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Abstract: Limited authority of actuators implies that real control signals are always
constrained, and in almost all cases, this produces a degradation in the performance of
the system. It is thus of practical importance to understand the fundamental aspects
of this performance degradation. In this paper, we take an initial step by proposing a
way to characterize the performance limitations that arise in closed-loop stable linear
systems due to the constraints on the magnitude of the control signal. Specifically,
we evaluate the cost associated with the constraints via the L2 norm of the tracking
error of a constrained limiting optimal compensator.
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1. INTRODUCTION

The issue of limitations in control has given rise
to on-going interest since Bode’s original work in
the 1940s (Bode, 1945). This issue is central to
any feedback system since it reveals what can and
cannot be achieved given the system’s structural
and dynamical characteristics.

The tools for analyzing the limits of performance
for unconstrained linear systems include loga-
rithmic sensitivity integrals and limiting linear
quadratic optimal control. The first approach has
been extensively developed and reviewed, for ex-
ample, in (Serón et al., 1997), while the second
has been studied, for example, by (Qiu and Davi-
son, 1993). These two apparently independent
tools have also recently been shown to be inti-
mately related (Middleton and Braslavsky, 2000).

In this paper, we propose a way to characterize
the performance limitations in closed-loop stable
linear systems that arise due to constraints on
the magnitude of the control signal. In our ap-
proach, we evaluate the cost associated with the
constraints using the value of the L2 norm of the

tracking error of a constrained limiting optimal
compensator when a unit step reference is applied.
To solve this problem, we exploit the relationship
between limiting linear quadratic optimal control
problems and open loop inverse control. We focus
on SISO linear systems.

The rest of the paper is organized as follows.
In section 2, we review the so called “cheap”
limiting optimal control problem and the use of
the optimal cost as a measure of performance
limitations. In section 3, we utilize this key idea
to evaluate the L2 norm of the tracking error
for a step input in a constrained cheap control
compensator. In section 4, we present examples
to illustrate the method. Finally, in section 5, we
draw conclusions.

2. CHEAP CONTROL FUNDAMENTAL
LIMITATIONS

Allowing arbitrarily large control signals is obvi-
ously impractical. However, the fact that, even
under these conditions, the cost function can-
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not be reduced to zero exposes the presence of
fundamental limitations that are related to the
structure and dynamics of a system. Thus, by
not restricting the control effort (Cheap control),
the cost obtained is a benchmark against which
other more realistic scenarios can be judged. In
this section we review properties of cheap optimal
control for linear systems. We will use this as a
basis for the analysis of the constrained case in
section 3.

Consider a linear time-invariant system:

ẋ(t) = Ax(t) + Bu(t), x ∈ R
n , u ∈ R

y(t) = Cx(t) , y ∈ R , x(0) = x0,
(1)

which is assumed to be stabilizable and de-
tectable, and the cost functional

Jε =

∫ ∞

0

(
yt(t)y(t) + ε2ut(t)u(t)

)
dt . (2)

The cheap control problem seeks the state feed-
back control u that minimizes Jε as ε tends to
zero.

The structure of the solution to the cheap control
problem is better appreciated if we make a change
of variables x → [ηt zt]t taking the system into
the normal form or “zero dynamics” form (Isidori,
1995):

η̇ = A0η + B0z1

ż = A1η + A2z + B1u

y = z1 .

(3)

In (3), η ∈ R
m, z = [z1, z2, . . . , zn−m]t ∈

R
n−m, and the eigenvalues of A0 are the m

zeros of the system transfer function H(s) =
C(sI−A)−1B. The η-subsystem is called the zero-
dynamics subsystem. With the system matrices in
the form (3), and considering ε > 0, the solution
P (ε) > 0 can be computed, in the form of a series
in ε, using the Riccati equation associated with
(2):

AtP (ε) + P (ε)A + CtC − 1

ε2
P (ε)BBtP (ε) = 0 . (4)

Once P (ε) is obtained, taking the limit as ε → 0
, the cheap control cost is found to be (Serón et
al., 1999)

J � lim
ε→0

Jε =

∫ ∞

0

y2(t)dt = η(0)tP0η(0) , (5)

where P0 is a positive semi-definite solution of

At
0P0 + P0A0 = P0B0Bt

0P0 . (6)

For simplicity, we assume that the zeros of
(3) (i.e., the eigenvalues of A0) are either all
minimum phase or all non-minimum phase. If
the zeros are all minimum phase, the solution
of (6) is P0 = 0, and therefore the cost (5) is
zero. On the other hand, if the zeros are all non-
minimum phase then −A0 is Hurwitz and (6) has
a unique positive definite solution P0 > 0 (note
that (A0, B0) is controllable, because the system
(3) is stabilizable and −A0 is Hurwitz). Thus, the

cheap control cost (5) is nonzero in this case if the
initial zero-dynamics state is different from zero.

When ε > 0 is small, the optimal control solution
has high gain and induces a two-time-scale de-
composition in the closed-loop system. To simplify
the analysis, suppose, for the moment, that the
system (3) has relative degree one, i.e., z = z1 = y
and B1 �= 0 is a scalar in (3). Then the optimal
control is

uopt
ε = −1

ε
[y + Bt

0P0η + O(ε)] (7)

, where limε→0
O(ε)

ε
is a nonzero finite real number.

The closed-loop system is then in the standard
singular perturbation form:

η̇ = A0η + B0y ,

εẏ = −B1(y + Bt
0P0η) + O(ε) .

(8)

For a slow-fast analysis (Kokotović et al., 1986)
we set ε = 0 in the second equation of (8) and ob-
tain the output as a function of the zero-dynamics
state, i.e., y = −Bt

0P0η. Then, substituting in the
η-equation, we find that the slow subsystem of (8)
is the “optimal zero-dynamics subsystem”

η̇ = −P−1
0 At

0P0η . (9)

These slow dynamics evolve in the singular hy-
perplane

y + Bt
0P0η = 0 ,

while the fast dynamics represent the convergence
of y + Bt

0P0η to zero.

In the limit as ε → 0, no matter what the initial
condition (η(0), z(0)) is, the state (η(0+), z(0+))
is on this singular hyperplane, and evolves inside
this subspace thereafter. The initial fast response
of the state is singular and so is the control that
takes the state from the initial condition into the
hyperplane (Francis, 1979). Once the state is on
the hyperplane, it presents a slow evolution given
by the dynamics of (9) with y = −Bt

0P0η.

For systems with higher relative degree, a similar
analysis shows that the singular hyperplane is
given by (Saberi and Sannuti, 1987)

[Bt
0P0 1 0 . . . 0] [ηt zt]t = 0 . (10)

For the minimum phase case this singular hyper-
plane is simply the origin.

Cheap Tracking Performance

Consider now the problem of regulating the out-
put to a constant setpoint r starting from zero ini-
tial state. Define the error variables e(t) = y(t)−r,
η̃(t) = η(t)− η̄, z̃i(t) = zi(t)− z̄i, i = 2, . . . , n−m,
v(t) = u(t)− ū, where the “bars” on the variables
denote their steady state values corresponding to
the setpoint r. Then the cheap constant setpoint
tracking problem is equivalent to the cheap reg-
ulator problem described above with the error
variables replacing the original variables and with
cost

J � lim
ε→0

∫ ∞

0

(e2(t) + ε2v2(t))dt .



From (5) we know that the optimal value of J is

J = η̃(0)tP0η̃(0) , (11)

where P0 is the solution of (6). Suppose that
all the zeros are nonminimum phase. Then A0 is
nonsingular and the initial condition for the zero-
dynamics subsystem is η̃(0) = A−1

0 B0r. Using this
value in (11), and assuming r = 1, we obtain

J = 2 traceA−1
0 = 2

m∑
i=1

1

qi
. (12)

where qi, i = 1, . . . ,m, are the nonminimum
phase zeros of the system. The above result,
obtained by Qiu and Davison (1993), says that the
smallest achievable L2 norm for the tracking error
(i.e., in the limit as ε → 0) is larger the closer
the nonminimum phase zeros are to the imaginary
axis.

We end this section with a review of the asymp-
totic input-output properties of the cheap track-
ing controller (Kwakernaak and Sivan, 1972). Let
the transfer function of the system (1) be

G(s) = α

∏m

i=1
(s − qi)∏n

i=1
(s − pi)

, α �= 0 . (13)

The tracking controller that achieves zero steady
state error is

u(t) = −Kεx(t) + H−1
c (0)r , (14)

where Kε =
1

ε2
BtP (ε) is the optimal feedback

gain corresponding to the solution of (4), and
Hc(s) = C(sI − (A − BKε))−1B. Using (14) in closed
loop with the system (1), and taking ε → 0,
the closed-loop transfer function T (s) from the
reference R(s) to the output Y (s) approaches

T (s) ≈ 1

χn−m( s
ω0

)

m∏
i=1

− s

qi
+ 1

s

qi
+ 1

, ω0 =

(
α2

ε

) 1
2(n−m)

,

(15)

where χn−m is a Butterworth polynomial of
order n − m and radius 1, ω0 is the asymptotic
radius of the Butterworth configuration of the
n − m closed loop poles that tend to infinity,
and qi, i = 1, . . . , m, are the zeros of the open
loop transfer function (13), which are assumed to
be non-minimum phase. In (15), we can see the
two-time scale behavior of the closed loop system
previously mentioned.

3. CHEAP CONTROL PERFORMANCE
LIMITATIONS OF INPUT CONSTRAINED

LINEAR SYSTEMS

We next proceed to the case of performance
limitations when the input is constrained. The
fundamentally important roll played by input
constraints (both amplitude and rate) has been
eloquently explained elsewhere— see for exam-
ple (Stein, 1989). Our aim here is to give addi-
tional theoretical support to the understanding of

this issues. We propose as a measure of the per-
formance limitations in the presence of constraints
on the magnitude of the control the value of the
L2 norm of the tracking error when a unit step
output reference is applied to a saturated limiting
optimal compensator.

Specifically, we propose as a measure of perfor-
mance for open-loop stable systems of the form (1)
subject to the constraint |u(t)| ≤ ∆∀t, the value
of the cost function defined as

J � lim
ε→0

∫ ∞

0

e2(t) + ε2u(t)2(t)dt, (16)

when a unit step reference, i.e., r(t) = 1(t), is
applied with the system initially at rest, using the
control law

u(t) = sat∆(−Kx(t) + H−1
c (0)r(t)),

where

sat∆(z) �




∆ if z > ∆ ,

z if |z| ≤ ∆ ,

−∆ if z < −∆ .

and
K = lim

ε→0
Kε. (17)

To evaluate the cost we assume that input satu-
ration occurs in the first part of the evolution of
the system:

Assumption 1. (A.1) The control of the closed-
loop system switches between the saturation levels
during a period of time [0+, tsat) and thereafter it
never reaches the saturation levels again.

Note that this is a reasonable assumption given
the high gain nature of the cheap controller.

Under assumption (A.1), the cost(16) can be sep-
arated into two components; one corresponding
to the period of time where the control saturates
and the other corresponding to the period of time
starting when the control leaves saturation until
it reaches the final steady state value u(∞), i.e.,

J = lim
ε→0

∫ tsat

0

e2(t)+ε2u2(t)dt+ lim
ε→0

∫ ∞

tsat

e2(t)+ε2u2(t)

(18)

We next evaluate each of the two components.

Cost during saturation

In order to evaluate the first term of the cost (18),
we shall use the asymptotic properties of the
cheap tracking controller, specifically the closed-
loop transfer function (15), to find an input-
output equivalent open-loop controller.

We see that in order to obtain (15) by an open-
loop equivalent controller Q(s), it must satisfy
G(s)Q(s) = T (s), that is, this controller should
essentially approximate the inverse of the system.
Hence, the open-loop controller for the system
(13) equivalent to the cheap controller (14) (i.e.,
the one that achieves the same closed-loop trans-
fer function (15)) has the form

Q(s) = G−1
MP (s)F (s) , F (s) =

1

χn−m( s
ω0

)
, (19)



where χn−m is as in (15), and GMP (s) has the
same poles of G(s) and the reflection through the
imaginary axis of the non-minimum phase zeros
of G(s) (recall that to highlight the methodology,
we have assumed that all the zeros of G(s) are
non-minimum phase).

Using the equivalent open-loop controller, the
problem of the saturated limiting optimal com-
pensator can be posed using the scheme shown in
figure 1, i.e., this scheme reproduces the control
u = sat∆(−Kx(t)+H−1

c (0)r(t)). In this scheme, Q(s)

−

r(t) û(t) u(t) y(t)
q∞ G(s)sat∆(·)

Q(s)−1 − q−1
∞

Fig. 1. Anti-windup open-loop control.

is the bi-proper transfer function (19), and q∞ is
its high frequency gain. It is easy to show that
when the system is not saturated, the loop in
figure 1 reduces to Q(s).

From figure 1, we see that after applying a unit
step signal in r(t), the control u(t) typically sat-
urates since the gain q∞ is usually large for small
values of ε. We thus assume, without loss of gener-
ality, that u(0+) = ∆. The control will then switch
between ∆ and −∆ until t = tsat when it leaves
saturation to continue with a linear evolution. The
crucial step in this analysis is then to evaluate
the switching times during the saturated regime.
For clarity of exposition, we illustrate the ideas by
taking the case of first and second order systems
with, at most, one right half plane zero. For these
cases, we have only one switch in the saturation
regime. In this case, during the saturation period
[0+, tsat), û(t) (i.e., the signal at the input of the
saturation function, see figure 1) is given by

û(t) = q∞(1 − L−1{(Q(s)−1 − q−1
∞ )

∆

s
}) , (20)

where L−1{·} denotes the inverse Laplace trans-
form operator. In addition, the control signal
leaves saturation when the following condition is
satisfied

û(tsat) = ∆ . (21)

Using (20) and (21) we can determine the time
instant tsat at which the control leaves saturation.
Also from figure 1, we see that the tracking error
during the saturation interval can be calculated
as

e(t) = L−1{G(s)
∆

s
} − 1 .

With the expressions for e(t) and tsat, all the
ingredients to evaluate the first term of (18) are
available. After performing the limits and the in-
tegration, we can obtain an analytical expression
for the first term of the cost.

Cost after saturation

Once the control signal leaves saturation, the
problem reduces to the unconstrained cheap con-
trol compensator. To find the associated cost we

will use the properties of the slow evolution of the
cheap control state in the singular hyperplane.

The first step is to recognize that when the sys-
tem leaves saturation, the state is on the singular
hyperplane. This is easy to show by contradiction:
Suppose that the system leaves saturation and
never saturates again, and also that the state
is not on the singular hyperplane. Then as the
control is not saturated the system behaves like
the unconstrained problem, and since the state
is not on the singular hyperplane there will be a
singularity in the control that will make the con-
trol saturate. Therefore, once the control leaves
saturation, the state must be on the singular hy-
perplane.

Consequently, once the control leaves saturation
at t = tsat, the state of the system follows the
same trajectories that the unconstrained state
would have followed if it had started from the
initial condition [η̃(tsat)z̃(tsat)]′. Hence, the cost
after saturation is∫ ∞

tsat

e2(t)dt = η̃(tsat)
′P0η̃(tsat), (22)

where η̃(tsat) is determined from
[
η̃(tsat)
z̃(tsat)

]
= e−Antsat

[
η̃(0)
z̃(0)

]
+

∫ tsat

0

e−An(t−τ)Bn∆dτ ,

(23)
where

An �
[
A0 [B0 0 0]
A1 A2

]
Bn �

[
0
B1

]
.

Equation (22) allows us to complete the calcula-
tion of the cost by evaluating the second term of
of the right hand side of (18).

For systems with only one non-minimum phase
zero, the evaluation of the cost once the system
leaves saturation can be considerably simplified
since it is not necessary to solve equation (23).
The procedure is explained in the following.

If the system has only one non-minimum phase
zero the singular hyperplane becomes a line in Rn.
Indeed from (10) and (3) we see that

˙̃η = (A0 − B0Bt
0P0)η̃ ,

z̃1 = −Bt
0P0η̃ ,

z̃2 = −Bt
0P0(A0 − B0Bt

0P0)η̃ ,

z̃3 = −Bt
0P0(A0 − B0Bt

0P0)2η̃ ,

.

.

.

z̃n−1 = −Bt
0P0(A0 − B0Bt

0P0)n−2η̃ .

Once the system leaves saturation, it behaves
like the unconstrained cheap control problem,
and since the singular hypeplane is a line, the
output e = z̃1 after saturation has the same
evolution as the unconstrained output shifted in
time. As a consequence, we can evaluate the cost
after saturation of the constrained cheap control
problem using a partial cost of the unconstrained
cheap control problem as
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Fig. 2. Phase portrait for unconstrained and sat-
urated cheap tracking control.∫ ∞

tsat

e2dt ≈
∫ ∞

t∗

(
1 − L−1

[(− s
q

+ 1

s
q

+ 1

)
1

s

]
dt

)2

=
2

q
e−2qt∗ .

(24)

The approximation in (24) comes from neglect-
ing the high frequency poles in the Butterworth
arrange of (15). The value t∗ is determined from
the condition

L−1
[
G(s)

∆

s

] ∣∣∣∣
tsat

= L−1

[(− s
q

+ 1

s
q

+ 1

)
1

s

] ∣∣∣∣
t∗

.

Comparing (24) with (12) for the case of a single
non-minimum phase zero, we see that the par-
tial cost (24) is smaller than the total uncon-
strained cost (12). However, whereas the transi-
tion to the singular hyperplane is costless in the
unconstrained case, it has a nonzero cost in the
constrained case since the state cannot “jump” to
the singular hyperplane but has a slow evolution
while the control is saturated. The combination
of the two partial costs yields a cost larger than
the unconstrained cost (12), as we will see in the
examples of section 4.

To illustrate the above ideas, figure 2 shows a
simulation result for the second order example
explained in detail in section 4. In this figure, we
see the state trajectory using scheme of figure 1,
and also using unconstrained cheap control. We
next present two examples.

4. EXAMPLES

Example 1 : Consider the following system

G(s) =
1

τs + 1
.

Then, the equivalent open loop cheap controller
is given by

Q(s) =
τs + 1

βs + 1
,

where β =
√

ε. It also follows that,

q∞ =
τ

β
(25)

Q(s)−1 − q−1
∞ =

(τ − β)

τ(τs + 1)
(26)

Using (25) and (26) in (20) we have

û(t) =
τ

β

[
1 − (τ − β)

τ
(1 − e−

t
τ )∆

]
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0
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∆
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τ
τ

Fig. 3. Cost vs. ∆ for example 1

This last expression is valid until tsat which,
using(21), and taking the limit as β → 0 is found
to be

tsat → −τ ln

[
∆ − 1

∆

]
(27)

On the other hand, until tsat the tracking error
is

e(t) = ∆(1 − e−
t
τ ) − 1 (28)

Finally, since the system is minimum phase,
and using (28) and (27), we obtain the following
expression for the cost (18):

J = −τ(1 − ∆)2 ln

[
∆ − 1

∆

]

+
2∆(∆ − 1)

τ

([
∆ − 1

∆

]τ2

− 1

)
− ∆2

2τ

([
∆ − 1

∆

]2τ2

− 1

)

(29)

Figure 3 shows a graphical representation of the
value of the cost (29) as a function of ∆ for
different values of τ . It should be noted that
the set point value of the control signal should
be feasible, i.e., ∆ > 1 for this case.

Note that since this system is minimum phase,
the limiting cheap cost for ∆ → ∞ is zero. Also,
as expected, the faster the plant, then the lower
the cost, since slow plants require more control
effort that contribute to saturation in this case.
However, the relation (29) is not trivial.

Example 2 : Consider the following system

G(s) =
2(1 − σs)

(s + 1)(s + 2)

In this case, the equivalent open loop cheap
controller is given by

Q(s) =
(s + 1)(s + 2)

2(1 + σs)(1 + βs)
.

It then follows that:

q∞ =
1

2σβ
(30)

Q(s)−1 − q−1
∞ =

2 [(σ + β − 3σβ)s + (1 − 2σβ)]

(s + 1)(s + 2)
(31)

Using (30) and (31) in (20) we have that as β → 0

tsat → − ln


1 − σ −

√
(σ − 1)2 + (1 + 2σ)

(∆−1)
∆

1 − 2σ



(32)

The tracking error on the interval [0+tsat) is

e(t) = ∆
[
1 − 2(1 + σ)e−t + (1 − 2σ)e−2t

]
− 1 (33)
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Fig. 4. Cost vs. ∆ for example 2

The value t∗ is given by

t∗ = −σ ln

[
1 − ∆

2
+

∆(1 + σ)

2
e−tsat − ∆(1 + 2σ)

2
e−2tsat

]
(34)

Using (32), (33), (34) and (24) we can evaluate
the cost numerically. The results are shown in
figure 4 for three different positions of the non
minimum phase zero and plot the cost versus ∆.
Note that as ∆ → ∞ the limiting cost approaches
2σ, which is consistent with the results of un-
constrained cheap control. The results shown in
figure 4 give insight into the effect of the input
constrained achievable performance. It is interest-
ing, for instance, to note that a constraint ∆ = 5
(which is five times the steady state input neces-
sary in this case) changes the performance limit
associated with a non minimum phase zero at 10
(σ = 0.1) to be equivalent to the performance
limit achieved without constraints for a non min-
imum phase zero at 5. This illustrates the fact
that, depending on conditions, the effect of input
constraint can swap linear effects due to right
half plane poles or zeros. This is in accord with
intuition.

5. CONCLUSIONS

Under the assumption that the system switches
between the saturation levels only for a certain
period of time and never thereafter, the cost can
be evaluated in terms of two components. The first
component corresponds to the saturation period.
We present a way to evaluate this component
and non trivial analytical expressions are obtained
as a function of the constraint level. The second
term corresponds to the period of time from the
instant the control leaves saturation until the
control reaches its steady state. This cost is zero
for minimum phase systems and different from
zero for non minimum phase systems. For the non
minimum phase case, we give a way to calculate
this cost, which is very simple if the system has
only one non minimum phase zero.

The proposed method seems to be of value in
gaining a deeper understanding of the relationship
between the dynamics of a system and the con-
straints essential at the stage of determining the
authority of the actuator for some applications.
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