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Abstract: In this paper we study the positivity of an estimated time series (or impulse
response) described by a sum of real exponentials. Such a problem,i.e. fitting a time series
as a sum of exponential functions, is a longstanding one and has been studied by a very
large number of authors. Positivity of the time series is often required in many diverse fields
of application where it is a direct consequence of the physics underlying the process under
study. In this paper we suggest a possible way to incorporate the positivity constraints in the
parameters estimation process.Copyright c© 2002 IFAC
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1. INTRODUCTION

In this paper we study the positivity of an estimated
time series (or impulse responseh (t)) described by
a sum of real exponentials, so that the parameters
one wishes to find from data are the residuesRi and
eigenvaluesλi (real exponents),i.e.

h (t, θ) =
n∑

i=1

Rie
λit ≥ 0, λ1 > λ2 > . . . λn, ∀t ≥ 0

whereθT =
(
R1 . . . Rn λ1 . . . λn

)
is the param-

eters vector. Such a problem,i.e. fitting a time se-
ries as a sum of exponential functions, is a long-
standing one and has been studied by a very large
number of authors. The reason being that, mainly,
the above representation is suitable in many diverse
fields of application such as pharmacokinetics (com-
partmental systems), medicine, biology, econometrics,
telecommunications and industrial plants (Farina and
Rinaldi, 2000) where positivity of the time series is a
direct consequence of the physics underlying the pro-
cess under study. It’s worth noting that very often the
information on positivity (or nonnegativity) isapriori
available and should be exploited, together with lin-
earity, by the modeler. In this paper we suggest a pos-
sible way to incorporate the nonnegativity constraints

in the parameters estimation process. Therefore, the
problem formulation is as follows:

Problem Formulation I : Nonnegativity of Multi Expo-
nentials models.

Let theN data points behD (tj), j = 1, . . . , N . Find

θ̂ in such a way that
∑N

j=1

(
hD (tj)− h

(
tj , θ̂

))2

is

minimized whileh
(
t, θ̂

)
:=

∑n
i=1 R̂ie

λ̂it ≥ 0 for
anyt ≥ 0

In particular, for the sake of clarity, we will start our
investigations by considering the casen = 3. The
more general case will be presented in a later paper.

Note that withn = 1 and n = 2 the problem is
trivial, since for the first case nonnegativity is assured
by conditionR1 > 0, and for the second case, by
conditionsR1 > 0 andR1 + R2 ≥ 0. By contrast,
the casen = 3, is far from trivial. In fact, to the
best of our knowledge, the problem of characterizing
the parameters valuesθ ensuring nonnegativity of the
impulse response (even for the third order case) is still
an open and unsolved question.

In this paper, we will consider the following (slightly)
special case ofProblem formulation I:
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Problem Formulation II : Positivity of Multi Exponen-
tials models
Let theN data points behD (tj), j = 1, . . . , N . Find

θ̂ in such a way that
∑N

j=1

(
hD (tj)− h

(
tj , θ̂

))2

is

minimized whileh
(
t, θ̂

)
:=

∑n
i=1 R̂ie

λ̂it > 0 for
anyt > 0

That is, we will considerpositivity of the time series
(impulse response) except at the origin of time where
– for continuity – it is nonnegative. The reason for this
additional requirement is merely technical and doesn’t
affect significantly the generality of our arguments in
practical applications.

In Section 2 some preliminary definitions and results,
mainly from positive realization theory, are provided.
Section 3 contains the theoretical result of the paper,
i.e. it states a theorem which provide a characteriza-
tion of positivity of a multi-exponential time series
(or impulse response) in terms of a set of inequalities.
Such result will be exploited in the subsequent sec-
tions for setting up an identification algorithm for the
three-exponential case (Section 4). An extension of
this result for the case of any number of exponentials
will be presented in a later paper.

2. PRELIMINARY DEFINITIONS AND RESULTS

In order to gain insight into the problem and provide
mathematical tools, we will first need some prelimi-
nary considerations, results and definitions which will
be used within the proofs of the theorems. In the fol-
lowing, we will not consider the trivial case of iden-
tically zero functions or matrices, so to avoid unduly
complicated notations and statements.

We begin by saying that a single input/single output
(SISO) continuous-time linear time invariant (LTI)
system of the form

ẋ (t) = Ax (t) + bu (t) , y (t) = cT x (t)

with A ∈ Rn×n, b, c ∈ Rn, is apositive continuous-
time system(Farina and Rinaldi, 2000) provided that

aij ≥ 0 for i 6= j (1)

and
bi ≥ 0, ci ≥ 0

for i, j = 1, . . . , n, and where theaij ’s are the entries
of A andbi, ci those ofb andc, respectively. On the
other hand, a SISO discrete-time LTI system of the
form

x (k + 1) = Ax (k) + bu (k) , y (k) = cT x (k)

with A ∈ Rn×n, b, c ∈ Rn, is apositive discrete-time
system(Farina and Rinaldi, 2000) provided that

bi ≥ 0, ci ≥ 0, aij ≥ 0 for anyi (2)

We define the setM of Metzler matrices for which
(1) holds, and the setN of nonnegative matrices for

which (2) holds. Given an impulse responseh (t)
[h (k)], we callpositive realizationof h (t) [h (k)] any
triple

(
A, b, cT

)
such thath (t) = cT eAtb [h (k) =

cT Ak−1b] and A ∈ M, b, cT ∈ N [A, b, cT ∈ N ]
of appropriate dimensions (possibly larger than the
McMillan degree as shown in (Benvenuti and Farina,
1999)). The next proposition regarding nonnegativity
of the impulse response of a positive system, is easily
proved.

Proposition 1.The impulse responseh (k) of a discrete-
time positive system is such that

h (k) ≥ 0 ∀k > 0

and the impulse responseh (t) of a continuous-time
positive system is such that

h (t) > 0 ∀t > 0

Hereafter, we present some recent results on posi-
tive realizability of linear systems (see (Farina, 1996;
B.D.O. Anderson and Benvenuti, 1996)) which will be
used in the sequel.

Proposition 2.A given continuous-time system de-
scribed by its impulse response functionh(t) is that
of a positive system (i.e. there exists a positive real-
ization) if the following hold:

(1) h(t) is such thath(t) > 0 for everyt > 0;
(2) the eigenvalue with maximal real part is real and

unique (possibly multiple).

Proposition 3.A given discrete-time system described
by its impulse response functionh(k) is that of a
positive system (i.e. there exists a positive realization)
if the following hold:

(1) h(k) is such thath(k) ≥ 0 for everyk ≥ 0;
(2) the eigenvalue with maximal modulus is positive

and unique.

3. POSITIVITY OF MULTI-EXPONENTIALS
MODELS

We begin with the main result of this paper,i.e. with
a theorem which characterizes our problem (Formu-
lation II.) in terms of an appropriate discrete-time
impulse response which will enable, in the following
sections, to set up an estimation algorithm for the
problem being studied.

Theorem 4.Let

h (t) =
n∑

i=1

Rie
λit, λ1 > λ2 > . . . > λn, t ≥ 0

with Ri 6= 0 and let

R̃i :=
Ri

R1
λ̃i (α) :=

λi + α

λ1 + α
i = 1, 2, . . . , n (3)

Thenh (t) > 0 ∀t > 0 if and only if



(1) R1 > 0
(2) There exists anα > max (0,−λn) such that

n∑

i=1

R̃iλ̃
k−1
i (α) ≥ 0 (4)

for anyk > 0.

Proof. (Sufficiency) Sinceh (t) > 0 ∀t > 0 thenR1 >
0 follows from positivity of the long term behaviour
of the impulse responseh (t), i.e. condition 1. holds.
Moreover, since the eigenvalues are all (distinct) real,
then Proposition 2 applies and we know a positive
realization ofh (t) to exist.

Let h (t) = cT eAtb be a positive realization with
A ∈ M of finite dimension, andb, c ∈ N . Some
of the diagonal entries ofA may be negative, but, in
any case,A + αI is certainly a nonnegative matrix for

α > max
(
−min

i
aii, 0,−λn

)

Consider now a discrete-time system defined by the
following impulse response

hd (k, α) = cT

(
A + αI

α

)k−1

b k > 0

which is nonnegative for anyk > 0 by construction.
Writing explicitly hd (k) one obtains:

hd (k, α) =
n∑

i=1

Ri

(
λi + α

α

)k−1

=

R1

(
λ1 + α

α

)k−1
[
1 +

n∑

i=2

Ri

R1

(
λi + α

λ1 + α

)k−1
]
≥ 0

in view of R1 > 0 and considering that we have
λ1 > λn, then(λ1 + α) /α > 0, so that we can write

h̃d (k, α) = 1+
n∑

i=2

Ri

R1

(
λi + α

λ1 + α

)k−1

≥ 0 k > 0

that is, condition 2. holds.

(Necessity) Suppose conditions 1. and 2. holds. Sub-
stituting (3) into 2., we get

1 +
n∑

i=2

Ri

R1

(
λi + α

λ1 + α

)k−1

≥ 0

which can be rewritten as
n∑

i=1

Ri (λi + α)k−1 ≥ 0 (5)

in view of condition 1. andα > max (0,−λn). From
Proposition 3 we know that a positive realization of
the discrete-time system (5) exists with residuesRi

and eigenvaluesλi + α, i = 1, 2, . . . , n. Let h (k) =
cT Ak−1b be that positive realization, withA, b andc
nonnegative. Consider now a continuous-time system
defined by the impulse response

hc (t) = cT e(A−αI)tb

which is positive (i.e.hc (t) > 0, t > 0) sinceA− αI
is Metzler andb, c are nonnegative by construction

Fig.1: The setP (α) of allowed residues and
eigenvalues forn = 3, for different values ofα.

hbound (t) is the boundary of the region defined by
hnorm (t) = eλ1t + R̃2e

λ2t + R̃3e
λ3t.

(see Proposition 1). By writing explicitlyhc (t) one
obtains

hc (t) =
n∑

i=1

Rie
λit

so thathc (t) = h (t) and this concludes the proof.

It is important to note that inequalities (4) need not to
be evaluated for any value ofk, but a finite value will
suffice. To see this, define the impulse response

ĥd (k, α) = R̃1λ̃
k−1
1 +

n∑

i=2

R̂iλ̃
k−1
i (α)

with

R̂i =
{

0 if R̃i > 0
R̃i if R̃i < 0

i 6= 1

The residueR̃1 corresponding to the dominant eigen-
value λ̃1 is positive, so that there certainly exists a

finite (minimal) valuek = k̂ for whichĥd

(
k̂, α

)
≥ 0,

so that we can conclude

ĥd (k, α) ≥ 0 k ≥ k̂

and,a fortiori,

hd (k, α) :=
n∑

i=1

R̃iλ̃
k−1
i (α) ≥ 0 k ≥ k̂

Thus, we can conclude that only a finite number
of inequalities can be considered when dealing with
condition 2. of the above theorem.

In the next section we will show how to exploit the
pratical potentiality of the theorem. For the sake of il-
lustration, in Fig. 1, the setP (α) defined by inequality
(4), i.e.by

P (α) : =
{

R̃2, R̃3, λ̃2 (α) , λ̃3 (α) :

1 + R̃2λ̃
k−1
2 + R̃3λ̃

k−1
3 ≥ 0 ∀k > 0

}

is depicted forn = 3 in the
(
R̃2, R̃3

)
plane in shaded

grey.



Fig. 2: The setR (α) defined by the first two
constraints ofP (α). The grey shaded region is
composed of points inR (α) but not inP (α).

4. AN ALGORITHM FOR
THREE-EXPONENTIALS MODELS

As previously stated, in this section we will consider
the three-exponentials case. We will show a way to use
the result of previous section, in particular how appro-
priately decompose the setP (α) in order to exploit
Theorem 4, first of all we will show that none of con-
straints (4) is redundant and so their number cannot
be reduced, then we’ll propose a decomposition for
P (α). It is straightforward to prove that the slopem
of the straigth lines defining the boundary ofP (α)

m =

(
λ̃2

λ̃3

)h−1

=
(

λ2 + α

λ3 + α

)h−1

h = 1, 2, ...

is strictly increasing withh for α sufficiently large,i.e.
for α such that̃λi (α) := λi+α

λ1+α > 0 (see also Figure
1), in fact

if λ̃2 > λ̃3 then

(
λ̃2

λ̃3

)h

>

(
λ̃2

λ̃3

)h−1

h = 1, 2, ...

This means that, if we consider the regionR (α)
defined by a subset of constraints (4), there will always
be points of that region not inP (α). Moreover, even
consideringR (α) ∩P (α), such set will be described
by an infinite number of constraints, as shown in
Figure 2 where the case

R (α) =
{

R̃2, R̃3, λ̃2 (α) , λ̃3 (α) :

1 + R̃2λ̃
k−1
2 (α) + R̃3λ̃

k−1
3 (α) ≥ 0, k = 1, 2

}

for n = 3 is illustrated.

Now we need to appropriately decompose the set
P (α) in order to exploit Theorem 4, in this way it
is possible to solve the problem in subsets ofP (α)
defined by a finite number of constraints. It’s impor-
tant to note investigating in subsets asR (α), do not to

Fig.3: The partitioned setP1 (α) andP2 (α)

ensure all constraints (4) to hold. We propose next an
algorithm which needs only three constraints – other
thanR1 > 0 obviously – to be evaluated at each step.
We therefore consider – for a givenα – a partition
of the setP (α) in such a way that, in the case the
optimal residues and eigenvalues lie in this subset of
P (α), positivity of the impulse response is ensured
for all times. If this is not the case, we consider an-
other subset and so on, until covering the wholeP (α).
Note that, as previously stated, the number of subsets
to be considered is finite. Accordingly, we define a
sequence of subsetsPh (α) with the property that

P (α) = ∪hPh (α) (6)

and that

Ph (α) ∩ P (α) has three edges (7)

so that we also have positivity of the impulse response,
i.e.h (t) = R1e

λ1t+R2e
λ2t+R3e

λ3t > 0, ∀t > 0. In

particular, we will consider ”stripes” of the
(
R̃2, R̃3

)

plane parallel to thẽR3 axis, that is, a partition of the(
R̃2, R̃3

)
plane in regions of the lower/upper bound

kind:

Ph (α) =
{

Lh (α) ≤ R̃2 ≤ Uh (α)
}
∩ P (α)

whereLh+1 (α) := Uh (α), so that property (6) is
certainly ensured. In Figure 3 the first two set of the
above partition are depicted.

We report next a Theorem which summarizes the
above discussion:

Theorem 5.Let

P (α):=
{
R̃2, R̃3, λ̃2 (α) , λ̃3 (α) :
1+R̃2λ̃

k−1
2 (α)+R̃3λ̃

k−1
3 (α)≥0, ∀k >0

}

with R̃i 6= 0, and1 > λ̃2 (α) > λ̃3 (α) > 0. Let also



Ph (α) :=





1. R1 >0

2. if h=1 then − 1−λ̃3

λ̃2−λ̃3

≤ R̃2

3. if h>1 then − 1−λ̃3

λ̃h−1
2

(
λ̃2−λ̃3

) ≤ R̃2

R̃2 ≤ − 1−λ̃3

λ̃h−2
2

(
λ̃2−λ̃3

)

4. 1 + R̃2λ̃
h−1
2 + R̃3λ̃

h−1
3 ≥ 0





Then,

(1) P (α) is a convex set
(2) Ph (α) is a polyhedron
(3) P (α) = ∪hPh (α)
(4) Ph (α) ∩ P (α) = Ph (α)

for anyα ≥ ᾱ andh = 1, 2, ....

Finally, in view of the above theorem, we are can state
the promised algorithm, which as follows:

ALGORITHM FOR POSITIVITY OF

THREE-EXPONENTIAL MODELS.

Let theN data points behD (tj), j = 1, . . . , N

Step 1. Find a suitably large value forα>max (0,−λn)
Step 2. Let

R̃i :=
Ri

R1
λ̃i (α) :=

λi + α

λ1 + α
i = 1, 2, 3

Step 3. Let h = 1
Step 4. Solve the optimization problem

min
N∑

j=1

(hD (tj)− h (tj , θ))
2

with the constraints defined byPh (α)
Step 5. Let the solution be

θ̂T =
(
R̂1, R̂2, R̂3, λ̂1, λ̂2, λ̂3

)
.

If R̂1 or 1+ R̂2λ̂
h−1
2 (α)+ R̂3λ̂

h−1
3 (α) = 0,

then increaseα and go to Step 3. IfR̂2 =

− 1− λ̂3

λ̂h−1
2

(
λ̂2 − λ̂3

) then leth → h + 1 and go

to Step 4.
Otherwise, we are done
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