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Abstract: An improvement of the standard “particle filter” (PF) Monte Carlo
Bayesian estimator is presented and compared with an existing improved reweighted
filter in a target tracking example. The PF updates the probability density function
(pdf) of the state, represented as the density of state samples (particles). Each
particle is time-updated by applying to the state equation a sample from the forcing
distribution. At the next observation, the likelihood of each particle is computed by
substituting the prediction error into the observation-noise pdf. Any low-likelihood
particle has a low probability of appearing in the resampled state set for the next
update, so often the sample set collapses. The improved estimator represents the state
pdf as weighted samples, and allows free choice of the values at which the posterior
pdf is evaluated. This allows enough particles in regions of low probability density
and avoids the need for most particles to be in high-density regions.

Keywords: Particle filters, Nonlinear systems, Bearings only tracking, Bayesian
estimation, Discrete-time systems.

1. INTRODUCTION

The Bayesian approach to state estimation con-
structs the probability density function (pdf) of
the current state of an evolving system, given
the accumulated observation history. For linear
Gaussian models, where the pdf can be sum-
marised by means and covariances, the estima-
tion is carried out by the familiar Kalman filter
(Jazwinski, 1970). For non-linear non-Gaussian
models, there is no simple analytical way to pro-
ceed.

Several approximate methods have been pro-
posed, for example the Gaussian sum filter (Alspach
and Sorenson, 1972), or numerical integration over
a grid in state space (Kitagawa, 1987), (Kramer
and Sorenson, 1988); (Bucy and Senne, 1970);
(Challa and Bar-Shalom, 2000). It is not easy to
decide how many components to use in a Gaussian

sum, and the number required is likely to be ex-
cessive when the pdf has abrupt changes (e.g. due
to bounds on state). In the numerical-integration
methods, time updating of the state involves so-
lution of the Chapman-Kolmogorov or Fokker-
Planck-Kolmogorov equation. Finite-difference or
finite-element methods may be employed, but to
keep computing load tolerable the number of grid
points must be restricted, which requires track-
ing of the domain over which the state pdf is
non-negligible. The use of Chebyshev’s inequality
for time-varying truncation of the support of the
state pdf has been suggested (Challa and Bar-
Shalom, 2000) but even so adequate coverage by a
grid may entail very heavy computing unless the
state dimension is low.

Particle filters provide a cheaper approximate
solution to Bayes estimation of states for non-
linear systems. The pdf is represented as the local
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density of a scatter of particles, each of which
propagates through state space as time elapses
(Polson et al., 1992);(West, 1992).The samples are
thus concentrated in regions of high probability
density. However, in some applications this is a
disadvantage, when useful information resides in
the tails of the distribution. Moreover, the sam-
ple density may prematurely become zero in the
tails, preventing later growth in probability den-
sity there. This may occur over large regions, be-
cause in resampling after the observation update,
some sample values have low enough likelihood
to be absent from the resampled set (Gordon
et al., 1993). The particle set can even collapse
to a single point, for example when observability
is poor. To prevent this, several methods have
been proposed. They modify the sample set, the
prediction process or the representation of the
state pdf. Among the former, roughening (Gordon
et al., 1993) adds jitter as the new samples are
drawn, while prior editing rejects samples with
low likelihoods. A weighted-particle filter recently
proposed (Veres and Norton, 2001) summarises
the posterior marginal distributions of the state
variables by specified percentile points, comput-
ed from the sample set. This grossly simplifies
the state pdf by representing it as the Cartesian
product of the marginal densities. To mitigate
this, a recovery procedure for the state pdf was
added, drawing additional samples in regions of
high density. Alternatively, several other improved
resampling schemes have been developed recently.
The basic idea is to eliminate trajectories which
have small normalised importance weights and to
concentrate upon trajectories with large weight-
s. A suitable measure of degeneracy of the al-
gorithm by the effective sample size Neff was
introduced in (Liu, 1996). When N̂eff is below
a fixed threshold Neff , the sequential importance
resampling (SIR) procedure is used (Rubin, 1988).
It is possible to implement the SIR procedure
exactly in O(N) operations by using a classical
algorithm (Ripley, 1987); (Carpenter et al., 1999);
(Doucet et al., 2000); (Pitt and Shephard, 1999).
Other resampling procedures which reduce the
Monte Carlo variation, such as stratified sampling
(Carpenter et al., 1999) and residual sampling
(Liu and Chen, 1998) may be applied as an al-
ternative to SIR.

In this paper, the conventional PF is modified to
allow better approximation of p(xt|Yt−1) by any
given number of particles, i.e. the new approach
prevents collapse of the particle set by altering
the prediction stage. In the conventional PF, each
predicted particle results from applying a single
sample of forcing to a single prior particle; there
is no integration over the range of forcing and
prior state which could have given rise to the
specified predicted state.The proposed estimator

intead implements approximate convolution of the
unforced-state pdf with the forcing pdf, by sum-
ming over a number of prior particles, each weight-
ed. The domain over which the predicted state pdf
is computed is thereby put at the user’s discretion
instead of following from the sample properties of
the prior particle set and forcing sample set. Col-
lapse of the particle set can therefore be prevent-
ed, as can over-confidence, and extra attention can
be paid to any especially important region of state
space (e.g. the region around any potential target
of a hostile vehicle being tracked). Of course, the
problem of defining the domain over which to
predict the state pdf must be faced, just as in
the numerical-integration approaches mentioned
above. However, the particles need not be located
at regular grid points but can be placed to take
account of the latest observation and any bounds
such as limits on speed or manoeuvre capability.
There is no claim that the proposed method is
preferable to all other estimators. Rather, the
choice of estimator will be determined by the
demands of the application.

2. BAYESIAN DISCRETE-TIME STATE
ESTIMATION

Consider the generally non-linear discrete-time
state-space model of the form:

xt+1 = ft(xt,wt),

yt = ht(xt) + vt,

where functions ft and ht are known and xt ∈ <n

is the sampled state vector at sampling instant t.
The observation vector is yt ∈ <m and wt ∈ <l

is a random disturbance which can describe both
unknown forcing and the results of inaccuracies in
model structure. It will be assumed that wt has
a known pdf p(w). Measurement noise vt has a
known pdf p(v).

The problem is to estimate at time t+ the s-
tate xt, by estimating the posterior probabili-
ty density of xt based on past output samples
Y tdef

= {yt,yt−1, . . . ,y0}. The conditional density
of xt given xt−1 can be derived from the knowl-
edge of ft and p(wt) and will be denoted by
p(xt|xt−1). An initial estimate of the pdf p(x0)
of x0 is assumed to be known. The probability
density of xt conditional on Y t−1 can then be
obtained, in principle, by the time update

p(xt|Y t−1) =
∫

p(xt|xt−1)p(xt−1|Y t−1)dxt−1

The observation update then finds the posterior
pdf, in theory, by Bayes’ rule:

p(xt|Y t) =
p(yt|xt)p(xt|Y t−1)

p(yt|Y t−1)
(1)



where p(yt|xt) = p(vt = yt−ht(xt)), the observed
yt is substituted into p(yt|xt) and

p(yt|Y t−1) =
∫

p(yt|xt)p(xt|Y t−1)dxt (2)

Analytical solution of this problem is only feasible
for a relatively small and restricted selection of
system and measurement models.

A recent development (Carpenter et al., 1999) of
the conventional PF is summarised next.

3. IMPROVED REWEIGHTED PARTICLE
FILTER

The following scheme (Carpenter et al., 1999)
aims to prevent collapse of the particle set, while
remaining computationally efficient.

Initialisation Start with a random measure
with N support points, possibly obtained by
stratified sampling, which approximates the
pdf p(x0), or by drawing from the known
initial pdf p(x0). By a random measure is
understood the particle set (support points)
and their weights summing to 1.
Preliminaries (step t) Assume that we have
a random measure (st−1,mt−1), approximat-
ing p(xt−1|Y t−1)
Prediction: Estimate the density p(xt|Y t), up
to a normalising constant K, by

p(xt|Y t) = K

N∑

i=1

mi
t−1p(xt|si

t−1)p(yt|xt).

Construct an approximating mixture density

p̂(xt) =
N∑

i=1

β̂ip̂i(xt).

Take a stratified sample from this density
using the stratified sampling algorithm (see
(Carpenter et al., 1999)), with Ni sample
points in the ith category, where Ni has
expected value Nβi

Update: For each i, sample Ni support points
sj
t from pi(xt), with importance weights giv-

en by

mj
t ∝

mi
t−1p(sj

t |si
t−1)p(yt|sj

t )

β̂ip̂i(s
j
t )

,

for
i−1∑
l=1

Nl < j ≤
i∑

l=1

Nl. The updated random

measure is then given by [(sj
t , m

j
t ), j = 1, . . . , N ],

where the weights are scaled to sum to 1.

4. IMPROVED PARTICLE FILTER

4.1 Theory

Consider the time update

p(xt|Y t−1) =
∫

p(xt|xt−1)p(xt−1|Y t−1)dxt−1 =

∫
p(f(xt−1,wt−1) = xt)p(xt−1|Y t−1)dxt−1.(3)

The standard PF only employs one sample of
wt−1 per (sample) value of xt, instead of inte-
grating over xt−1. With p(xt−1|Y t−1) represented
by N equal-weight particles as

p(xt−1|Y t−1) =
1
N

N∑

j=1

δ(xj
t−1) (4)

(3) gives

p(xt|Y t−1) =
1
N

N∑

j=1

∫
δ(xj

t−1)× (5)

p(f(xj
t−1,wt−1) = xt)dxt−1 =

1
N

N∑

j=1

p(wj
t−1),

where wj
t−1 is the value (assumed unique for the

moment) which satisfies f(xj
t−1,w

j
t−1) = xt.

Using (5), Bayes’ rule (1) has as its numerator at
any specified value of xt

p(vt = yt − ht(xt))
N

N∑

j=1

p(wj
t−1). (6)

Using (6), we can select any sample values of xt we
like and compute their probability densities, rep-
resenting p(x|Y ) as the sum of modulated (weight-
ed) delta functions. In the next updating cycle, the
delta functions in (4) and thence the terms in the
sum in (5) carry these weights. The particles can
be located wherever necessary to characterise the
state pdf adequately, and are no longer wasted in
regions of high but near-uniform density nor nec-
essarily absent from regions of low density which
may, nevertheless, lead to high density later. Com-
mon sense suggests curvature as a criterion for
their location: interpolation between particles is
less accurate the higher the local curvature, so
density of particles should (all other things being
equal) be highest where the curvature is highest.
An additional criterion is that coverage should
be adequate over the whole support region where
probability density is above some some selected
threshold, to prevent premature collapse into the
highest-likelihood region.

It has so far been assumed that the state equation
has a unique solution wj

t−1(x
j
t−1,xt) for use in (5).

This is usually so if dim(wt−1) = dim(xt), but
not in the commoner case dim(wt−1) < dim(xt),
as in target tracking. The latter may be handled
by taking a subset x′t of the elements of xt for
which the state equations x′t = f ′(xj

t−1,w
j
t−1)



have a unique solution wj
t−1(x

′
t), then using x′′jt =

f ′′(xj
t−1,w

j
t−1) to find the rest x′′jt of xj

t . This
gives

p(xj
t |Y t−1) ≡ p(x′t,x

′′j
t ) = p(wj

t−1(x
′
t))p(xj

t−1)

(allowing for the particles at time t − 1 having
weights p(xj

t−1|Yt−1), instead of all having the
same weight as in the usual PF).

Now we have a free choice of the values x′t.
The chosen values need only cover the subspace
of x′t adequately, so N ′ can be much smaller
than N . Good coverage of the state space just
depends on choosing the values of x′t intelligently;
in particular, we should avoid wasting effort on
values giving very big innovations. It is reasonable
to ignore x′t giving innovations νj

t = yt − h′(x′jt )
with, say, |νj

ti| ≥ 3r
1/2
ii , 1 ≤ i ≤ m , where

the observation noise covariance matrix R =
diag(rii). We can economize further by dropping
values x′t which give very small p(x′t,x

′′j
t |Yt−1) as

soon as wj
t−1(x

′
t) has been computed. This process

of distributing the x′t values according to the
behaviour of p(x′t|Yt) suggests adaptive placing,
deciding where to put successive values according
to the results of the observation update at time t
for values chosen earlier in the same update cycle.

For the next update cycle, we have to generate N
samples of xt from N ′N ′′ particles (x′t,x

′′
t ). Some

possible schemes are:

a) Make N ′N ′′ = N and use the same particles;
b) With N ′N ′′ > N , take the N samples with

the largest weights (risking losing tails);
c) With N ′N ′′ > N , take the N samples from

the weighted particles, with equal probabili-
ties. If a particle is sampled more than once,
throw the second one away and carry on until
there are N particles in all;

d) With N ′N ′′ > N , take N1, N2, . . . , Nm sam-
ples from the particle sets with weights in
specified percentile ranges 1, 2, . . . ,m.

N equal-weight samples are taken with replace-
ment from the new particle set with probabilities
defined by their weights.

4.2 Algorithm

1. Draw N samples x0 = xi
0 : i = 1, . . . , N from

the known prior p(x0). Divide the state vari-
ables into subsets x′t and x′′t .

2. At each sampling time t ≥ 1:
(a) Define bounds for subsets x′t|t−1 and

x′′t|t−1.
(b) Draw N ′ samples of x′t|t−1 within the

defined bounds.
(c) For each sample x′it|t−1, i = 1, . . . , N ′

(1) Solve state equation x′it|t−1 =

f ′(xj
t−1,wt−1) for each j = 1, . . . , N

to get wj
t−1(x

′i
t|t−1). Choose only

those wj
t−1(x

′i
t|t−1) within the de-

fined bounds and calculate their
probabilities.

(2) Use x′′jt|t−1 = f ′′(xj
t−1,w

j
t−1) to find

the rest x′′jt|t−1 of xj
t . Choose only

those x′′jt|t−1 within the bounds
(3) Form set of N ′N ′′ samples Xt|t−1 =

(x′t|t−1,x
′′
t|t−1) and set of corre-

sponding probabilities of the pro-
cess noise.

(d) If set Xt|t−1 is empty, loosen the bounds
and return to step (b).

(e) Apply Bayes’ rule (1),(6) to the N ′N ′′

samples
(f) Generate N samples of xt from the

N ′N ′′ particles (x′t|t−1,x
′′
t|t−1)

5. SIMULATION

Here the performance of the new scheme is com-
pared with the improved reweighted PF (IRPF)
(Carpenter et al., 1999) in a bearings-only track-
ing problem (Gordon et al., 1993).

A target moves in the x − y plane (with x, y
Cartesian coordinates) according to the second-
order motion model

xt+1 = Fxt + Γwt, (7)

where xt = (x, ẋ, y, ẏ)T
t , wt = (wx, wy)T

t ,

F =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 and Γ =




T 2/2 0
T 0
0 T 2/2
0 T




where the sampling interval is T = 1. The process
noise is zero-mean Gaussian white noise with
covariance matrix Q: E[wkwT

j ] = Qδjk, where
Q = qI2 and I2 is the 2× 2 identity matrix.

A fixed observer at the origin takes noisy mea-
surements zt of the target bearing

zt = tan−1(yt/xt) + vt. (8)

The measurement noise is a zero-mean Gaussian
white noise with variance r: E[vkvj ] = rδkj ; for
the example

√
r = 0.002.

The initial actual target state is

x(0) = [5000 − 76 3000 − 184]T .

For the first 10s the target moves with constant
velocity and then it begins a right turn with
cross-track acceleration of 4g. The turn lasts for
10s then the target moves with constant velocity.
After a further 7s the target turns left with cross-
track acceleration of 5g and continues turning for
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Fig. 1. True target track in the x − y plane: 4 –
target position (start: top right)

10s. When the turn is finished the target moves
with constant velocity for another 5s. Fig. 1 gives
the actual target path in the x− y plane.

The prior information specified is

x̂(0) = [5040 − 66 2970 − 172]T .

and the initial state covariance matrix is diagonal
with elements p11(0) = 1600, p22(0) = 100,
p33(0) = 900, p44(0) = 144.

The process noise standard deviation was 50m/s2

for IPF and 25m/s2 for IRPF. Different values of
the process noise standard deviation were chosen
to obtain the best possible performance for each
filter.

The initial particles are assumed to be normally
distributed N (x̂(0), P ). The number of particles
for the IRPF was N = 4000 and for IPF was
N = 100. Construction of the approximating
mixture density for bearings-only problems can be
found in (Carpenter et al., 1999).

This implementation of the proposed approach for
this example consists of:

1) Prediction of the new states from the previ-
ous time instant

x̂j
t|t−1 = f(x̂j

t−1,w
j
t−1). j = 1, . . . , N

2) Definition of the bounded set from which to
draw updated positions.

Since the measurements are in polar coor-
dinates and state vector in Cartesian coor-
dinates, position samples are initially drawn
in polar coordinates, subject to polar bounds,
then converted to Cartesian coordinates. The
bound for azimuth is straightforward; after
the observation is obtained the samples are
selected so that azimuth is in the interval
[zt − 3

√
r, zt + 3

√
r]. This ensures that the

particles will not have negligible likelihoods.
To improve the quality of the estimation we
need at least a rough estimate of range. Sam-
ples which satisfy the bounds on predicted
azimuth are chosen, and the minimum and
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Fig. 2. Solid line - IPF, dotted line - IRPF

maximum of predicted range from the chosen
samples are selected as bounds for range.

3) Draw N1 > N (N1 = 300 in this exam-
ple) samples in polar coordinates within the
bounds defined above. Convert polar coordi-
nates to Cartesian coordinates. Note that in
this realisation we do not aim to obtain a fea-
sible solution from every updated position.

4) For each obtained position
(i) solve x′t|t−1 = f ′(xj

t−1,wt−1) to obtain

a unique solution wj
t−1(x

′
t|t−1), then use

x′′jt|t−1 = f ′′(xj
t−1,w

j
t−1) to find the rest

x′′jt|t−1 of xj
t|t−1;

(ii) apply the bounds on p(wt−1) and tar-
get’s speed, retaining only samples which
lie within the bounds; in this implemen-
tation the bounds applied were wj

t−1 ∈
[−3

√
q, 3

√
q] for forcing and [150, 250] for

speed, where = [1 1]T .
(iii) If there is a feasible solution, combine

the pair of position coordinates with the
feasible pair of velocity coordinates. Oth-
erwise loosen the bounds. Repeat steps
3) and 4) until at least N samples are
feasible.

5) For each particle apply Bayes’ rule (1), (6).
6) Sample in two stages from the obtained sam-

ple set. First choose samples with likelihoods
higher than specified threshold. If this pro-
duces fewer than N samples, reduce the
threshold. Then choose the N samples with
highest p(wt−1).

RMS errors in position and velocity after 1 run
are presented in Fig. 2.

It can be seen from Fig. 2 that the performance of
IRPF is worse than IPF for this example. Espe-
cially after 30T , the performance of the IRPF gets
much worse in both position and velocity, because
of ambiguity in which direction to go. The IRPF
and the new PF treat this situation differently.The
IRPF tries to spread its particles as wide as possi-
ble in the direction of the ambiguity. As a result,
taking the sample mean would give little useful



information about the target position. The new
IPF keeps the spread of the particles within the
defined bounds, preventing increasing spread of
the samples. It is worth noticing that in this case
we cannot guarantee that the actual target state
will be in the 95% confidence region in 95% of
cases, but the right choice of bounds and rules
for handling them will keep the cloud of particles
close to the target.

6. CONCLUSION

A IRPF with radically modified treatment of the
prediction stage has been proposed. It is potential-
ly useful in cases where there is high uncertainty in
some of the state components and the sample set
thus has a wide spread. The mean of the IRPF’s
particle states then gives large estimation errors
due to the wide spread. It has been shown that
IPF performance is clearly better that of IRPF
for a bearings-only tracking example. However,
the IPF has its own limitations; for example, if
the innovation likelihoods show two or more peaks
with similar heights, the ambiguity may induce
poor choice of predicted-state samples.
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