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Abstract: A controller is developed for underactuated surface ships with only surge force
and yaw moment available to globally track a reference trajectory generated by a suitable
virtual ship in a frame attached to the ship body. The control development is based on
Lyapunov’s direct method and backstepping technique, and utilizes several properties of
ship dynamics and their interconnected structure. Numerical simulations validate the

proposed controller. Copyright @ 2002 IFAC
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1. INTRODUCTION

This paper concentrates on the global tracking
control of surface ships with only sway force and
yaw moment available. The study is interested in
designing a controller such that it makes the position
(sway and surge) and orientation (yaw angle) of
surface ships track the reference position and
orientation generated by a virtual reference ship.
Since the interested surface ships have fewer
numbers of actuators than degrees of freedom to be
controlled and the constraint on the acceleration
(Reyhanoglu 1997, Pettersen 1996 and Sordalen and
Engeland 1995) is nonintegrable, they are a class of
underactuated systems with nonintegrable dynamics.
Godhavn (1996) used a continuous time invariant
state feedback controller to achieve global
exponential position tracking under an assumption
that the reference surge velocity is always positive.
Unfortunately, the orientation of the ship was not
controlled. Pettersen and Nijmeijer (1998) provided a
high gain based semiglobal tracking result. Behal et
al. (2000) designed a global tracker based on a
transformation of the ship tracking system into the
so-called convenient form (Dixon et al. (2000)). The
dynamics of closed loop system is increased.

This paper proposes a constructive procedure to
develop a controller to make design an underactuated
surface ship with only surge force and yaw moment
available track a reference trajectory generated by a
virtual ship. The control development at the velocity
level was based on the Lyapunov’s direct method and
utilized several nature properties of the underactuated
ship dynamics. Based the backstepping technique
(Krstic et al. 1995), the controls at the force and
moment level ware designed. The proposed
controller guarantees the global asymptotic and local
exponential convergence of the tracking error to the
origin. In addition, the reference surge and sway
velocities are not required to be generated by the
virtual ship. Simulations on a monohull ship with the

length of 32 m and mass of 118x10° kg illustrate
the effectiveness of the proposed controller.

2. PROBLEM FORMULATION

The underactuated ship moving in surge, sway and
yaw can be described as
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where X,y and ( are the surge displacement, sway
displacement and yaw angle in the earth fixed frame,
u,v and r denote surge velocity, sway velocity, yaw
velocity. The positive constant terms
dj; and mj, j=1+3 denote the hydrodynamic
damping and ship inertia including added mass in
surge, sway and yaw. The available controls are the
surge force T, and the yaw moment T7,. The

reference trajectory is generated by
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where all the variables have similar meaning as in
system (1) for the virtual reference ship. The global
transformation of coordinates (Pettersen 1996)
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and a similar transformation for the reference virtual
ship were used to transform system (1) into
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and a similar set of differential equations for the
virtual ship. By introducing the auxiliary tracking
variables

Zie =7 — %4, S1<3,Uu, =U—Uy,V,
and r,=r-ry, the auxiliary tracking error dynamics
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are written as
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Then the problem of tracking control was converted
into that of stabilizing (5) at the origin. The first
complete state tracking controller was developed by
Pettersen and Nijmeijer (1998) and yielded the global
practical stability. Based on the work in Jiang and
Nijmeijer (1999), Pettersen and Nijmeijer (2000)
proposed a  controller that  semi-globally
asymptotically stabilized (5). A global tracking result
based on a cascaded approach was proposed in
(Lefeber (2000)). The stability analysis was based on
theory of the linear time varying systems. A recent
result on global tracking control of the underactuated
surface ship based on Lyapunov’s direct method and
passivity approach was proposed by Jiang (2001).
However, the quadratic function to design the control
at the velocity level was motivated from that for the
standard chain form system (Jiang and Nijmeijer
(1999. 1t is difficult to determine the control gains.

This paper proposes a method to design a controller
such that it makes the position and orientation

X,y and  of the ship model (1) globally

exponentially track a reference trajectory generated a
suitable virtual ship as
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We assume that the reference trajectory,
Xg,Yq and @4, and reference velocity, Ugand ry,

are bounded and differentiable once and ry satisfies:

Assumption 1. There exists a constant o such that,
for any pair of (t,,t),0<t, <t <o,

t
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We introduce the position errors X— X4 and y— Yy

in a frame attached to the ship body. This results in
the error coordinates as
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We also define the velocity tracking errors
as U =U—Ug,Ve =V—Vy and rg =1 —ry. Taking
the first time derivative both sides of (8) along the
solution of (1) and (6) yield
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Hence in the sequel, stabilization of the system (9) is
addressed.

3. CONTROL DESIGN

Step 1.For convenience, we write the error dynamics
in . and r, separately as
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ms; Ms; ms;

It is straightforward to design a control T, without
canceling the useful damping term as
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where k; and k, are positive constants, and

e =rt k.. Take the Lyapunov function
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whose the first time derivative along the solution of
(10) and (11) satisfies
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is clear that the system (10) is globally exponentially
stable at the origin, i.e., for any pair of initial
conditions (Y.(ty),re(ty)) and any initial time
instant t, >0, the solution (Y (t),r.(t)) exists for

each t >t and satisfies
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for some constants {; >0 and {, >0.

Sep 2. The control T,
exponentially stabilize (9) with the control 7, given

is designed to globally

in (11) in two sub-steps. For convenience, we write
the system (9) without (10), which is already
designed to be globally exponentially stable at the
origin as
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Sub-step 2.1. We start by defining the virtual control

error as Uy, = Ug — u . Then (15) can be written as
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To design ug that stabilizes the first three equations

of (16), we consider the following quadratic function
|
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where k and k; are positive constants to be chosen

later. Taking the first time derivative of (17) along
the solution of (16), after some manipulation, yields
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We now design the virtual velocity control ug as
d _
Ue =~k X, +Ksry (ve+k3ye), (19)

where Kk, and ks are positive constants to be

selected later. Substituting (19) into (18) results in
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Sub-step 2.2. We take the quadratic function
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It is now straightforward to design the control 7,
without canceling the damping term as
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where K, is a positive constant. Substituting (27)
into (26) yields
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From the above control design procedure, we require
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All the constants K, 1<i <6 in (29) are computed
in order as follows
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Theorem 1. Under the assumptions that the reference
trajectory (Xy,Yq) 1S bounded, the reference

velocities Uy and ry and their first time derivatives
are bounded, and rysatisfies assumption 1, the

tracking control problem posed in section 2 is solved
by the controls (11) and (27). In particular, letting

Xe = [Xe, ye,l,lle,ue,ve,re]-r , there exists a K-
function y and a constant 0 >0 such that for any
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Proof. We first show that there exists a positive time
varying coefficient c(t) such that
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To simplify representation in the proof of (32), by
defining
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where &, and &, are some positive constants. We
now show that there exist 0 <& <c; and &, >0
such that
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manipulation, (35) can be written as
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Next, we show that there exists a time varying vector
valued signal & O R? that exponentially converges to
zero such that Q defined in (21) satisfies
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where Yy, and y, are class K-functions, and

o, and 0, are positive constants. By noting that
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By noting from (14) that ¢y, and r, exponentially
converge to zero and that uy,vy and ry are bounded

by assumption, hence (41) follows from (45) readily.
Substituting (41) into (32) yields
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We now consider the following differential equation
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It can be seen that there exists a positive constant
0, <min(0,,0,) and a positive constant 05 such
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and a positive constant 0, such that
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From (51) and (46), by comparison principle (Khalil
1992), (31) follows readily.

4. SIMULATIONS

This section validates the control laws (26) and (27)
by simulating them on a monohull ship with the

length of 32 m, mass of 118x10° kgand other

parameters calculated by wusing Marintek Ship
Motion program version 3.18 as

m, =120x10° kg, m,, =177.9x10° kg, my; = 636x10° kgm®,

d;; =215x10% kgs ™, d,, =497x10% kgs', d; =802x10*kgm?’s™.
In the simulation, based on (30), the control
parameters are taken and computed as

£=0.Lk =05,k, =1, k =102.5,k; =0.24, k, =0.35,
ks =20.7,k; = 6.

The initial conditions are chosen as

[X(0), y(0), ¢(0),u(0),v(0), 7 (0)] =

—5m,—5m,0.5rad, Oms”! ,0 ms™ R Orads'l] '

The reference trajectory is generated by a virtual ship
with the initial conditions as

[X4 (0), Yg (0, Wg (0),v4(0)] = [om, = 0m,0 rad, 0 ms™! |
and the
Uy =1ms™ and ry =0.1rads™. This choice means

reference velocities as

that the reference trajectory is a circle with a radius
of 10 m.

The tracking trajectory in (X,y) plane is plotted in
Figure 1. It can be seen that the tracking errors
asymptotically converge to zero as proven in
Theorem 1. Due to space limitation, comparison with
other tracking controllers available for underactuated
ships is omitted.

5. CONCLUSIONS

The constructive approach has been proposed in this
paper to develop a controller to make design an
underactuated surface ship with only surge force and
yaw moment available track a reference trajectory
generated by a virtual ship in the ship body frame.
The proposed controller guarantees the global
exponential and local exponential, in sense of
Lyapunov, convergence of the tracking error to the
origin. Simulation results validated the effectiveness
of our proposed controller.

20

15

10

y, yd

Figure 1. Tracking trajectory in (X,y) plane, (X, Y):
solid, (Xg4,Yq) : dash.
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