretise (7) with a sampling timeh, yielding a discrete
time LPV model

x(t +1) = A(φ1(t))x(t)+B(φ2(t))u(t) (9)

where2 A(φ1(t)) = (I + hAc(φ1(t))) and B(φ2(t)) =
hBc(φ2(t))

We shall assume magnitude bounds on the continuous-
time state variableṡα,ψ, ψ̇ which in turn induce the
discrete-time constraints

|α̇(t)| ≤ α̇u, |ψ(t)| ≤ ψu, |ψ(t +1)−ψ(t)| ≤ hψ̇u (10)

These finally imply magnitude and rate constraints con-
straints on the parameters

φil ≤ φi(t)≤ φiu, δφil ≤ φi(t +1)−φi(t)≤ δφiu, i = 1,2 (11)

The behaviour of the relaxed model is close to that of the
quasi-LPV model (7) if the constraints (11) are suitably
chosen.

2.4 Polytopic set description of uncertain LTV/LPV systems

Since the parametersφ1 andφ2 are actually functions of
the states, there will be variations in the values of the
parameters as the states of the system evolve. In order
to account for these possible variations in the parameters,
an uncertain LTV/LPV system is considered. From (9),
for a given interval of continuous time variables it is
possible to compute bounds on the parameters (11) via
(8) to obtain a difference inclusion. There will be four
vertices characterised by{φ1l , φ1u, φ2l , φ2u}. Thus the
nonlinear model of the Furuta pendulum can be modelled
as a discrete-time uncertain LTV system

x(t +1) = A(t)x(t)+B(t)u(t)

[A(t),B(t)] =
q

∑
j=1

λ j(t)[Aj ,Bj ], ∀t ≥ 0

q

∑
j=1

λ j(t) = 1, λ j(t)≥ 0, j = 1,2, . . . ,q.

(12)

Herex(t) ∈ IR3 is the state,u(t) ∈ IR is the control input
andq = 4. The system (12), referred to aspolytopic sys-
tem, provides a classical description of model uncertainty.
Since the parametersφ1 andφ2 of the Furuta model are
measurable, it is convenient to consider a discrete-time
LPV system (Shamma and Xiong, 1999)

x(t +1) ∈ F (p(t))
[

x(t)
u(t)

]
, x(0) = x0

p(t +1) ∈Q(p(t)) p(0) = p0

(13)

where,p(t) = [φ1(t),φ2(t)]′ is a time-varying parameter
which belongs to the discrete setP = {p1, p2, · · · , pl}
and evolves according to the set-valued mapQ : P P.

2 The reason for choosing this particular discretisation scheme is to
keepA andB linear in p1 andp2.

Finally the mapF : P IRn×(n+m) is also set-valued in
order to represent additional uncertainty in the system
dynamics.

Remark 1.The LPV description reduces to the LTV de-
scription when the values and evolution of the parameters
are not considered.

3. PREDICTIVE CONTROL OF LPV SYSTEMS

In this section we briefly recall a predictive control tech-
nique (Chisciet al., 2001b) for constrained LPV sys-
tems that will be subsequently exploited, with appropriate
modifications, in the balancing controller of the Furuta
pendulum. With reference to the LPV system (13), let us
assume that

A1. The model is subject to pointwise-in-time control
and state constraints

u(t) ∈ U, x(t) ∈ X ∀t ≥ 0 (14)

for appropriate polytopesU and X containing the
origin in the interior.

A2. For each valuepj ∈ P of the parameter there exists a
linear feedbacku(t) = Fjx(t) such that the closed-loop
polytopic system

x(t +1) ∈ F (pj)
[

x(t)
F(p(t)) x(t)

]
F(p)

4
= Fj if p = pj

(15)

is absolutely asymptotically stable (Gurvits, 1995).

Let us consider the LPV system x(t +1) ∈ F (p(t))
[

x(t)
F(p(t)) x(t) + c(t)

]
p(t +1) ∈Q(p(t))

(16)

for which the actual inputu(t) is the sum of the gain-
scheduled linear feedbackF(p(t)) x(t) plus the cor-

rection term c(t). Let s(t)
4
= [x′(t), p(t)]′ denote the

extended state-parameter vector. LetS0 be the set of
initial conditions s(0) = [x′(0), p(0)]′ for which the
plant state is asymptotically steered to the origin, with-
out violating constraints (14), under the linear gain-
scheduled feedbacku(t) = F(p(t))x(t). Assuming that
S0 is non empty, it is possible to compute recursively
the invariant setsSN, N ≥ 0, of vectors[s′(0),c′(0)]′ =
[s′(0),c(0),c(1), . . . ,c(N−1)]′ such that{c(0),c(1), . . .,
c(N−1)}, depending ons(0) only, steerss(0) to S0, in N
steps, while satisfying the constraints (14). Notice thatSN

is actually a collection of setsS1
N,S2

N, . . . ,S l
N correspond-

ing to the parameter valuesp1, p2, . . . , pl . For details on
the computation ofSN the reader is referred to (Chisciet
al., 2001b). In order to enlarge the domain of attraction
of the gain-scheduled controller, the following predictive
control algorithm can be exploited.



- Parameter Varying - Predictive Control (PV-PC)
At each sample timet, givens(t) = [x′(t), p(t)]′, find

ĉ(t) = argmin
c(t)

c′(t) c(t) subj. to

[
s(t)
c(t)

]
∈ SN. (17)

Then apply to the system the control signal

u(t) = F(p(t)) x(t) + ĉ(t|t) (18)

whereĉ(t)′ = [ĉ(t|t)′, . . . , ĉ(t +N−1|t)′]. ♦

Theorem 1.Provided thats(0) is feasible, the receding-
horizon control (17)-(18) guarantees that
(1) the constraints (14) are satisfied and
(2) lim

t→∞
x(t) = 0.

Algorithm PV-PC therefore ensures asymptotic stability
with domain of attractionΣN, whereΣN is the projection
of SN onto the plant state space.

4. CONTROL OF THE FURUTA PENDULUM

4.1 Swing-up control

The control law used to swing up the Furuta pendulum is
the following (Astrom and Furuta, 1999)

u = satng(kEsign(ψ̇cosψ)) (19)

where satng denotes a linear function which saturates at
±ng. The energy of the uncontrolled pendulum, defined
to be zero when the pendulum is in the upward position
(ψ = 0), is calculated as

E =
1
2

Jψ̇2 +mgl(cosψ−1),

whereJ is the moment of inertia of the pendulum with
respect to the pivot point andl is the distance from the
pivot to the centre of mass. In other words, the swing up
control law has two parameters:n andk. The parameter
n influences the behaviour of the swing up; it gives the
maximum control signal and thus the maximum rate of
energy change. The parameterk determines the region
where the swing up law behaves linearly. For different
values ofn andk, the pendulum approaches the upright
position with different speed and the speed of the rotating
arm will also be different.

4.2 Balancing control

To facilitate the switching strategy between the swing
up and balancing controllers, the latter should have the
following properties:
(1) a priori known region of the state space in which the

pendulum is guaranteed stabilisable;
(2) this region should be as large as possible.

To meet both requirements, we exploit invariant sets. It
is important to stress that the determination of invariant

sets for the Furuta pendulum is computationally tractable
thanks to the embedding of the original nonlinear model
into an LPV model carried out in Section 2. Hereafter, we
will present two different techniques for balancing con-
trol based on a different discretisation of the parameter
p. The first technique will use the pendulum angleψ as
scheduling variable, while the second technique will use
the arm speeḋα for the same purpose.

4.2.1. Scheduling onψ The idea is to use the LPV
model (13) with a discrete parameter setP obtained by
discretisation of the angleψ ∈ [−ψu,ψu]. More precisely,
the intervalΩ = [−ψu,ψu] is partitioned into subinter-
vals Ωi , i = −`, . . . ,−1,0,1, . . . , `, and a polytopePi is
associated to eachΩi . Since the objective is to stabilise
the equilibriumψ = 0, in this case it is not necessary to
find stabilising gainsFi for all polytopesPi ; a single gain
F , for the polytopeP0 associated to the subintervalΩ0
containing the origin, suffices. Then free control moves
can be used in order to enlarge the domain of attraction
of the linear controllerF . To this end, let us introduce the
special robust controlled invariant setsΣi , i ≥ 0, of all ini-
tial statesx(0) which can be robustly steered intoΣ0 by an
i-steps feedback control sequence{u(0),u(1), . . . ,u(i −
1)}, where eachu(k) ∈ Uk is allowed to depend on the
current statex(k). The setsΣi , i > 0, can be computed
recursively as follows:f or i = 1,2, . . .

Σi = Xi ∩{x|∃u∈ Ui : Aj x+Bj u∈ Σi−1, j = 1,2, . . . ,q}.

where: (1) the initial condition isΣ0 = Σ0; (2) the pairs
[Aj ,Bj ] are the vertices of the polytopePi associated to
Ωi ; (3) Ui and Xi are the input and, respectively, state
constraint sets relative to the regionΩi . Notice that, by
symmetry,Σ−i =−Σi} for i = 1,2, . . . , `.

Remark 2.Notice that for each subintervalΩi there are
obviously different state constraintsXi , but also differ-
ent input constraintsUi since the control inputu is ob-
tained from the plant inputv via the state feedback pre-
compensation (5). The boundsUi can be obtained numer-
ically considering the imposed state bounds (10) and (5).

For on-line control, the following strategy is used.

Algorithm 1. Given x(t), locate the regionΣi to which
x(t) belongs and implement the following control:

If x∈ Σ0, u(t) = Fx(t)
else u(t) = û(t)

whereû(t) = argminu u(t)2 subject to

u(t) ∈ Ui , Aj x(t)+Bj u(t) ∈ Σi−1 j = 1,2, . . . ,q. ♦

4.2.2. Scheduling oṅα Recall that the Furuta pendu-
lum admits a continuum of equilibria

[α̇e, ψ̇e, ψe]
′ =

[
t3
t2

ve, 0, 0

]′
, ∀ ve

Our aim is to enlarge the basin of attraction of the equi-
librium [α̇e, ψ̇e, ψe]

′ = 0 in order to improve the catching
ability of its locally stabilizing controller. It turns out that
an effective way of addressing this issue is by using a
finite bank of predictive controllers relative to different



equilibria and by switching among them so as to ulti-
mately drive the system to an invariant neighborhood of
the origin. So it is possible to choose a finite number,m,
of equilibrium pointsxe,i = [α̇e,i , 0, 0]′ , 1≤ i ≤ m, and
define the set and relative subintervalsΩi containingα̇e,i

so as to cover a sufficiently large range of arm speeds.
For each equilibrium, bounds on the input and the state
allow to compute the corresponding difference inclusion
and invariant setSi

N (Chisci et al., 2001b). In particular
in order to implement the on-line scheme that will be
described hereafter, it is important to have overlapping
invariant sets. For this reason, overlapping subintervals
Ωi are chosen. In this manner eachα̇(t), that satisfies
constraints, belongs to one or two intervalsΩi and the
algorithm selects among feasible equilibria the one that is
nearest to the origin. In order to avoid set-point jumps,
which would result from this simple strategy, an addi-
tional continuous variable is considered in the optimiza-
tion procedure. This results in a filtered and smoothed
input fed into the predictive controller so as to achieve a
bumpless transfer. The control algorithm is the following.

Algorithm 2. At each sample timet, given the current
statex(t) and an admissible equilibriuṁαe,i with the
respective invariant setSi

N, find

[ ˆ̇αe(t), ĉ(t)] = arg min
c(t),α̇e(t)

{
c′(t)c(t) +ρα̇2

e(t)
}

, ρ > 0,

subject to x(t)−

 α̇e(t)
0
0


c(t)

 ∈ Si
N,


 α̇e(t)− α̇e,i(t)

0
0


c(t)

 ∈ Si
N,

|α̇e(t)− α̇e(t−1)|< hα̈u.

(20)

whereα̇e,i is chosen according to the measured schedul-
ing variableα̇. ♦

Remark 3.The constraints reflect the idea of choosing
a continuously varying equilibrium so that the state be-
longs to its feasibility region and the equilibrium itself is
close enough to one of the preselected operating points.
Since bounds on̈α have been imposed to formulate the
design procedure, it is necessary to take into account
the maximum variation of the state variableα̇, derived
from bounds onu, which in turn provides bounds on the
variation of the equilibrium poinṫαe.

5. SIMULATION RESULTS

Simulations were performed using the Matlab/Simulink
environment. The control strategies described in Section
4 have been applied to the nonlinear model (1). The nu-
merical values used were obtained from a system identi-
fication experiment on a real pendulum (Png, 1999):

t1 = 0.0265, t2 = 1.0524, t3 = 0.4549, t4 = 0.6777,
t5 = 0.6058, t6 = 48.5267 t7 = 0.0304, t8 = 0.7776

The chosen sampling time ish = 0.01 seconds. In ad-
dition, the following actuator and state constraints were
imposed for all subsequent designs:
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Fig. 2. Simulation for algorithm 1 with initial condition
x(0) = [8.00 7.20 −0.62]′

−200≤ v≤ 200 −10≤ ψ̇ ≤ 10 rad/s

Fig. 2 shows the balancing behaviour using the strategy
of algorithm 1. The relevant data are reported in Table 1;
futher it has been assumed that−11≤ α̇ ≤ 11 rad/s.

Table 1. Algorithm 1 (Scheduling onψ)

Regions Feedback # of
GainsFi Constraints

Ω−2 :− 36
180π < ψ <− 33

180π - 177
Ω−1 :− 33

180π < ψ <− 30
180π - 99

Ω0 :− 30
180π < ψ < 30

180π [0.04−0.23−2.18]×103 34
Ω1 : 30

180π < ψ < 33
180π - 99

Ω2 : 33
180π < ψ < 36

180π - 177

5.1 Scheduling oṅα

The simulation results obtained using Algorithm 2 are
discussed here. We chose

Xq = {−17.5, −14, −10.5, −7, 0, 7, 10.5, 14, 17.5}.

Fig. 3 shows the balancing behaviour using the strategy
of algorithm 2. The relevant data are reported in Table 2;
futher it has been assumed that−40 π

180 ≤ ψ ≤ 40 π
180

rad/s.

Table 2. Algorithm 2 (scheduling oṅα)

Regions Feedback # of
GainsFi Constraints

Ω−4 :−21≤ α̇ ≤−14 [0.03−0.25−3.90]×103 127
Ω−3 :−17.5≤ α̇ ≤−10.5 [0.03−0.23−3.11]×103 140
Ω−2 :−14≤ α̇ ≤−7 [0.03−0.22−2.51]×103 80
Ω−1 :−10.5≤ α̇ ≤−3.5 [0.03−0.21−1.96]×103 72
Ω0 : |α̇|< 7 [0.02−0.18−1.47]×103 114
Ω1 : 3.5≤ α̇ ≤ 10.5 F1 = F−1 72
Ω2 : 7≤ α̇ ≤ 14 F2 = F−2 86
Ω3 : 10.5≤ α̇ ≤ 17.5 F3 = F−3 140
Ω4 : 14≤ α̇ ≤ 21 F4 = F−4 127

5.2 Swing up and balancing

In this section, simulation results of the swing up and
balancing behaviour are presented. The simulations start
with the pendulum at the downward position. First the
energy-based swing up law (Astrom and Furuta, 1999)
is applied. Control will be switched to the balancing
law when the state of the system is inside the invariant
set. Recall that the parametern in the swing up law
(19) determines the maximum rate of energy change
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dashed)
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Fig. 4. Swing up and balancing performance using algo-
rithm 1
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Fig. 5. Swing up and balancing performance using algo-
rithm 2

allowable during swing up. To test the sensitivity of the
design, different valuesn = 10, 11, 12, 13, 14, 15
were used. Figs. 4 and 5 show the performance with the
balancing controllers of algorithm 1 and, respectively, 2.
It is clear that with the enlarged region due to the gain
scheduling strategy, the overall swing up and balancing
performance is less sensitive to the design of the swing
up law. Noisy simulations have also been carried out but
are not reported here due to lack of space; the presence
of disturbances non only did not affect stability but also
slightly degraded performance.

6. CONCLUSIONS

In this paper, a LPV model of the Furuta pendulum
is derived. Based on this model, a balancing controller
is designed using robust predictive control techniques.
The LPV model captures well the nonlinear dynamics of
the system and allow the use of invariant set theory to
accurately characterise the region of the state space in
which the balancing controller is effective. As a result,
the switching condition between swing up and balancing
controllers can be determined systematically. In practice,
the pendulum may approach the upright position with
varying speed and the speed of the rotating arm may
also vary. Based on this physical insight, the speed of
the rotating arm is chosen as gain scheduling variable.
It is shown that this strategy is effective in achieving
a more consistent swing up and balancing behaviour
which is not sensitive to the performance of the swing up
controller. The experimental evaluation of the proposed
control strategies is currently in progress.
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