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Abstract: This paper presents the closed form of direct kinematics for a class of Stewart 
platform. Algebraic technique is explored to establish the model of a class of Stewart 
platform and the sets of nonlinear polynomial equations are derived. A Modified Dialytic 
elimination method is applied to solve the sets of nonlinear polynomial equations. Finally 
a 24th degree polynomial equation was obtained. This new result has been numerically 
verified by the inverse kinematics. Copyright©2002 IFAC 
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1. INTRODUCTION1 

 
Stewart platform was presented for a few decade 
years. It has high accuracy, sturdiness and capacity 
of loading comparing with serial manipulators. 
Generally, each of these mechanisms consists of two 
platforms, the mobile platform and the base platform. 
In the parallel manipulator of this paper, the mobile 
platform is connected to the base via six identical 
links consisting of a revolute joint attached to the 
ground followed by an actuated prismatic joint that is 
connected to the platform by a revolute joint. Only 
the prismatic joints are actuated (Merlet, 1998). 
 
Griffs and Duffy (1989) investigated a forward 
displacement analysis for 3-3 Stewart platforms by 
geometry method. Merlet (1992) used vector 
technique to obtain a Triangular Symmetric 
Simplified Manipulator. Innocenti and Parenti-
castelli, (1993) solved 5-5 parallel mechanisms with 
respect to triangle technique. Sreenivasan and 
Waldron, (1994) proposed the problem that the 
mobile platform is similar to the base based on 
vector and matrix methods. Analytical techniques 
usually tried to change the sets of original 
multivariate polynomial equations into a high degree 
polynomial  equation  in an unknown by elimination,     
but elimination process is very difficult. At present, 
there are several methods to solve sets of 
multivariate polynomial equations, such as Groebner 
Bases (Buchberger, 1990) method, Wu (Wu, 1984) 
elimination method, and Dialytic (McNamee, 1993; 
Roth, 1993) elimination method. They exist 
computational complexity problem for complex 
practical problems in some extent. How to efficiently 

calculate and how to decrease computational time are 
crucial problems. Although the classical Dialytic 
elimination method has been known for a long time, 
its use has been limited because it is not practical for 
problems with more than two or three unknowns or 
equations of high degree (Roth, 1993). Modified 
Dialytic elimination method attempts to make itself a 
practical computational tool. In this paper, the 
establishment of the coordinates and the construction 
of functions satisfy the decrease of the numbers of 
variables and the most exponents of variables so that 
the sets of multivariate polynomial equations can be 
converted into the type which the modified Dialytic 
elimination could solve. Then the sets of multivariate 
polynomial equations in terms of modified Dialytic 
elimination method were reduced and a 24th degree 
polynomial equation in one unknown was derived. 
Moreover, Extraneous solutions were not introduced 
by taking advantage of the modified Dialytic 
elimination method.  
 
A brief current state of research and the development 
of direct kinematics were introduced in section1. 
Section 2 established the kinematic equations based 
on an algebraic method. Then the sets of nonlinear 
polynomial equations were reduced with respect to 
the modified Dialytic elimination and a 24th degree 
polynomial equations in one unknown was obtained. 
In addition, the result was verified by virtue of the 
inverse kinematics. Finally, the conclusions were 
drawn. 
 
 

2. ESTABLISHMENT OF THE DIRECT 
KINEMATICS 
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For   the direct kinematics of parallel manipulators, 
articular variables can be expressed in   general as a 
nonlinear algebraic function of links . Then have il
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Parallel manipulators that consist of an equilateral 
triangular mobile platform and an equilateral 
hexagonal base platform linked by six extensible 
length links are considered (see Figure 1). A 
reference frame O ,  to the base and a mobile 

frame ,  are attached. The origin is , 
and the axis is the same as the line ; the origin 
is , and the  axis is parallel to line . The 
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The unknowns are the coordinates of position 
vector  in base frame , and the 
orientation cosine of mobile platform relative to the 
base. For convenience, let the set of variables be 
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The sets of kinematic equations can be obtained from 
six  equations  of  link  lengths  and  three  additional 
constrains  due  to  the  orthogonality  of   transform 
matrix : P
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The tool position is located the center of mobile 
platform, and its coordinates are 

. ),,( 321 zrvyrvxrvC +++

 
The point coordinates  Ai, Bi  substitute for the above 
nine equations. Thus, the direct kinematics equations 
can be derived: 
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3. REDUCE THE FUNDAMENTAL EQUATIONS 
 

Let  the  transform   substitute , , 

, u , u , u ,  ,  v ,    for   the   variables   of 

original   equations,  and  , , u , , ,  are 

expressed as linear  functions  with respect to , , 
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The first six equations of (2) can be written as: 
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Because of  and 
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Three equations , ,  can be derived (Huang 
and Wu, 1991; Wu and Huang, 1994): 
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Replace , , with formula (3). , ,  

are  expressed   with   respect  to  u ,    and   y. 

Equations  , ,    with  one  unknown  as 
suppressed are rewritten. The three equations by use 
of  the  modified  Dialytic  elimination  method   are 
solved,    which    homogeneous    equations    taken 
derivative have the same zeros as original equations. 
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For the general quadratics8: 
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The Jacobian matrix J of (7) with respect to 
homogeneous coordinates is:  
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The determinant of this matrix was formed. Then a 
cubic polynomial is as follows: 
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Derivatives of this equation are taken with respect to 
homogeneous coordinates: 
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The condition that equation (10) has a solution is the 
determinant of the coefficient matrix equals to zero. 
Set the determinant of coefficient matrix equal to 
zero. Expand and derive a 24th degree polynomial 
equation in unknown y . Where a express  
is the function with respect to unknown , and the 
most exponent is 2, so the determinant of the 
coefficient matrix is function in terms of . 
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Set W , and obtain 1=
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1u , v  can be solved from formula (12), , v , u  
as well as mid-variables u , ,  can be solved from 
formula (3), and u , , can be solved from 
following  formula: 

1 x 2 2
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In a word, the degree of equation g  is 24th, 
which can be solved and 24 solutions can be obtained. 
Once given the value of unknown , other 
unknowns are uniquely determinate. 
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4. NUMERICAL EXAMPLE AND ANALYSIS  
 
 
4.1 Numerical Example  
 
Let the side length of equilateral triangle of the 
mobile platform be 10, that is 310=r ; the side 

     



length of equilateral hexagon of the base platform 
be 7; the six link lengths be , , 

, , ,  
respectively. The minimum length of link is 10.2, 
and the maximum length of link is 13. In computer 
algebra system Mathematica the three solutions that 
satisfy formula (13) as well as constraint conditions 
(14) can be calculated and obtained. They are as 
follows: 
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Table 1 Real Solutions Satisfying Constraint 
Conditions 

 
  

u1=0.0117244 u2=-0.543086      u3=-0.839595  
v1=-0.482097       v2=0.73255         v3=-0.480576 
x=3.15143            y=-0.549797       z=11.6695 
u1=0.999432        u2=-0.0305947    u3=0.0141561 
v1=0.030394        v2=0.999437       v3=0.0141794 
x=3.15143           y=-0.010176       z=11.6824 
u1=0.0739381      u2=0.528439       u3=0.845745 
v1=0.589428        v2=0.660926       v3=-0.46449 
x=3.15143           y=0.249588        z=11.6797  
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4.2 Analysis   
 
When original equations (2) are converted into (4), 
the sets of solutions are extended, so the solutions 
from formula (11) should satisfy constraint 
conditions (14). In addition, because the top platform 
is above the base,  z , or w , that is 0

| . 
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From formula (11), the sets of multivariate equations 
have 24 complex solutions can be known, and 24 
complex solutions by formula (11), (12), (3), and (13) 
can be easily solved. Because the sets of solutions are 
extended, redundant solutions can be reduced by 
constraint condition (14). Finally, three real solutions 
to satisfy practical problem are obtained. 
 
 

5. CONCLUSION  
 
In this paper, an algebraic method was explored to 
establish the kinematic model of a class of parallel 
manipulators. The establishment of the coordinates 
and the construction of functions made the decrease 
of the numbers of variables and the most exponents 
of variables. In the mean while, the kinematic 
equations could be reduced in terms of a modified 
Dialytic elimination method and a 24th degree 
polynomial equation in an unknown would be 
obtained. Then a close form of direct kinematics was 
performed. The solutions satisfying practical 
problems could be easily obtained. Also, this 
algorithm is very simple comparing with previous 
methods. Moreover, Extraneous solutions were not 
introduced in terms of the modified Dialytic 
elimination method.  
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