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Abstract: This paper presents a method to control the sway of a rotary crane by
using a linear transfer transformation (LTT) model. The LTT model is built and its
parameters are geometrically derived. Optimal control of a rotary crane is presented
using an optimization method of Fletcher-Reeves so that the load has no sway at the
end point of the transfer. The effectiveness of the proposed control method in the
LTT model is demonstrated through simulation and experiments.
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1. INTRODUCTION

Rotary cranes are indispensable in factories, con-
struction sites, harbors and so on. The funda-
mental motions of a rotary crane are rotation,
boom hoisting and load hoisting. The load sway
grows from the centrifugal force that rotary mo-
tion induces. As shipping cost is strongly re-
lated to a ship’s anchorage time, it is desirable
to minimize the anchorage time by immediately
eliminating sway at the end of a load transfer.
Many studies about controlling the sway of a load
of a rotary crane have been published. (Sakawa
and Nakazuni, 1985) applied the open-loop plus
feedback control scheme to let the sway of the
load decay at the end point of transfer. (Bahram
and Bikdash, 1999) developed a state-space model
of the crane from an implicit description with-
out simplifying assumptions, and they designed
a fuzzy controller. (Hino and Su, 1998) used a
nonlinear control theory to reduce the oscillations
of a load. (Yokoyama and Kaneko, 1998) applied

an optimum control theory to control the sway of
a load. But these papers did not consider the con-
dition of simultaneous rotary motion and boom
hoisting motion. Using a rotary crane, (Yamazaki
and Hisamura, 1978) presented the idea of a linear
transfer that makes the crane tip and the load
move on a straight line in the X-Y coordinate by
the simultaneous motions of rotation and boom
hoisting. It is obvious that linear transfer by a
rotary crane uses less space than rotational trans-
fer; in the former, the crane’s load is transferred
from a starting point to an ending point, although
linear transfer is limited to work spaces within 180
degrees per load transfer. However, the problem
of bang-bang minimum time control was the only
problem considered by means of open-loop inputs.
Hence, this paper discusses not only minimum
time control but also the general control problem,
and the focus is on the motion of a rotary crane
in a linear transfer. First, a nonlinear model of
a load position and a tip position of the rotary
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crane represented in three-dimensional space has
been built, but we do not present this model
here because of space limitations. However, the
model allows us to determine the optimum control
input for moving a load position along a straight
line, i.e., a linear transfer, if the cost function is
appropriately given to restrict the load transfer on
the straight line. But, when we use the nonlinear
model built in three-dimensional space, a lengthy
calculation is needed to determine the optimum
control input to eliminate residual vibration, due
to the model’s term of centrifugal force. Secondly,
for the linear transfer, we have built a nonlinear
model of the swing of a load and the tip position
of a boom embedded in two-dimensional space.
When a load is moved by two-dimensional trans-
fer, the tip’s trajectory of the boom draws a circle
in two-dimensional space. We therefore created
an imaginary boom angle, an imaginary boom
length and an imaginary swing angle of a load,
as explained in the next section. In the present
paper, this embedded model in two-dimensional
space is called a linear transfer transformation
(LTT) model. The optimum control problem can
then be solved by using the Fletcher-Reeves (FR)
method for the LTT model. We demonstrate that
actual control inputs of a rotary crane can be
obtained by transforming coordination from two-
dimensional imaginary coordination in the LTT
model to three-dimensional coordination in the
actual rotary crane. Finally, we evaluate the va-
lidity of the model and the effectiveness of this
method, as manifested by both the simulation and
the experimental results.

Fig. 1. Schematic diagram of rotary crane

2. DERIVATION OF LTT MODEL

The LTT method makes the crane tip and the load
move along a straight line in the X-Y coordinate
by the simultaneous motions of rotation and boom
hoisting ( see Fig. 2 ). In the analysis of this
problem, an embedding method is used in order to
reduce the dimensions of the model. Actual boom
length LB is replaced by the imaginary boom

Table 1. Symbolic notation in Fig. 1

Symbol Unit Explanation

θ rad rotary angle

α̃ rad swing angle on the horizontal surface

φ rad boom angle

β̃ rad swing angle from the vertical direction

l m rope length

r1 m radius of the boom hoisting drum

LB m length of the boom

r2 m radius of the rope hoisting drum

H m height of the turn table

ω1 rad rotational angle of the rope hoisting drum

m kg mass of the load

ω2 rad rotational angle of the rope hoisting drum

g m/s2 gravity

(x̃, ỹ, z̃) m position of the crane tip

F N tension of the rope

(x,y,z) m position of the load

b m distance between axis Z and the column

h m height of the column

LM m distance between point A and point B

δ rad angle between line LM and axis Z

LX m distance between point A and point C

length R. Actual rotary input uθ and hoisting
input uφ are also replaced by the imaginary hoist-
ing input uψ, while actual swing angles α, β are
replaced by the imaginary swing angle ξ ( see Fig.
3 ), so that the differential equations describing
the model are reduced to only two variables.
For simplicity, the following assumptions are
made:
• The body of the crane is rigid, and the load is a
point mass.
• Friction is neglected.
• Rope weight and elongation of ropes due to
tensile force are neglected.
• The driving motor used in this paper is assumed
to have enough power for the weight of the load.
The property of the driving motors is regarded as
the following system:

θ̈ = − 1
Tθ
θ̇ +

Kθ

Tθ
uθ (1)

φ̈ = Aφ
Kφ

Tφ
uφ − 1

Tφ
φ̇+ Bφφ̇

2 (2)

where

Aφ = − r1LX
LMLB sin(φ+ δ)

,

Bφ =
LMLB
L2
X

sin(φ+ δ) − cos(φ+ δ)
sin(φ+ δ)

,

LM =
√
b2 + h2 ,

δ = tan−1(
b

h
) ,

LX =
√
L2
M + L2

B − 2LMLB cos(φ+ δ) ,



Fig. 2. Linear transfer transformation

Fig. 3. Linear transfer transformation model of
rotary crane

Tθ and Tφ are, respectively, the time constant of
the rotary motor and that of the hoisting motor.
Kθ and Kφ represent the gain of each motor,
respectively; finally, uθ is rotary input voltage and
uφ is hoisting input voltage. From Fig. 1, the
position of the boom tip in the absolute Cartesian
coordinate is given by the following equation:

x̃= LB sinφ cos θ (3)

ỹ=LB sinφ sin θ (4)

z̃ =H + LB cosφ (5)

2.1 The Model of LTT

The concept of LTT is shown in Fig. 2. Supposing
the initial place of the boom tip is (x̃i, ỹi, z̃i), and
the final place is (x̃f , ỹf , z̃f), then the projection
of the orbit of the boom tip is a line I-F on the x-y
plane. In order to simply analyze the problem of
LTT, a new coordinate, called the linear transfer
coordinate, is built according to the following
principle:

• The initial place of the boom tip (x̃i, ỹi, z̃i) is
the original point of the new coordinate o′.
• Line I-F runs parallel to the z direction and
intersects point o′; this line is defined as the x′

axis.
• Axis z′ is parallel to the axis z.
Figure 3 shows the concepts of imaginary boom
length R, the imaginary hoisting angle ψ and the

Table 2. Symbolic notation in Fig. 3

symbol unit Explanation

l m Rope length

ψi rad Initial imaginary boom angle

ξ rad Swing angle

ψf rad Final imaginary boom angle

R m Imaginary boom length

(x̃′, z̃′) m Position of crane tip

ψ rad Imaginary boom angle

x’,z’) m Imaginary boom length

R m Position of load

M kg mass of cart

m kg mass of load

imaginary swing angle ξ. In the linear transfer
coordinate, the position of the crane tip can be
expressed by the imaginary hoisting angle ψ and
the length of the imaginary boom R,

x̃′ =R {sin(ψ − ψi) + sinψi} (6)

z̃′ =R {cos(ψ − ψi) − cosψi} (7)

where ψi is the initial imaginary hoisting angle.
The position of the load is expressed by the swing
angle in the direction of linear transfer ξ and the
length of the rope l:

x′ = x̃′ − l sin ξ (8)

z′ = z̃′ − l cos ξ (9)

The motion equation of Lagrange is given by

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂U

∂q
= 0 (10)

Using Eqs.(8) and (9), Eq.(10) is transformed into

d

dt

(
∂T

∂ξ̇

)
− ∂T

∂ξ
+
∂U

∂ξ
= 0 (11)

where
T = Tx + Tz

Tx =
1
2
M ˙̃x′

2
+

1
2
m

(
d

dt
(x̃′ − l sin ξ)

)2

Tz =
1
2
M ˙̃z′

2
+

1
2
m

(
d

dt
(z̃′ − l cos ξ)

)2

U =Mgz̃′ +mg(z̃′ − l cos ξ)

From Eq.(11), ξ̈ can be solved. Suppose that
the control input is an imaginary hoisting angle
acceleration uψ. It follows that:

ψ̈ = uψ (12)

ξ̈ =−g
l

sin ξ +
¨̃x′

l
cos ξ −

¨̃z′

l
sin ξ (13)

¨̃x′ =R
{
ψ̈ cos(ψ − ψi) − ψ̇2 sin(ψ − ψi)

}
(14)

¨̃z′ = −R
{
ψ̈ sin(ψ − ψi) + ψ̇2 cos(ψ − ψi)

}
(15)



Fig. 4. Rotation angle γ

2.2 Parameter Derivation of LTT Model

The parameters of the linear transfer, such as the
length of the imaginary boom R，the initial imag-
inary hoisting angle ψi and the final imaginary
hoisting angle ψf , are easily derived as follows:

R =

√
L2
B − (x̃iỹf − x̃f ỹi)2

(x̃f − x̃i)2 + (ỹf − ỹi)2
(16)

The initial imaginary hoisting angle ψi becomes

ψi =




cos−1 z̃i −H

R
ψf �= ψD

− cos−1 z̃i −H

R
ψf = ψD

(17)

ψD = cos−1 z̃f −H

R
− cos−1 z̃i −H

R
The final imaginary hoisting angle ψf is expressed
by

ψf = cos−1

{
1 − Sif

2L2
B

}

where,

Sif = (x̃f − x̃i)2 + (ỹf − ỹi)2 + (z̃f − z̃i)2 (18)

2.3 Derivation of Actual Control Inputs

The variables in the absolute coordinate can de
transformed from the variables of the LTT coor-
dinate. As shown in Fig. 4, γ is the angle between
linear transfer direction −→

B and x-axis direction−→
A ; it follows that

γ = cos−1 x̃f − x̃i√
(x̃f − x̃i)2 + (ỹf − ỹi)2

(19)

Then, the following relation holds:


 x̃ ˙̃x ¨̃x
ỹ ˙̃y ¨̃y
z̃ ˙̃z ¨̃z


 =


 x̃i 0 0
ỹi 0 0
z̃i 0 0


 +


 cos γ 0

sin γ 0
0 1


[

x̃′ ˙̃x′ ¨̃x′

z̃′ ˙̃z′ ¨̃z′

]
(20)

From Eq.(20)，the position (x̃, ỹ, z̃) of the crane
tip in the absolute coordinate, velocity ( ˙̃x, ˙̃y, ˙̃z)
and acceleration (¨̃x, ¨̃y, ¨̃z) can be calculated. Di-
viding Eq.(4) by Eq.(3), it follows that

tan θ =
ỹ

x̃
(21)

so that

θ = tan−1(
ỹ

x̃
) (22)

Differentiating Eq.(22), it follows that

θ̇ =
˙̃yx̃− ˙̃xỹ
x̃2 + ỹ2

(23)

Further, differentiating Eq.(23), it follows that

θ̈ =
¨̃yx̃− ¨̃xỹ
x̃2 + ỹ2

− 2( ˙̃yx̃− ˙̃xỹ)( ˙̃xx̃+ ˙̃yỹ)
(x̃2 + ỹ2)2

(24)

For the hoisting angle, from Eq.(5), it follows that

φ = cos−1 z̃ −H

LB
(25)

Differentiating Eq.(25), it follows that

φ̇ = −
˙̃z

L2
B − (z̃ −H)2

(26)

Further, differentiating Eq.(26), it follows that

φ̈ = −
¨̃z

{L2
B − (z̃ −H)2}1/2

−
˙̃z
2
(z̃ −H)

{L2
B − (z̃ −H)2}3/2

(27)

From Eqs.(1) and (2), the actual rotary input
voltage uθ and that of hoisting input voltage
uφbecomes

uθ =
Tθ
Kθ

θ̈ +
θ̇

Kθ
(28)

uφ =
Tφ

AφKφ
(φ̈+

φ̇

Tφ
−Bφφ̇

2) (29)

2.4 Optimal Control

Consider nonlinear dynamical system described
by

ẋ = f(t, x(t),u(t)) (30)

where ẋ = (x1, · · · , xn)T is a state vector, f =
(f1, · · · , fn) is a nonlinear n-vector function, and
u(t) is a control input vector.



Performance index ( or cost function ) is given by

J = g(tf ,x(tf)) +

tf∫
t0

f0(t,x(t),u(t))dt (31)

where t0 is an initial time, and tf is a final time.
If a Hamiltonian is given by

H = f0(t,x(t),u(t)) + pT (t)f(t,x(t),u(t))(32)
then an adjoint equation is derived as

ṗ(t) = −(
∂H
∂x

)T = −fTx (t,x(t),u(t))

−fT0x
(t,x(t),u(t))

p(tf ) =
∂g

∂x(tf )
≡ pf




(33)

where fx ≡ (∂f)T /(∂x).

Gradient of a performance index J is defined by

Ju =
∂H
∂u

= f0u(t,x(t),u(t))

+pT (t)fu(t,x(t),u(t)) (34)

Therefore, an optimal control problem is re-
duced to a two-point boundary value problem
constructed of Eqs.(30) and (33). Optimal solu-
tion can be numerically obtained on a fixed time
interval by using Fletcher-Reeves (FR) method
(Yoshino, 1995). When the load arrives at the
desired position, it is hoped that the sway of the
load stops at once and there is no residual sway.
So, in this paper, the performance index is given
by

J = x(tf)TWx(tf), (35)

where x(tf) =
[
ψ − ψtf , ψ̇, ξ, ξ̇

]
and W =

diag
[
105, 105, 105, 105

]
. Thus, first, an optimum

control is sovled by FR method for Eqs.(12) and
(13) of LTT model. Nextly, via Eqs.(19)-(27), the
actual optimal control input voltage can be ob-
tained by using Eqs.(28) and (29).

3. EXPERIMENTAL APPARATUS AND
RESULTS

3.1 Experimental Apparatus

As shown in Fig. 5, When the load is transferred,
the swing angle α′ and β′ can be measured by the
two pairs of forks and encoders. It must be noted
that in the simulation program the swing angles
of the load are α and β; according to Fig. 5, the
relationship between (α, β) and the load position
(x, y, z), as well as the position of the crane tip
(x̃, ỹ, z̃), can be obtained as follows.

The parameters of the crane are shown in Table
4.

Fig. 5. Measurement of swing angle

Table 3. Symbolic notation in Fig. 5

Symbol Unit Explanation

α rad load swing angle in x direction

β rad load swing angle in y direction

α′ rad load swing angle measured by encoder A

β′ rad load swing angle measured by encoder B

Table 4. Parameters of the crane

physical value numerical value unit

LB 1.143 m

H 0.627 m

l 0.9 m

r1 0.045 m

b 0.338 m

h 0.506 m

Tθ 0.015 s

Kθ 0.3117 rad/sV

Tφ 0.008 s

Kφ 0.6266 rad/sV

α = sin−1(
x− x̃√

l2 − (y − ỹ)2
) (36)

β = sin−1(
y − ỹ√

l2 − (x− x̃)2
) (37)

But the measured swing angles from the sensors
are α′ and β′. From Fig. 6, the relationship
between α , β and α′, β′ can be obtained[

α′

β′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
α
β

]
(38)

3.2 Experimental Results

The initial position of the crane tip is (1,0,1.18)[m]
(the initial rotary angle θi = 0◦, the initial
hoisting angle φi = 61◦), the final position is
(0,1,1.18)[m] (the final rotary angle θf = 90◦, the
final hoisting angle φf = 61◦), the control time is
4[s]. According to Eqs.(16)～(18), the imaginary
boom length R=0.898[m], the initial imaginary
hoisting angle ψi = 52◦(0.9065[rad]), the final
imaginary hoisting angle ψf = 104◦(1.8132[rad]
), and γ = 135◦(2.3562[rad]).

Fig. 6 and Fig. 7 show the experimental and simu-
lation results which the load’s velocity is trapezoid



Fig. 6. Experimental results of linear transfer with
trapezoid velocity

Fig. 7. Experimental results of linear transfer with
the optimal velocity

velocity and the optimal velocity respectively. It
is clear that the locus of the load on the x-y plane
in Fig. 6 is a straight line and, at the end point of
transfer, the load retains some residual vibration.
But in Fig. 7 the locus of the load is a straight
line and the sway of the load scarcely remains at
the end point of transfer. The actual rotary angle
and hoisting angle in the experiments are almost
identical with those in the simulation results in
the two figures, and the swing angle is qualita-
tively the same as that in the simulation. The

actual calculation declares that the cost function
converges after only 18 repeated calculations (for
rotary transfer, the number is 262), and that it
takes about 3.63 seconds (for rotary transfer it
takes 69.21 seconds). These results demonstrate
that, for actual application, the LTT method is
more effective.

4. CONCLUSION

Nonlinear optimal control using the linear trans-
fer transformation (LTT) model was presented to
control the sway of a rotary crane. The exper-
imental results agreed well with the simulation
results. Both the validity of the model and the
effectiveness of the control by the LTT model
were also demonstrated. Compared with the con-
ventional approach using the rotary crane model
represented in three-dimensional space, it was
clarified that the calculation time of optimization
was faster in the proposed approach using the
LTT model embedded in two-dimensional space,
because centrifugal force did not exist for the
calculation of optimal control.
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