
RIPPLE-SUPPRESSED
MULTIRATE ADAPTIVE CONTROL

Mitsuaki Ishitobi, Masaki Kawanaka and Hiroaki Nishi

Department of Mechanical Engineering and Materials Science
Kumamoto University

2-39-1 Kurokami, Kumamoto 860-8555, JAPAN
E-mail: mishi@kumamoto-u.ac.jp
Phone and Fax: +81-96-342-3777

Abstract: This paper deals with adaptive control of linear time-invariant systems
with unknown parameters and with two sampling rates: a slower one for the output
and a faster one for the input. It is known that intersample ripples often arise
in the outputs of the closed-loop multirate systems although multirate control
has interesting advantages. In this paper, a ripple-suppressed multirate adaptive
control scheme is proposed. A simulation example is given to show the effectiveness
of the presented algorithm. Copyright c© 2002 IFAC
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1. INTRODUCTION

Due to the rapid development in the technol-
ogy of very large-scale integration (VLSI), digital
controllers are increasingly replacing analog con-
trollers in the design of many control systems. It
is well known that the sampling rate is a critical
design parameter in the digital computer control
of continuous-time systems. Control system per-
formance demands a fast rate of sampling while
sensor constraints restrict the achievable sampling
frequencies. In many practical cases, however, sin-
gle sampling rate systems, where the measurement
sampling rate is the same as the control update
rate, are often designed and implemented since
they are simpler than multirate sampling systems,
whereby control updates are executed at faster
rate than output samples are taken. Recently, at-
tention has been focused gradually on multirate
sampling control (Araki and Yamamoto, 1986; Al-
Rahmani and Franklin, 1992). Adaptive versions
of multirate control have been also studied (Scat-
tolini, 1988; Zhang and Tomizuka, 1988; Feliu et
al., 1990; Lu et al., 1990, 1992; Albertos et al.,

1996; Ishitobi, 1997). It is shown that intersam-
ple ripples often arise in the outputs of the closed-
loop multirate systems although multirate control
has interesting advantages (Albertos et al., 1996;
Tangirala et al., 2001). Lu et al. (1990, 1992)
presented a ripple-suppressed multirate adaptive
control scheme. Their algorithm, however, cannot
be applied to unstable plants because the param-
eter identification and the output estimation are
formulated using the output error method, and
the passivity of a plant is assumed.

This paper proposes a ripple-suppressed multirate
adaptive control scheme applicable to unstable
plants. The key ideas are that the equation er-
ror method is used in the parameter identification
and the output estimation, and that the control
input is constructed by the measured outputs, the
estimated outputs and past inputs. The estimated
outputs are obtained through a state observer and
a filter. A numerical example is given to show the
effectiveness of the proposed method.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



2. PROBLEM STATEMENT

Consider a linear time-invariant and sampled-data
system

A1(q−1)y(t) = q−dB1(q−1)u(t) (1)

where q−1 is the unit delay operator, d represents
a pure time delay, {u(t)}, {y(t)} denote the input
and output respectively and A1(q−1), B1(q−1) are
given by

A1(q−1) = 1 + a11q
−1 + · · ·+ a1nq

−n

= (1− α1q
−1) · · · (1− αnq

−1) (2)
B1(q−1) = b10 + b11q

−1 + · · ·+ b1mq−m

b10 �= 0 (3)

The system (1) is assumed to be a minimal rep-
resentation of the plant. Hence, the polynomials
A1(q−1) and B1(q−1) are coprime. Further as-
sume that the available on-line measurement data
are u(t) and y(iJ), where t = 0, 1, 2, · · · , i =
0, 1, 2, · · ·. The number J is any finite integer
larger than or equal to two. Note that {y(iJ +
k), k = 1, 2, · · · , J − 1} are not available from the
measured data.

Moreover, the following assumptions are imposed
throughout this paper.

(a) The time delay d is known.
(b) The orders of the polynomials A1(q−1) and

B1(q−1) are known. However, parameters a1i

and b1i are unknown.
(c) The polynomial B1(q−1) is stable.

The objective is to cause the output {y(t)} to
track the desired output {yr(t)}.

3. ADAPTIVE CONTROL SYSTEM

The first step is to transform the model (1) into
a form which can be identified from the available
measured data sequence.

Multiplying both sides of (1) by

C(q−1) =
n∏

i=1

(
1 + αiq

−1 + · · ·

+αJ−1
i q1−J ) (4)

provides an equivalent non-minimal form (Lu et
al., 1990) of (1)

A(q−J )y(t) = q−dB(q−1)u(t) (5)

where

A(q−J ) = A1(q−1)C(q−1)
= 1 + a1q

−J + · · ·+ anq
−nJ (6)

B(q−1) = B1(q−1)C(q−1)
= b0 + · · ·+ bm+nJ−nq

−m−nJ+n (7)

The equivalent non-minimal model (5) is conve-
nient for parameter identification and output es-
timation in multirate sampling control.

Alternatively, the input/output relationship can
be described in a regression vector form

y(t) = φ(t− 1)T θ (8)

where

φ(t−1)T
= [−y(t− J), · · · ,−y(t− nJ), u(t − d),

· · · , u(t− d−m− nJ + n)] (9)
θT = [a1, · · · , an, b0, · · · , bm+nJ−n] (10)

If the estimate of θ is denoted by

θ̂(t)T = [â1(t), · · · , ân(t),

b̂0(t), · · · , b̂m+nJ−n(t)] (11)

then the parameter adaptation algorithm is given
by

θ̂(iJ) = θ̂(iJ − J)

+
P (iJ)φ(iJ − 1)[y(iJ) − y(iJ)]
λ+ φ(iJ − 1)TP (iJ)φ(iJ − 1) (12)

P−1( iJ +J) = λP−1(iJ)
+φ(iJ − 1)φ(iJ − 1)T (13)

y(iJ) = φ(iJ − 1)T θ̂(iJ − J) (14)

0 < λ ≤ 1, P−1(0) > 0, b̂0(0) �= 0 (15)

θ̂(iJ + k) = θ̂(iJ), k = 1, · · · , J − 1 (16)

Note that θ̂(t) is not updated at the J − 1 inter-
sampling instants of the outputs y(iJ), and it is
not necessary to calculate the parameter identifi-
cation law (12)-(15).

Now define the parameter vector of the minimal
representation model (1) by

ζT = [a11, · · · , a1n, b10, · · · , b1m] (17)

and its estimated vector by

ζ̂(t)T = [â11(t), · · · , â1n(t),

b̂10(t), · · · , b̂1m(t)] (18)

then ζ̂(t) is calculated as follows.

At first, the update algorithm of ζ̂(t) at the in-
stants of the output sampling t = 0, J, 2J, · · ·, is
explained. From (6) and (7), it is obvious that

A(q−J )B1(q−1) = A1(q−1)B(q−1) (19)



Hence, using the relation

Â(t, q−J )B̂1(t, q−1)=Â1(t, q−1)B̂(t, q−1) (20)

the estimated parameter vector ζ̂(iJ) of the min-
imal model is expressed by the identified param-
eters âi(iJ) and b̂i(iJ) of the non-minimal model
(8)

M(iJ)ζ̂(iJ) = η̂(iJ) (21)

where

M (iJ)
n m+ 1

=




0 0 1 0

−b̂0
. . . â1

. . .

−b̂1
. . . 0

...
. . . 1

...
. . . −b̂0 ânJ

. . . â1

−b̂l
. . . −b̂1

. . .
...

. . .
... ânJ

0 −b̂l 0



(22)

l = m+ nJ − n

â j(iJ)

=
{

âj/J (iJ), j = kJ, k = 1, · · · , n
0, otherwise (23)

η̂ (iJ)T = [̂b0(iJ), · · · , b̂m+nJ−n(iJ),
0, · · · , 0] (24)

Since M(iJ) is not a square matrix, the pseudo
inverse matrix is used to obtain ζ̂(iJ)

ζ̂(iJ) = [M(iJ)TM(iJ)]−1M(iJ)T η̂(iJ) (25)

At the instants of the input sampling between the
output sampling, the parameter update is not ex-
ecuted as follows.

ζ̂(iJ + k) = ζ̂(iJ), k = 1, · · · , J − 1 (26)

Next, the output estimate is obtained through a
state observer and a filter.

i) State estimate at the output measurement in-
stants (t = J, 2J, · · ·)

The state space equation of the plant (1) can be
expressed as{

x(t+ 1) = Φx(t) +ψu(t)
y(t) = cTx(t), cT = [1 0 · · · 0] (27)

Since the output sampling interval is longer than
the input by J times, the state space equation
with the measurable outputs and inputs is given

by 

x(t) = ΦJx(t− J) +ψu(t− 1)

+Φψu(t− 2) + · · ·
+ΦJ−1ψu(t− J)

y(t) = cTx(t)

(28)

Hence, the state observer for (28) is designed by
ẑ(t) = F ẑ(t− J) + ĝ(t)y(t− J)

+ψ̂1(t)u(t− 1) + · · ·
+ψ̂J (t)u(t− J) (29)

F =




−f1 1 · · · 0
...

. . . . . . 1
−fn 0 · · · 0




ĝ(t) =




f1 − âJ1

...
fn − âJn




ψ̂i(t) = Ĥ0(t)Φ̂k−1(t)ψ̂(t), k = 1, · · · , J

where F is a stable matrix, Ĥ0(t) is a non-singular
matrix which transforms (28) to the observable
canonical form, and âJk(t) (k = 1, · · · , n) is the
coefficient of the term with the order (n − k) for
the characteristic polynomial of Φ̂J(t) which is the
estimate of ΦJ . Hence, the estimated state space
variable is obtained as

x̂(t) = Ĥ−1
0 (t)ẑ(t) (30)

ii) State estimate at the intersampling instants of
the output measurement (t �= J, 2J, · · ·)

The state estimate is constructed by the following
filters.


x(t) = Φ̂(t− 1)x̂(t− 1)
+ψ̂(t− 1)u(t − 1)
t = J + 1, 2J + 1, · · ·

x(t) = Φ̂(t− 1)x(t− 1)
+ψ̂(t− 1)u(t − 1)
t �= J + 1, 2J + 1, · · ·

(31)

These filters generate the output estimate

ŷ(t) = cTx(t), t �= 0, J, 2J, · · · (32)

The input is calculated by the following steps. We
give an asymptotically stable polynomial

Ar(q−1) = 1 + d11q
−1 · · ·+ d1hq

−h,

h ≤ n+ d− 1

Next, the polynomials R(t, q−1) and S(t, q−1) are
determined by solving the following polynomial
equation

Ar(q−1) = Â1(t, q−1)R(t, q−1)



+q−dS(t, q−1) (33)

where

R(t, q−1) = 1 + r1(t)q−1 + · · ·
+rd−1(t)q−d+1 (34)

S(t, q−1) = s0(t) + s1(t)q−1 + · · ·
+sn−1(t)q−n+1 (35)

Finally, the adaptive control law is given by

u(t) =
1

b̂10(t)
[Ar(q−1)yr(t+ d)

−S(t, q−1)ỹ(t)− {B̂1(t, q−1)R(t, q−1)

−b̂10(t)}u(t)] (36)

where

ỹ(t) =
{

y(t) t = 0, J, 2J, · · ·
ŷ(t) t �= 0, J, 2J, · · ·

It is worth noting that the output estimates ŷ(t)
at the input sampling instants (t �= 0, J, 2J, · · ·)
are used in the input (36) because real values of
the output are not measured between the output
sampling instants.

Remark 1: The parameter identifier (12)-(15) is an
equation error method. An output error method
for parameter estimation was proposed by Lu et
al. (1990). It was shown that the output error
method requires the stability of plants (Lu et al.,
1990).

4. CONVERGENCE ANALYSIS

The convergence properties of the multi-rate
adaptive control system derived in the previous
section are developed under the persistency of ex-
citation (PE) condition.

The estimation model (5) is an overparameter-
ized one. In general, parameter estimates converge
to a linear hypersurface in an overparameterized
model even if the PE condition is satisfied (Lu and
Fisher, 1989; Heymann, 1988). However, since the
monic common factor polynomial (4) is unique in
the multi-rate sampling systems, the limiting lin-
ear hypersurface reduces to a point; the true pa-
rameter vector. In other words, the estimated pa-
rameter vector θ̂(t) approaches the true parameter
vector θ under the PE condition (Lu and Fisher,
1989).

When the estimated parameter vector θ̂(iJ)
coincides with the true value θ, the ma-
trix

[
M(iJ)TM(iJ)

]
is nonsingular since the

polynomials A1(q−1) and B1(q−1) are coprime
(Kawashima, 1993). Hence, the estimated param-

eter vector ζ̂(iJ) of the minimal model is obtain-
able with probability 1 under the PE condition,
and converges to the true value vector ζ when
θ̂(iJ) tends to θ; that is, the polynomial equation
(20) is solvable. If the matrix

[
M(iJ)TM(iJ)

]
is

singular at some time iJ , the estimated vector ζ̂(t)
at the previous time t = iJ − J can be used.

It is obvious that the state observer ((29) and (30))
makes x̂(iJ) to go to the true vector x(iJ) at the
output sampling instants when the estimated pa-
rameters vector ζ̂(iJ) of the minimal model (1)
tends to the true one ζ.

Next, if the estimated state vector x̂(iJ) reaches
the true vector x(iJ) at the output sampling in-
stants, the estimated vector x(t) of the filters
at the intersampling instants of the outputs also
tends to the true value x(t) because the first fil-
ter of (31) consists of the estimated state vector
x̂(iJ).

Moreover, the estimated output ŷ(t) also goes to
the true output y(t) at the intersampling instants
of the outputs t �= J, 2J, · · ·, though they are not
measured.

Finally the input leads to the relation

Ar(q−1)(yr(t+ d)− y(t+ d))→ 0 (37)

since the control law (36) is the same as the case of
single-rate sampling control except that the out-
put estimates are used instead of the true values
of the output at the intersampling instants of the
outputs. The equation (37) implies the achieve-
ment of the tracking since Ar(q−1) is a stable poly-
nomial.

As a result, we have the following theorem.

Theorem: The tracking is achieved and all signals
are bounded for all time under the persistency of
excitation (PE) condition.

Remark 2: It is not hard to understand that the
tracking is achieved not only at the output mea-
surement instants but also at the input update in-
stants. Therefore, the ripple at the intersampling
instants of the output measurement is suppressed.

5. A NUMERICAL EXAMPLE

This section shows simulation results obtained
when the proposed multirate adaptive control al-
gorithm is applied to a second order system. Con-
sider a plant with a continuous-time transfer func-
tion expressed as

G(s) =
2s+ 1

(s+ 1)(s− 2) (38)



When a discrete-time system is composed of a
zero-order hold, the continuous-time system G(s)
and a sampler in series, the sampled output y(t) is
related to the sampled input u(t) by the following
equation

A1(q−1)y(t) = q−1B1(q−1)u(t) (39)

where

A1(q−1) = 1 + a11q
−1 + a12q

−2 (40)
B1(q−1) = b10 + b11q

−1 (41)

If the sampling period Ts of the input is selected
as 0.024, the corresponding discrete-time system
has the following parameters


a11 = −2.02545637
a12 = 1.02429032
b10 = 0.04888031
b11 = −0.04829729

(42)

Here, the polynomial B1(q−1) is stable.

Assume that the output sampling period is 0.12.
In other words, the output y(t) can be measured
only once in every five control updates, i.e., J = 5.

Note that the adaptive control algorithm proposed
by Lu et al. (1990) cannot be applied to the plant
(39) since it is not stable.

The desired output is given by the output of the
discrete-time system for a transfer function

Gr(s) =
1

2s+ 1
(43)

The input of Gr(s) is a rectangular wave signal
with amplitude 1.0 and with period tTs = 20 (833
steps) to satisfy the PE condition.

The initial values of the estimated parameters and
the design parameters are chosen as



â1(0) = −2.158, â2(0) = 1.127
b̂0(0) = 0.04888, b̂1(0) = 0.05071
b̂2(0) = 0.05264, b̂3(0) = 0.05468
b̂4(0) = 0.05683, b̂5(0) = −0.04639
b̂6(0) = −0.04794, b̂7(0) = −0.04958
b̂8(0) = −0.05132, b̂9(0) = −0.05316

(44)

P (0) = 1000I, λ = 0.99, (45)
Ar(q−1) = 1− 0.8q−1 (46)

The initial values of the output, the state observer
and the filter are set as zero.

Figure 1 illustrates the output and the desired out-
put. Figure 2 shows the input trajectory. The

estimated parameters of the polynomials A1(q−1)
and B1(q−1) are shown in Figs.3-6.

The output approaches the desired output.

6. CONCLUSIONS

This paper gives a ripple-suppressed multirate
adaptive control algorithm. It is applicable to un-
stable systems. The proposed scheme is based on
the equation error method in parameter identifi-
cation. Further, the control input is constructed
by the measured outputs, the estimated outputs
and past inputs. In addition, the estimated out-
puts are obtained through a state observer and a
filter. A numerical example is shown to indicate
the effectiveness of the proposed method.
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