
OVERLAPPING DECOMPOSITIONS OF LARGE–SCALE
DISCRETE–EVENT SYSTEMS

Aydın AYBAR andAltu ğ İFTAR

Department of Electrical and Electronics Engineering
Anadolu University

26470 Eskişehir, Turkey

aaybar@anadolu.edu.tr aiftar@anadolu.edu.tr

Abstract: Overlapping decompositions and expansions of discrete–event systems (DESs)
modeled by automata or formal languages are considered. Inclusion principle for such
systems is defined. A decentralized supervisory controller design approach is then
introduced. To apply the proposed approach, the automaton of the given DES is first
decomposed overlappingly and expanded to obtain disjoint subautomata. A controller is
then designed for each disjoint subautomaton. These controllers are then combined to
obtain a controller for the expanded DES. In the final phase, a controller for the original
DES is obtained from the controller determined for the expanded DES. It is shown that,
for large–scale DESs, the proposed approach requires very little computation to design a
controller compared to a centralized design approach.Copyright c� 2002 IFAC

Keyword: Large–scale systems, discrete–event systems, decentralized control, supervisory
control, automata, formal languages

1. INTRODUCTION

Many systems, such as manufacturing systems, com-
munication systems, and transportation systems, may
be described by occurrence of certain events. Two
most common modeling approaches for these sys-
tems, which are commonly named as discrete-event
systems (DESs), areautomata and formal languages
(Ho, 1992; Cassandras and Lafortune, 1999). Ra-
madge and Wonham (1989) initiated supervisory con-
trol theory for such systems. Decentralized supervi-
sory control is investigated in (Ramadge and Wonham,
1989) by using partial observations and in (Lin and
Wonham, 1990) and in (Rudie and Wonham, 1992) by
using local controllers for global constraints. Mixed
centralized/decentralized approaches have also been
considered (Cho and Lim, 1999).

In this work, we consider the problem of designing
a supervisory controller for a DES, modeled by an
automaton or equivalently by a language, to avoid

deadlock. A deadlock is said to occur in a DES if
the system reaches to a state such that no event can
occur. This problem is a special case of designing a
controller to avoid certain states. The dual problem of
designing a controller to lead the DES to certain states
could also be considered (Ramadge and Wonham,
1989). Deadlock avoidance for flexible manufacturing
systems is studied by Banaszak and Krogh (1990).
Deadlock problem is also dealt for DESs modeled
by Petri nets (e.g., see Aybar andİftar, 2001, and
references there in).

Here, we introduce an alternative approach to design
decentralized supervisory controllers. Our approach is
based onoverlapping decompositions. The overlap-
ping decompositions approach was first introduced by
Ikeda andŠiljak (1980) for the case of continuous-
state systems (systems described by differential or
difference equations with continuous state variables).
This approach was then used for DESs byİftar and
Özgüner (1998), who considered a state vector mod-

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

eling, and by Aybar anḋIftar (2002), who considered
Petri net modeling. To our best knowledge, this ap-
proach is used here for the first time for DESs modeled
by automata or formal languages.

In the automata approach, a DES is modeled by an
automaton, which is represented as a tuple� �
����� �� ���. Here,� is the set of states,� is the
set of events,� � � � � � � is a partial function,
called thetransition function, defined for some� � �
and � � �, and�� � ���� �� denotes the next state
when event� occurs at state� (���� �� is defined if and
only if event� may occur at state�). Finally, �� � �
denotes the initial state of the system. The same DES
can equivalently be represented by a language� �
�� � �� � ���� ��� is defined� where�� is the set
of all finite strings of elements of� plus the empty
event�, and� � �� � � � � is an extension of
� � ���� � defined above.

The elements of� can be decomposed into two par-
titions as controllable and uncontrollable events,� �
�� � ���. Here,�� is the set of controllable events
and��� is the set of uncontrollable events. Elements
of �� can be disabled at any time whereas elements of
��� can not be disabled.

2. INCLUSION PRINCIPLE

Inclusion principle provides the theoretical framework
for controller design using overlapping decomposi-
tions (Ikeda anďSiljak, 1986). In this section, we will
extend this principle to DESs modeled by automata or
formal languages.

Let us consider two systems	 and �	, where	 is
defined by the automaton� � ����� �� ���, or equiv-
alently by the language� � �� � �� � ���� ��� is
defined�, and �	 is defined by the automaton
�� � � ��� ��� ��� ����, or equivalently by the language
�� � ��� � ��� � ������ ���� is defined�.

Definition 1: �	 includes 	, if there exist transforma-
tions� � �� � � and	 � � � �� which satisfy the
following conditions.

(i) ��	���� � ��
� � �
(ii) ��� � 	����
(iii) for any �� � ������ ����, �� � ���, if ��� � ������� ���,

��� � ���, then there exists an� � �� such that
�� � ���� ��, where� � ����� and�� � ������.

(iv) for any� � ���� ���, � � ��, there exists�� � ���

such that�� � ������ ����, where� � �����.

We have the following two results.

Theorem 1: Suppose that�	 includes	 and that �	
avoids the states�� � ��� � ��. Then	 avoids the
states� � �� � �, where�� � �� �� �� � ����.

Proof: Suppose there exists� � �� such that� �
���� ��� � ��. Then, by (iv) of Definition 1, there
exists�� � ��� such that�� � ������ ����. Since �	 avoids

the states in���, we must have�� � �� � ���. Then,
since� � �����, � � �� �� � ���� � � ���, which is
a contradiction. �

Theorem 2: Suppose that�	 includes 	 and that
for any �� � ��, there exists��� � ��� such that
������� ������ ����� � ��� � ��. Then for any� � �, there
exists�� � �� such that����� ���� ���� � �� � �,
where�� � �� ����.

Proof: Immediately follows from (iii) of Definition 1.
�

The first result, Theorem 1, can be used in designing
controllers to avoidmarked states, � � ��, where the
second result, Theorem 2, can be used in designing
controllers to lead a DES to marked states.

3. OVERLAPPING DECOMPOSITIONS AND
EXPANSIONS

In this section we consider overlapping decomposi-
tions and expansions of DESs for the purpose of de-
centralized supervisory controller design. Here, we
propose obtaining an overlapping decomposition of
a DES using the topological structure of its automa-
ton. In our approach,overlapping subautomata of an
automaton are first identified by examining the topo-
logical structure of the given automaton. These subau-
tomata are identified such that the only interconnec-
tion between the subautomata are through the over-
lapping part, i.e., no event should connect two states
in different subautomata, unless one of these states is
in the overlapping part of the two subautomata. As
an example, the automaton shown in Figure 1a can
be decomposed into two overlapping subautomata as
shown in Figure 1b.

Once an overlapping decompositon of the original au-
tomaton is obtained, in order to obtain disjoint sub-
automata, we expand the overlappingly decomposed
automaton as follows:

i) A state or an event in the overlapping part of

 subautomata is repeated
 times and each re-
peated state/event is assigned to a different sub-
automaton. All repeated events corresponding to
a controllable (uncontrollable) event are taken to
be controllable (uncontrollable).

ii) Two uncontrollable events are added between
any two repeated states, such that when such an
event occurs the state changes from one repeated
state to the other.

iii) If the inital state is in the overlapping part of
the original automaton, then the initial state of
the expanded automaton can be chosen as any
one of the repeated states of the original intial
state. Otherwise, the inital state of the original
automaton is chosen as the inital state of the
expanded automaton.

Fig. 1. a) Original automaton b) Overlappingly decomposed automaton c) Expanded automaton

As a result of this procedure, an expanded automaton,
which consists of� disjoint subautomata, is obtained
from an original automaton which was decomposed
into � overlapping subautomata. As an example, the
overlappingly decomposed automaton shown in Fig-
ure 1b is expanded to the automaton shown in Fig-
ure 1c, where the states�� and �� and the event��
are repeated and new events,���, ���, ���, and ���,
are introduced. The initial state��� of the expanded
automaton may be chosen either as��� or ��� .

To identify the sets of states and events of the ex-
panded automaton, we note that each state/event of
a subautomaton corresponds to a state/event of the
original automaton. The set of states of the expanded

automaton is given by��
�
� �������, where�� is

the set of states of the��� subautomaton. For the ex-
ample shown in Figure 1c,�� � ���� � �

�
� � ��� ��� ���

and �� � ���� � �
�
� � �	� �
� ���. The set of events

of the expanded automaton, on the other hand, is

given by ��
�
� �� � 	�. Here, �� � �������, where

�� is the set of events of the��� subautomaton
and 	� is the set of additional events introduced be-
tween the repeated states. For the example shown
in Figure 1c,�� � ����� ��� ��� ��� �	� �
� ���, �� �
����� ��� �� ���� ���� ���� ����, and 	� � ����� ���� ����
����. For the original automaton shown in Figure 1a,
we assume that�
 and��� are uncontrollable events.
Then���� � ��
� and���� � ����� are obtained
(��� � �� � ���� and��� � �� � ����). Therefore,
���� � ��
� ���� � 	� is obtained for the expanded
automaton shown in Figure 1c.

To describe the transition function for the expanded
automaton, let��� denote the set of states in the
expanded automaton which correspond to the state�
in the original automaton and���� denote the set of
events in the expanded automaton which correspond
to the event� in the original automaton. Then, define
the transformations��� � ��� � and�� � �� � �
such that� � ������� �� �� � ���� and
� � ������ �� �� � ���. Now, the transition
function of the expanded automaton,��, is defined as
follows:

� If �� � ��,

������ ��� �

����
���

����������� �������� � � �����
if �� and�� belong to the same
subautomaton

not defined� otherwise

Here,� ���� is the set of states which belong to
the same subautomaton as��.

� If �� � 	�,

������ ��� �

�
���� if �� is introduced from�� to �� �

not defined� otherwise

The disjoint subautomata of the expanded automa-
ton are described by tuples�� � ������� ���
��� �, for some��� � ��, where�� � �� ��� � �� is
defined as follows:

����� �� �

�
����� ��� if � � �� and� � ��

not defined� otherwise

Now, let 	 denote a DES, to be called theorigi-
nal discrete-event system (ODES), defined by the au-
tomaton� � ����� �� ���, or equivalently by the
language� � �� � �� � ���� ��� is defined�.
Also let �	 , to be called theexpanded discrete-event
system (EDES), be defined by the automaton�� �
� ��� ��� ��� ����, or equivalently by the language�� �
��� � ��� � ������ ���� is defined�, where �� is obtained
by expanding� as explained above. To show that
�	 includes	, we first introduce the following two
results.

Lemma 1: Let �� � ������ ���� � ��, for some�� � ���,
and ��� � ������� ��� � ��, for some��� � ���. Then,
there exists� � �� such that�� � ���� ��, where
� � ������ and�� � �������.

Proof: If ��� � �, then� � � satisfies the required
relation. Thus, suppose that��� �� � and let ��� �
������ ���. Initialize � � � and do the following for
� �
� �� �
:

� If ��� � 	�, skip to next�.
� If ��� � ��, suffix�������� to �.

It can now inductively be shown that���������� ����
� ���� �������. �

Lemma 2: Let � � ���� ��� � �, for some� � ��.
Then there exists�� � ��� such that�� � ������ ���� �
���.

Proof: If � � �, then�� � � satisfies the required rela-
tion. Thus, suppose that� �� � and let� � ���� ��.

Also define��
�
� ���� ��, � �
� �� �
. Initialize

�� � � and do the following for� �
� �� �
:

� If ������ ���� and����� ��� belong to the same sub-
automaton, say to subautomaton�, then suffix
�� � ����� � �� to �� (note that�� is uniquely
defined).

� If ������ ���� belongs to subautomaton�, but����� ���
belongs to the subautomaton� �� �, then there
exists �� � 	� which connects������ ���� to �� �
���������� ��������	 (note that�� is uniquely de-
fined). Suffix�� to ��. Now, ������ ���� and����� ���
both belong to subautomaton�. Thus, suffix�� �
����� � �	 to ��.

It can now inductively be shown that������ ���� � ���.
�

We can now prove the following result.

Theorem 3: �	 includes	.

Proof: Let us define� � �� � � as����� � ������,
for all �� � ��, and	 � �� �� as

	��� �

�
��� � if � � ��
�� , for some�� � ��� � otherwise

It is easy to check that conditions (i) and (ii) of
Definition 1 are satisfied by the above choice of�
and 	 . Furthermore, condition (iii) is satisfied by
Lemma 1 and condition (iv) is satisfied by Lemma 2.

�

Now, using Theorems 1 and 2, we have the following
results.

Corollary 1: Suppose that�	 avoids the states�� �
��� � ��. Then	 avoids the states� � �� � �,
where�� � � � ��� �� � ����.

Corollary 2: Suppose that for any�� � ��, there exists
��� � ��� such that������� ������ ����� � ��� � ��.
Then for any� � �, there exists�� � �� such that
����� ���� ���� � �� � �, where�� � ��� ����.

4. DECENTRALIZED CONTROL DESIGN

For a DES described by an automaton� � ����� ��
���, or equivalently by the language� � �� �
�� � ���� ��� is defined�, to design a controller to
avoid states� � �� � �, we first define the

following sets:����
�
� �� � � � ���� �� is defined�,

�
�
�
� ��, �
�

�
� �� � � � ���� �� � �
��� �
� �

���� or �� � ��� such that���� �� � �
����, for

� �
� �, �
 � ������

� , �� �

� �� � � � �� �
�� such that���� �� � �
�, and

����
�
�

�
�� � �� � ���� �� � �
� � if � � ��

� � otherwise

Then, a controller which avoids states� � �� is
obtained by disabling events� � ���� at state� � �.
Here, our aim is to avoid deadlock. Thus, we take��

as the set of states at which no event can occur. For
non-triviality, we assume that�� �� �
.

Now, we will introduce a controller design method-
ology, where a controller is first designed for each
disjoint subautomata of the EDES. A controller for
the EDES is then designed by combining these con-
trollers. Using the controller designed for the EDES,
we will then describe a controller for the ODES and
show that this controller avoids deadlock in the ODES.

4.1 Controller design for a subautomaton

We first design a controller for each disjoint subau-
tomaton�, described by�� � ������� ��� �

�
� �, for

each possible initial state��� � ��. A state� � ��

is a possible initial state for��, if � can be the first
state in�� for some event sequence�� � ��. With
some possible conservatism, we will take any state
in the overlapping part as a possible initial state. If
the initial state�� of the ODES is an element of��,
then�� is also taken as a possible initial state for��.
Thus, we first identify��

� � ��, the set of states at
which no event can occur in��. Then,�

�, ��
�, and

����� (for � � ��) are defined similiar to�
,�� and
����. Then the events� � ����� at state� � �� are
disabled.

For the example shown in Figure 1c,��
� � ����,

�

� � ����� ��

� � ���� ���, ������ � �����
������ � ���� ������ � �� for � �� ���� ����, ��

� �
�����, �

� � ���� � ���, �

�
� � ���� � �	�, ����	� �

�����, and����
�
�� � ����� (����� � �, for � ��

���� � �	�).

4.2 Controller design for the EDES

Once a controller is designed for each subautomaton
as described above, a controller is obtained for the
expanded automaton (equivalently for the EDES) by
disabling any event�� � ������ at �� � ��, where the set
������ is obtained simply as������ � ������, where�
indicates the subautomaton which the state�� belongs.

For the example shown in Figure 1c,������� �
����

�
�� � �����, ������ � ������ � ����, ������ �

������ � ����, ����	� � ����	� � �����, and
������ � �, for �� �� ���� � ��� ��� �	�.

4.3 Controller design for the ODES

Once a controller is designed for the EDES, a con-
troller is obtained for the ODES by disabling any event
� � ���� at � � �, where the set���� is obtained as

���� � �

�
� �

�������

������

	

 � � � �

where, for� � ���,����
�
� �� � �� � ���� � ��.

For the example shown in Figure 1a,����� �
�� ������� � �������� � ��� � ������ � �, ����� �
�� ������� � ������� � ����,����� � �� ������� �
������� � ����, ���	� � �� ����	�� � �������� �
�����, and���� � �, for all other� � �.

Now, we present the following result.

Theorem 4: The controlled EDES includes the con-
trolled ODES.

Proof: The proof is similar to the proof of Theorem 3,
with the same� and	 . �

We can now present the following result.

Theorem 5: The controller designed as above for the
ODES avoids deadlock in the ODES.

Proof: Let���� denote the set of indices of the subau-
tomata to which� � � belongs. Suppose that no event
can occur in the ODES (i.e., deadlock occurs) at state
� � �. Then, by the expansion procedure indroduced
above, no event can occur in�� at state��� � ��,
for all � � ����. This implies that,��� � ���,
where ��� � �� denotes the set of states avoided
by the controller obtained for the EDES. Therefore,
� �� ��� ��� ����, which means that� � ����� ���
����. The desired result now follows from Theorems 4
and 1. �

Before concluding this section, we note that the con-
trolled ODES may be described by the language
�� � �� � � � ����� �� ������������ �����
� �
�
� �� � ������, where����� denotes the�� event
in �, ���� denotes the number of events in�, and
������� is the prefix of����� in � (i.e., ����� �
������������, � �
� �� � ����, with ����� � �).

5. COMPUTATIONAL COMPLEXITY

In this section, we will compare the computational
complexity of the proposed decentralized controller
design approach to the computational complexity of
the centralized design. To design a controller for a
DES, described by an automaton� � ����� �� ���,
or equivalently by the language� � �� � �� � ����
��� is defined�, one first needs to identify the sets��,
�
 and��. To identify these sets, all non-repeating
event sequences starting from the initial state must
be followed. Therefore, computational complexity of
controller design for� is proportional to the number
of non-repeating sequences in�.

To determine the order of the number of non-repeating
event sequences in a large-scale DES, let us consider
the systems described by ladder automata shown in
Figure 2. Let
 � ��� denote the number of states.
Note that, for the ladder automata considered, the
number of events,���, increase proportionally with

. Table 1 shows the number of non-repeating event
sequences,��, of the
-state ladder automaton, for
upto
 � �. It is seen that��, thus the computational

Fig. 2. Ladder automata.

Table 1: Number of non-repeating event
sequences for the ladder automata

� ��� �� �������
2 1 1 –
3 3 3 3
4 5 6 2
5 7 11 1.83
6 9 19 1.78
7 11 32 1.68
8 13 53 1.66
9 15 87 1.64
10 17 142 1.63
11 19 231 1.63
12 21 375 1.62
13 23 608 1.62
14 25 985 1.62
15 27 1595 1.62
16 29 2582 1.61
17 31 4179 1.61
18 33 6763 1.61
19 35 10944 1.61
20 37 17709 1.61

complexity of controller design, increases exponen-
tially (with base� �
�) with
.

Therefore, to compare the computational complexity
of the proposed design approach to the computational
complexity of the centralized design, let us consider
a DES with
 �
 states. Let us assume that the
automaton of this DES is overlappingly decomposed
into 12 subautomata, where each subautomaton has
10 states. We also assume that, for each subautomaton,
there exists 5 states which were in the overlapping part
before the expansion. Therefore, for each subautoma-
ton, we take five possible initial states. We assume
that the number of events in each subautomaton and in
the original automaton are proportional to the number
of states,
, of that automaton, and that the number
of non-repeating event sequences in each automaton
increases exponentially (with base�) with
. There-
fore, the computational complexity of the controller
design for each subautomaton is proportional to� �
��� and the computational complexity of controller
design using the proposed approach is proportional to

� � � � ��� � ����. On the other hand, since the

ODES has 100 states, the computational complexity
of designing a centralized controller is proportional to
����. Therefore, it is��������� � ���� times
easier and faster to use the proposed controller de-
sign approach, compared to a centralized design. For
� �
�, this ratio is equal to��
�
�
.

6. CONCLUSIONS

We have introduced the inclusion principle for DESs
described by automata or formal languages. Using this
principle, we have proposed a decentralized supervi-
sory controller design approach.

As discussed in Section 5, for DESs which involve
many states and events, the proposed approach re-
quires very little computation to design a controller
compared to a centralized design approach. However,
we should note that, controllers designed by this ap-
proach may be conservative compared to centrally
designed controllers. For example, the controller de-
signed using the proposed approach for the system
shown in Figure 1a disables��, �� and���. However, if
we use a centralized design approach, we can find that
disabling only�� and�� is sufficient to avoid deadlock.
This conservatism (or suboptimality) is, however, the
usual price to pay for the ease obtained in the design
stage. This trade off is also well known in the case
of continuous-state systems (Ikeda,et al., 1981; İftar,
1993).

Here we presented only controller design to avoid
deadlock. The proposed approach, however, can di-
rectly be extended to the more general case of de-
signing controllers to avoid certain marked states. Al-
ternatively, our approach may also be used to design
controllers to lead the given DES to marked states.
Where, in the latter case, one should obtain the con-
troller for the EDES and the ODES so that Theorem 2
can be used instead of Theorem 1 in proving that the
controller for the ODES leads the ODES to the desired
states.

7. REFERENCES

Aybar, A. and A. İftar (2001). Decentralized con-
trol design for interconnected discrete–event sys-
tems. In:Preprints of the 9th IFAC Symposium
on Large Scale Systems. Bucharest, Romania.
pp. 415–418.

Aybar, A. and A.İftar (2002). Overlapping decompo-
sitions and expansions of Petri nets.IEEE Trans-
actions on Automatic Control, 47, 511–515.

Banaszak, Z. A. and B. H. Krogh (1990). Dead-
lock avoidance in flexible manufacturing sys-
tems with concurrently competing process flows.
IEEE Transactions on Robotics and Automation,
6, 724–734.

Cassandras, C. G. and S. Lafortune (1999).Intro-
duction to Discrete Event Systems. Kluwer Aca-
demics. Norwell, MA.

Cho, K. H. and J. T. Lim (1999). Mixed cen-
tralized/decentralized supervisory control of
discrete-event dynamic systems.Automatica,
35, 121–128.

Ho, Y. (Ed.) (1992).Discrete Event Dynamic Systems:
Analyzing Complexity and Performance in the
Modern World. A Selected Reprint Volume, The
Institute of Electrical and Electronics Engineers,
Inc. New York.

İftar, A. (1993). Overlapping decentralized dynamic
optimal control.International Journal of Control,
58, 187–209.

İftar, A. andÜ. Özgüner (1998). Overlapping decom-
positions, expansions, contractions, and stability
of hybrid systems.IEEE Transactions on Auto-
matic Control, 43, 1040–1055.

Ikeda, M. and D. D.Šiljak (1980). Overlapping de-
compositions, expansions, and contractions of
dynamic systems.Large Scale Systems, 1, 29–38.

Ikeda, M. and D. D.̌Siljak (1986). Overlapping decen-
tralized control with input, state, and output in-
clusion.Control Theory and Advanced Technol-
ogy, 2, 155–172.

Ikeda, M., D. D.Šiljak and D. E. White (1981). De-
centralized control with overlapping information
sets.J. Optimization Theory and Applications,
34, 279–310.

Lin, F. and W. M. Wonham (1990). Decentralized con-
trol and coordination of discrete-event systems
with partial observation.IEEE Transactions on
Automatic Control, 35, 1330–1337.

Ramadge, P. J. G. and W. M. Wonham (1989). The
control of discrete event systems.Proceedings of
the IEEE, 77, 81–98.

Rudie, K. and W. M. Wonham (1992). Think glob-
ally, act locally: decentralized supervisory con-
trol. IEEE Transactions on Automatic Control,
37, 1692–1708.

