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Abstract: In this paper, a Linear Parameter Varying (LPV) model of the Furuta pendulum
is derived. Based on this model, a balancing controller is designed using robust predictive
control techniques. Invariant set theory is used to accurately characterise the region of the
state space in which the balancing controller is effective. An energy-based control law is
used to swing up the pendulum. Invariant sets calculated for the balancing controller can
be exploited to systematically determine the switching condition between swing up and
balancing controllers. In practice, the pendulum may be swung towards the upright position
with varying speed and the speed of the rotating arm may also vary. Based on this physical
insight, the speed of the rotating arm is chosen as gain scheduling variable. It is shown that
this strategy is effective in achieving a more consistent swing up and balancing behaviour
which is not sensitive to the performance of the swing up controller.

Keywords: Furuta pendulum, invariant sets, predictive control, linear parameter varying
systems.

1. INTRODUCTION To design a control strategy for swinging up and bal-
ancing the Furuta pendulum, it is advantageous to split
Ithe control problem into two sub-problems: swing up

The inverted pendulum has been a classic benchmark foand balancing, since systematic design methodologies of

illustrating various control ideas and techniques. In this ) .
these low-level controllers are available. In this paper,

work, swing up and balancing of the Furuta pendulum the energy-based approach proposed in (Astrom and Fu-
is considered. The Furuta pendulum has the pendulum ¢ 19999y_ dtpp . pthp F It qul h'Iu
attached to a rotating arm instead of a cart moving on"Ya: ) is used to swing up the Furuta pendulum while

a straight line. This gives a nice property that there are nopredlctlve control techniques (Chisaiial, 2001, Chisci

end points which makes it convenient for experimentation tertoﬁ:a“r 2_(|)_gjb)e§:)erne1ngﬁtleoyt/:§lkt%fd:®|%n tEe Zilgnbcé;?‘gng%n'

and especially when velocity control of the arm speed is the éndulrl)Jm at its upward ositio% i?is necessar ?o
performed. The pendulum is open loop unstable in thedete[?mine the switchi[r)1 con%ition s’o as to uaraztee
upright configuration and the motor driving the rotating that the balancin cont?oller can catch and bglance the
arm has limited authority. Thus the pendulum serves as a 9

suitable process for the study of an unstable system withﬂggg'j{'(l)ug;'tel?nf;'srtrhogts\?vl&cﬁigr?9%30%%%?;" Itr??r?irsyvzrk
actuator saturation. g9 : ,

the switching boundaries are calculated using the ap-
proach of invariant sets (Blanchini, 1999). Invariant sets
1 The first author would like to thank the Association of Common- can be used to calculate the region of the state space in

wealth Universities for the fellowship at Cambridge University Engi- which the balancing law is guaranteed stabilisable. This
neering Department where this work was carried out.
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ti, 1 <i < 8, are suitable coefficients depending on the
physical parameters of the system ands the motor
voltage input.

Fig. 1. Schematic diagram of the Furuta pendulum 2.1 Feedback pre-compensation

requires an accurate description of the Furuta pendulum
which exhibits nonlinear dynamics. A Linear Parameter
Varying (LPV) model of the Furuta pendulum is derived

for this purpose and is used in the design of the bal-
ancing controller. Polytopic techniques, which assume
that the state-space coefficients evolve in a prescribed {d =u

To obtain an LPV model for the Furuta pendulum, we
first use feedback pre-compensation to obtain a simpler
dynamics.

(bounded) polytope, are used to account for the time- 0= f(Y,,a,u) )
varying and nonlinear nature of the plant. Robust model
predictive control techniques are employed to guarantee
robust stability as the parameters of the model change o
with time and with operating points, while statisfying u=g(,,a,v) where

the constraints imposed by the motor driving the rotat- o tav—fo A

ing arm. A larger region of the state space in which the 9, b, a,v) = O

Ealancmg cont_roller is applicable means that the_ swing fi = (1—tata + (t7 +tats)SirP () (5)
p and balancing performance will be less sensitive to . o

the values of the parameters chosen for the swing up law. f2 = —tatecos(y)sin() — Stitsa"sin(2y)cos )+

To enlarge this region, the speed of the rotating arm is +titscog W) + tra + tzaPsin(2y) + tyPsin(y)

selected as the scheduling variable since the dynamics of
the plant system is influenced by the speed of the rotating
arm. The LPV synthesis technique provides a framework
to incorporate gain scheduling strategies in the controller g = tgsin(y) +ts cogY)u+ tsa® sin(y) cog ) —ts  (6)
(Kajiwaraet al, 1999). Simulation results show that with A fibri _ 0. Th h . . f
this gain scheduling strategy, the swing up and balancing t equilibrium, u = 0. Thus there is a continuum o

behaviour of the pendulum is less sensitive to the changefqu_IIIbrIa Ye =0 Or 1T e =0, de = Ve vyhereve IS
in the parameters of the swing up law arbitrary. Since, from physical consuieraﬂoﬂﬂ;; <1,
' it turns out thatf, # 0, Vy. This implies that the rela-

tionship between the actuator inpuandu is invertible.
Itis proved in (Teel, 1996) that stabilising the system (4)

2. MODELLING OF THE FURUTA PENDULUM implies stabilising the system (1).

and it turns out that

. . . 2.2 i-LPV M | and LPV Relaxation
In this section, we will show how an LPV model can Quas odel and elaxatio

be obtained from the nonlinear model of the Furuta pen- )
dulum. The LPV model will then form the basis for the From (4), we obtain the state space model

robust predictive control strategy described in Section 4. G 00 o a— de 1
Fig. 1 shows a schematic and the co-ordinate system used [Lp} = [o —ts @i(t) o } + [ @) |u  (7)
for the derivation of the dynamic model for the Furuta W 01 0 v 0

pendulum. The pendu_lum system consists of two SeC-,ith state vectok — [6— e, U, W]’ Thus, the dynam-
tions, namely the rotating arm and the pendulum whoseics of the Furuta pendulum is characterised by two time-
angular positions are denoted respectivelyobgnd s 2 varying parameters

6 — 11 (Y = 0 in the upward position). Using the method D sin(y)

of Lagrange, the nonlinear model of the Furuta pendulum @u(t) = (lo +tga"cosY)) = ==, @a(t) =cosy)  (8)

IS Note that the system described by (7) is known as a
“quasi-LPV" model (Tu and Shamma, 1998) since its
& . Ta tav parameters are functions of the states. However, in LPV
J(W) [ll-'} +C(W, . a) LIJ] = {tesinw} (1) modelling, the state dependence of the parameters is
relaxed, i.eq; and@, are treated as independent, in the
where hope that the relaxed model behaves closely to the quasi-
LPV model (7).

This can be achieved by a suitable feedback pre-compensation



2.3 Discretisation and Constraints

Since the aim is to implement the control on a digital

computer and construct the control action on-line, we

discretise (7) with a sampling tinte yielding a discrete
time LPV model

X(t+1) = Aleu(t))x(t) + Blex(t))ut)  (9)
where? A(@u(t)) = (I + hAc(@u(t))) and B(g(t)) =
hBe(@2(t))

Finally the map¥ : P ~» R™ (™M js also set-valued in
order to represent additional uncertainty in the system
dynamics.

Remark 1.The LPV description reduces to the LTV de-

scription when the values and evolution of the parameters
are not considered.

3. PREDICTIVE CONTROL OF LPV SYSTEMS

We shall assume magnitude bounds on the continuous-

time state variablesx, P,y which in turn induce the
discrete-time constraints

G <o, [WOI<Wu, [WEt+1)-wt)]<hdy (10)

These finally imply magnitude and rate constraints con-

straints on the parameters

@ <@l <aqu, o <@t+1)-a@t) <dpy, i =12 (11)

In this section we briefly recall a predictive control tech-
nigue (Chisciet al, 2001) for constrained LPV sys-
tems that will be subsequently exploited, with appropriate
modifications, in the balancing controller of the Furuta
pendulum. With reference to the LPV system (13), let us
assume that

The behaviour of the relaxed model is close to that of the A1. The model is subject to pointwise-in-time control

quasi-LPV model (7) if the constraints (11) are suitably
chosen.

and state constraints

ut) € U, x(t) e X >0 (14)

2.4 Polytopic set description of uncertain LTV/LPV systems for appropriate polytope/ and X containing the

Since the parameterg andg, are actually functions of

the states, there will be variations in the values of the

origin in the interior.
A2. For each valug; c P of the parameter there exists a
linear feedbacki(t) = Fjx(t) such that the closed-loop

parameters as the states of the system evolve. In order polytopic system
to account for these possible variations in the parameters,

an uncertain LTV/LPV system is considered. From (9),
for a given interval of continuous time variables it is

possible to compute bounds on the parameters (11) via

(8) to obtain a difference inclusion. There will be four
vertices characterised bypy, @, @i, ®u}. Thus the

nonlinear model of the Furuta pendulum can be modelled

as a discrete-time uncertain LTV system

x(t+ 1) = A(t)x(t) + B(t)u(t)
Z Aj(H)[A},Bj],

A =1, A()>0,j=12...,q
1

vt >0
(12)

e

J

Herex(t) € R3 is the statey(t) € R is the control input
andqg = 4. The system (12), referred to pslytopic sys-

tem provides a classical description of model uncertainty.

Since the parameterg and @, of the Furuta model are

measurable, it is convenient to consider a d'screte't'mescheduled feedback(t)

LPV system (Shamma and Xiong, 1999)

M+367m®ﬂﬂoy“®:m (13)
)

u(t)
p(t+1) € Q(p(t)) P(0) = po
where,p(t) = [@1(t), @:(t)] is a time-varying parameter

which belongs to the discrete sBt= {p1,pz2,---,pi}
and evolves according to the set-valued mapP ~ P.

X(t) }
X(t+1) e i
(D 70D | (i) )
F(p)=F; if p=p;
is absolutely asymptotically stable (Gurvits, 1995).

(15)

Let us consider the LPV system

(t+1) € F(p(t)) |:F(p(t)) X(t) + C(t)} (16)

{ X(t
p(t+1) € Q(p(t))
for which the actual inputi(t) is the sum of the gain-

scheduled linear feedbadk(p(t)) x(t) plus the cor-

rection termc(t). Let s(t) 2 [X(t),p(t)]’ denote the
extended state-parameter vector. l%tbe the set of
initial conditions s(0) = [¥(0), p(0)]" for which the
plant state is asymptotically steered to the origin, with-
out violating constraints (14), under the linear gain-
= F(p(t))x(t). Assuming that
So is non empty, it is possible to compute recursively
the invariant setsiy, N > 0, of vectors[s(0),c'(0)]' =
[(0),¢c(0),c(1),...,c(N—1)]’ such that{c(0),c(1),...,
¢(N—1)}, depending org(0) only, steers(0) to So, in N
steps, while satisfying the constraints (14). Notice fhat

is actually a collection of sets}, 53, ..., Sy correspond-
ing to the parameter valugs, po, ..., p. For details on
the computation ofy the reader is referred to (Chisef
al., 2001). In order to enlarge the domain of attraction

2 The reason for choosing this particular discretisation scheme is to Of the gain-scheduled controller, the following predictive

keepA andB linear in p; andp,.

control algorithm can be exploited.



- Parameter Varying - Predictive Control (PV-PC)
At each sample timg givens(t) = [X(t), p(t)]’, find

s(t)

&) = arggn(ti)ng’(t) c(t) subj. to {Q(t)} SRR 7)

Then apply to the system the control signal
u(t) = F(p(t)) x(t) + C(t[t) (18)
wherec(t)’ = [E(t|t),...,E(t+N—1]t)]. &

Theorem 1.Provided thats(0) is feasible, the receding-

horizon control (17)-(18) guarantees that
(1) the constraints (14) are satisfied and

(2) Jim x(t) =0.

Algorithm PV-PC therefore ensures asymptotic stability
with domain of attractiorky, whereX, is the projection
of Sy onto the plant state space.

4. CONTROL OF THE FURUTA PENDULUM

4.1 Swing-up control

sets for the Furuta pendulum is computationally tractable
thanks to the embedding of the original nonlinear model
into an LPV model carried out in Section 2. Hereafter, we
will present two different techniques for balancing con-
trol based on a different discretisation of the parameter
p. The first technique will use the pendulum angieas
scheduling variable, while the second technique will use
the arm speed for the same purpose.

4.2.1. Scheduling onp  The idea is to use the LPV
model (13) with a discrete parameter sebbtained by
discretisation of the anglg € [—y,, W,]. More precisely,
the intervalQ = [— lpu,lpu] is partitioned into subinter-
vals Q;, i = —/,...,—1,0,1,...,¢, and a polytope#, is
associated to eacﬁ. Slnce the objectlve is to stabilise
the equilibriumy = 0, in this case It is not necessary to
find stabilising gainsi;:I for all polytopes?; a single gain

F, for the polytopey associated to the subinten@b
containing the origin, suffices. Then free control moves
can be used in order to enlarge the domain of attraction
of the linear controlleF. To this end, let us introduce the
special robust controlled invariant sétsi > 0, of all ini-

tial statex(0) which can be robustly steered irlfg by an
i-steps feedback control sequenag0),u(),...,u(i —
1)}, where eachu(k) € U is allowed to depend on the

current statex(k). The sets3;, i > 0, can be computed
recursively as followsfori=1,2,...

Si=XN{X3ue U:Ax+Bjueg_1,j=12....q}.

The control law used to swing up the Furuta pendulum is where: (1) the initial condition i&g = Zo; (2) the pairs

the following (Astrom and Furuta, 1999)

u = sahg(KEsign(ycosy)) (19)

where sajig denotes a linear function which saturates at
+ng. The energy of the uncontrolled pendulum, defined

[Aj,Bj] are the vertices of the polytog® associated to
Q;i; (3) U and X; are the input and, respectively, state
constraint sets relative to the regiér. Notice that, by
symmetrys j =%} fori=1,2,... (.

to be zero when the pendulum is in the upward position Remark 2.Notice that for each subinterval; there are

(W = 0), is calculated as

E= %JL]JZ +mgl(cosp — 1),

whereJ is the moment of inertia of the pendulum with
respect to the pivot point andis the distance from the

obviously different state constraing§, but also differ-
ent input constraintd; since the control inputi is ob-
tained from the plant input via the state feedback pre-
compensation (5). The boundg can be obtained numer-
ically considering the imposed state bounds (10) and (5).

pivot to the centre of mass. In other words, the swing up For on-line control, the following strategy is used.

control law has two parametens:andk. The parameter
n influences the behaviour of the swing up; it gives the
maximum control signal and thus the maximum rate of
energy change. The parametedetermines the region
where the swing up law behaves linearly. For different
values ofn andk, the pendulum approaches the upright

Algorithm 1. Givenx(t), locate the regiolZ; to which
X(t) belongs and implement the following control:
u(t) = Fx(t)

u(t) = a)

If xeZo,
else

position with different speed and the speed of the rotating\yhereut) = argmin, u(t)? subject to

arm will also be different.

4.2 Balancing control

To facilitate the switching strategy between the swing

up and balancing controllers, the latter should have the

following properties:
(1) apriori known region of the state space in which the

pendulum is guaranteed stabilisable;
(2) this region should be as large as possible.

ut) e Ui, Axt)+Bjut)eZi1 j=12,...,0. ¢

4.2.2. Scheduling ort  Recall that the Furuta pendu-
lum admits a continuum of equilibria

[de’ L]J67 LIJe]/ = |:t3Ve, O O:| VVe

Our aim is to enlarge the basin of attraction of the equi-
librium [@e, We, We]' = 0in order to improve the catching
ability of its locally stabilizing controller. It turns out that

To meet both requirements, we exploit invariant sets. It an effective way of addressing this issue is by using a
is important to stress that the determination of invariant finite bank of predictive controllers relative to different



equilibria and by switching among them so as to ulti-
mately drive the system to an invariant neighborhood of
the origin. So it is possible to choose a finite numiper,

of equilibrium pointsxej = [@ej, 0, 0", 1<i<m, and
define the set and relative subinterv@scontainingde;

so as to cover a sufficiently large range of arm speeds.

For each equilibrium, bounds on the input and the state
allow to compute the corresponding difference inclusion
and invariant seﬁN (Chisciet al, 200b). In particular

in order to implement the on-line scheme that will be

described hereafter, it is important to have overlapping

invariant sets. For this reason, overlapping subintervalsFig-

Q; are chosen. In this manner eaalt), that satisfies
constraints, belongs to one or two interv&ls and the
algorithm selects among feasible equilibria the one that is
nearest to the origin. In order to avoid set-point jumps,
which would result from this simple strategy, an addi-
tional continuous variable is considered in the optimiza-
tion procedure. This results in a filtered and smoothed
input fed into the predictive controller so as to achieve a
bumpless transfer. The control algorithm is the following.

Algorithm 2. At each sample timg given the current
statex(t) and an admissible equilibriurae; with the

respective invariant s&,, find

[Ge(t), &(t)] = arg, min {<(t)c(t) +pad(t)}, p>0,
o subject to
delt) de(t) — dei (t)
_ . ' (20
o 13 | e |
c(t) c(t)

|éte(t) — Ge(t — 1)| < héiy.
whered,; is chosen according to the measured schedul-
ing variableq.

Remark 3.The constraints reflect the idea of choosing
a continuously varying equilibrium so that the state be-
longs to its feasibility region and the equilibrium itself is

Arm Speed, da/dt Pendulum Angle, 8

=

2

4 6 8

‘Speed of Pendulum Angle, doidt
: L
2

2. Simulation for algorithm 1 with initial condition
x(0) =[8.00 7.20 —0.62
—200<v<200 —-10<y<10

Fig. 2 shows the balancing behaviour using the strategy
of algorithm 1. The relevant data are reported in Table 1;
futher it has been assumed thatl < a < 11 rad/s.

Table 1. Algorithm 1 (Scheduling ah)

rad/s

Regions Feedback # of
GainsF Constraints

Qo —En<yp<-—2n 177

Qi -Fn<yp< P - 99

Qo — <P < [0.04-023-218 x10° 34

Q1 30 3 - 99

17 3gpTt< Y < {gpTt
Q1 FpM< P < fom 177

5.1 Scheduling om

The simulation results obtained using Algorithm 2 are
discussed here. We chose
Xq={-175, —14, —105, -7, 0, 7, 105, 14, 17.5}.

Fig. 3 shows the balancing behaviour using the strategy
of algorithm 2. The relevant data are reported in Table 2;
futher it has been assumed thatl0-5s < ) < 405

close enough to one of the preselected operating points
Since bounds ol have been imposed to formulate the

design procedure, it is necessary to take into account

the maximum variation of the state varialte derived
from bounds oru, which in turn provides bounds on the
variation of the equilibrium poindte.

5. SIMULATION RESULTS

Simulations were performed using the Matlab/Simulink
environment. The control strategies described in Section
4 have been applied to the nonlinear model (1). The nu-
merical values used were obtained from a system identi-
fication experiment on a real pendulum (Png, 1999):

t1 =0.0265 t; = 1.0524 t3=0.4549 t, = 0.6777,
ts = 0.6058 tg = 48.5267t7 = 0.0304 tg =0.7776

The chosen sampling time 5= 0.01 seconds. In ad-
dition, the following actuator and state constraints were
imposed for all subsequent designs:

180 = 180
rad/s.
Table 2. Algorithm 2 (scheduling cm)
Regions Feedback # of
GainsF; Constraints
Q 4:-21<a<-14 [0.03-0.25—-390 x 10° 127
Q 3:-175<a<-105 [0.03-0.23—-3.11]x10° 140
Q p:-14<a< -7 [0.03-0.22—-251] x 10> 80
Q3:-105<a<-35 [003-021-196x1C°® 72
Qo:lal <7 [0.02-0.18-147 x10® 114
0;:35<a<105 Fi=F1 72
0 7<a<14 FR=F> 86
03:105<a <175 FRe=F3 140
Qs l4<a<21 Fa=F_4 127

5.2 Swing up and balancing

In this section, simulation results of the swing up and
balancing behaviour are presented. The simulations start
with the pendulum at the downward position. First the
energy-based swing up law (Astrom and Furuta, 1999)
is applied. Control will be switched to the balancing
law when the state of the system is inside the invariant
set. Recall that the parametarin the swing up law
(19) determines the maximum rate of energy change



—— 6. CONCLUSIONS

by > In this paper, a LPV model of the Furuta pendulum
is derived. Based on this model, a balancing controller
I N is designed using robust predictive control techniques.
The LPV model captures well the nonlinear dynamics of

i the system and allow the use of invariant set theory to
. . accurately characterise the region of the state space in
- which the balancing controller is effective. As a result,

o s the switching condition between swing up and balancing
controllers can be determined systematically. In practice,
the pendulum may approach the upright position with
varying speed and the speed of the rotating arm may

Fig. 3. Simulation with initial condition X =
[-20 068 —0.07/, a (blue, solid), ae (red,

dashed) also vary. Based on this physical insight, the speed of
the rotating arm is chosen as gain scheduling variable.
It is shown that this strategy is effective in achieving
S e a more consistent swing up and balancing behaviour
° /\ /’M [/ : C “//;’::; which is not sensitive to the performance of the swing up
P+ prmeedelm s ¢ 7 ¢ controller. The experimental evaluation of the proposed
£ o = control strategies is currently in progress.
0 1 2 3Pendulum Speed (rad/s) 6 7 8
5 "\, ‘ /V) ‘ ‘ ‘ ‘
2 0/\(” %\‘\/‘ ‘ \/
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