
HYBRID SOFT COMPUTING APPROACHES TO
IDENTIFICATION OF NONLINEAR SYSTEMS

Shigeyasu Kawaji ∗

∗ Graduate School of Science and Technology
Kumamoto University

2-39-1 Kurokami, Kumamoto 860-8555, Japan
kawaji@cs.kumamoto-u.ac.jp

Abstract: This paper is concerned with the identification of nonlinear systems by
utilizing of hybrid soft computing approaches. Based on the flexibly computational
structure of the tree, a unified framework is constructed in which various soft
computing models can be developed, evolved and evaluated. In this framework, the
architecture of the hybrid soft computing models is created and evolved by using the
modified probabilistic incremental program evolution (MPIPE) algorithm, and the
parameters used in hybrid soft computing models can be optimized using a class of
optimization techniques. Simulation results for the identification of nonlinear systems
show the feasibility and effectiveness of the proposed method.

Keywords: Modified Probabilistic Incremental Program Evolution, Hybrid soft
computing, Random search, Identification, Nonlinear system

1. INTRODUCTION

Soft computing approaches have been successfully
applied to many engineering and scientific fields in
recent years, especially for the identification and
control of nonlinear systems. These methodologies
have shown some advantages in dealing with a
number of difficult identification and control prob-
lems than the conventional approaches [1][2].

The system identification and controller design
problem have been studied under a variety of titles
including neural networks [3]-[5], fuzzy systems
[6]-[8] and evolutionary computation approaches
[9]. The basic idea of these methods is that the
nonlinear system identification and control prob-
lem can be posed as a nonlinear function approx-
imation problem. Thus, the performance of the
identification and controller depends largely on
the characteristics of the approximators.

In this paper, based on the flexible computational
structure of the tree, a unified framework is con-
structed in which various soft computing models
can be developed, evolved and evaluated. In this
framework, the architecture of the hybrid soft
computing models is created and evolved using
modified probabilistic incremental program evolu-
tion (MPIPE) algorithm [10]-[12], and the related
parameters are optimized by a combination of
least square and random searcch algorithms.

The paper is organized as follows: Section 2 gives
a unified framework for evolving the hybrid soft
computing models and its learning algorithm.
Some simulation results to confirm the feasibility
and effectiveness of the proposed methods are
presented in Section 3. Finally in section 4 we
present some conclusions and future works.

2. HYBRID SOFT COMPUTING: A UNIFIED
FRAMEWORK

The basic idea is that if a soft computing model
can be represented as a type constrained sparse
tree, some advantages may be appeared. First, the
different architecture of soft computing models
can be created via creating the different trees.
And then some tree structure based evolutionary
algorithms, i.e., a modified PIPE algorithm can
be used to evolve the architecture of the soft
computing models.

2.1 Representation and calculation

In our previous work [19], multilayer peceptron
networks and additive and direct neurofuzzy mod-
els have been represented and calculated as type
constrained sparse tree, and evolved using MPIPE
and random search algorithm.

In what follows, we focus on the tree structural
representation of the basis function networks, in

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

which each of the basis function networks can be
coded as a type constrained sparse tree. There is
no need to encode and decode between the tree
and the basis function networks in the calculation
of the basis function networks. So, the optimiza-
tion of the basis function networks can be directly
replaced by the evolutionary induction of the type
constrained sparse tree.

The node’s instruction of the tree in the layer 0,
1 and 2 is selected from the different instruction
sets. Three instruction sets I0, I1 and I2 are used
in the creation of the tree. The instruction I0 is
used to control the size of hidden layer of the
basis function networks or the number of basis
functions. The instruction I1 is used for a selecting
the components of the basis functions in VPBF
networks and to control the connection ways in
other basis function networks. The instruction I2
is used to select the inputs neurons.

In the following, the type constrained sparse tree
(genotype) and its corresponding the basis func-
tion networks are given in detail.

2.2 Volterra Polynomial Basis Function Net

A network whose basis functions consist of the
Volterra polynomials is named as the Volterra
polynomial basis function network [15][16]. For
function approximation, the usually used Volterra
polynomial basis functions is

φ = {φ0(x), φ1(x), . . . , φN (x)}
= {1, x0, x1, . . . , xn, x0x1, x0x2, . . . , x0xn, x1x2,

x1x3, . . . , x1xn, . . . , xn−1xn, x0
2, . . . , xn

2} (1)

where N = (n + 1)(n + 2)/2 is the number of
Volterra polynomial basis functions, and n is the
number of inputs. Then, the nonlinear function
can be represented/approximated as

f(x) =
N∑

i=0

ωi ∗ φi(x) +O(x3) (2)

where O(x3) represents the model mismatch. For
complex approximation problems, the higher or-
der Volterra polynomial basis functions may be
needed. One of type constrained sparse trees rep-
resented as a VPBF-NN is shown in Fig.1. The
used instruction sets for generating the tree are I0
= {+2, . . . ,+N}, I1 = {R, x0, x1, . . . , xn, ∗2, ∗3}
and I2 = {x0, x1, . . . , xn}, where instruction +N
is used to control the number of Volterra polyno-
mial basis functions for approximating the nonlin-
ear functions at hand, the instruction ∗2 and ∗3
are used to select the higher components of the
Volterra polynomial basis function set.

The main problem of optimizing the VPBF-NN
is determination of network architecture and es-
timation of the corresponding parameter for each
Volterra polynomial function.

xn

1 x0 x1 *2 *3*2

+N

xn *2 *3...

x0 x1 x1 x2 xn xn x0 x1 x2 xn xn

Fig. 1. A tree structural representation of VPBF
network

+N

+n +n +n

x1 x2 xn x1 x2 xn x1 x2
xn

w0
w1

wN-1

Fig. 2. A type constrained sparse tree (genotype)

x1

x2

xn

w0

w1

wN-1

Fig. 3. Corresponding basis function network of
the type constrained sparse tree (phenotype)
in Fig.2

2.3 GRBF, B-spline, Wavelet, Fuzzy Basis, Recu-
rrent Fuzzy Neural, and Local linear GRBF Net
and Trees

One of the type constrained sparse tree and its
corresponding GRBF (B-spline, wavelet, fuzzy,
recurrent fuzzy neural and local GRBF basis func-
tion) network is shown in Fig.2 and Fig.3, respec-
tively. The used instruction sets for generating the
tree are I0 = {+2, . . . ,+N}, I1 = {+n} and I2
= {x1, x2, . . . , xn}. N is used to control the num-
bers of hidden neurons which is also the number
of basis functions in the hidden layer of the basis
function networks, and n is the number of inputs
of the basis function networks.

• GRBF Network

The used Gaussian radial basis function is given
by

φi(x) = exp(−‖ x− ci ‖2

di
2) (3)

where φi(x) is i-th Gaussian radial basis function,
x ∈ Rn is input vector, ci and di are the center
and width of i-th basis function. Thus, the output
of whole tree in the Fig.2 is calculated as

y =
N−1∑
i=0

ωi ∗ exp(−‖ x− ci ‖2

di
2) (4)

The objective of optimization of GRBF networks
is determination of the number of basis functions,

the center and width of each Gaussian radial basis
functions by appropriate methods.

• B-spline Network

The B-spline functions can be defined in a recur-
sive way as

B0(t) =

{
1, t ∈ [−1

2
,
1
2
]

0, otherwise
(5)

Bm(t) = (Bm−1 ∗B0)(t) (6)

Then, the translation and dilation of B-spline
function of order 2 is given by

fa,b(t) =B2(
t− b

a
) (7)

For the n-dimensional input space x = [x0, x1, . . .
, xn−1], the multivariate B-spline functions is se-
lected by the product of single B-spline functions
in (7) as

Ni(x) =
n−1∏
j=0

B2(
xj − bj
aj

) (8)

Thus, the output of whole tree in the Fig.2 is
calculated as

y =
N−1∑
i=0

ωi ∗Ni(x) =
N−1∑
i=0

ωi ∗
n−1∏
j=0

B2(
xj − bj
aj

)(9)

The objective of optimization of B-spline networks
is determination of the number of basis functions,
the center and width of each B-spline basis func-
tions. It can be seen that in contrast to the usually
methods the pre-partition of input space is not
needed in our approach.

• Wavelet Neural Network

Given the mother wavelet, a family of equally
shaped functions by shifts in time (translation)
and scaling (dilation) can be obtained as

ψa,b(t) =
1√|a|ψ(

t− b

a
), a �= 0, a, b ∈ R (10)

For the n-dimensional input space x = [x1, x2,
. . . , xn], the multivariate wavelet basis function is
calculated by the product of n single wavelet basis
functions in (10) as

si(x) =
n∏

j=1

1√|aj |
ψ(
xj − bj
aj

) (11)

Thus, the overall output of the wavelet basis
function network is calculated as

y =
N−1∑
i=0

ωi ∗ si(x) =
N−1∑
i=0

ωi ∗
n−1∏
j=0

1√|aj |
ψ(
xj − bj
aj

)

(12)
The problem in designing the wavelet basis func-
tion network is to determine the optimal network

size (the numbers of the wavelet basis functions),
the parameter aj and bj (j = 0, 1, . . . , (N−1)∗(n−
1)) for each single wavelet basis function. It can
be seen that in contrast to the usually methods
the pre-determining of the parameter aj and bj is
not needed in our approach.

• Fuzzy basis function Networks

In adaptive fuzzy systems, the fuzzy rule is repre-
sented as (T-S Model)

if x0 is Ai0 and x1 is Ai1 ... and xn−1 is Ai(n−1),
then yi = bi0x0 + bi1x1 + ...+ bi(n−1)xn−1 + bin

(i=0, 1, ... N-1)

When algebraic operators are used to implement
fuzzy logic functions, the real valued inputs are
represented via fuzzy membership function, and a
center of defuzzification method is used, then the
output of fuzzy basis function network is given by

y =
N−1∑
i=0

φi(x) ∗ ωi (13)

φi(x) =

∏n−1
j=0 µAij (xj)∑N−1

i=0

∏n−1
j=0 µAij (xj)

(14)

Thus, the output of the fuzzy basis function
networks or corresponding tree is calculated as

y =
N−1∑
i=0

ωi ∗
∏n−1

j=0 µAij (xj)∑N−1
i=0

∏n−1
j=0 µAij (xj)

(15)

The objective is that directly learning and evolv-
ing the number of fuzzy rules, determining the
parameters of each fuzzy membership functions,
and optimizing the corresponding weight of each
fuzzy basis functions for fitting a given data set. In
our experiments of this research the selected fuzzy
membership function is Cauchy function. It is also
valuable to mention that the initial fuzzy partition
of input space is not needed in our approaches.

• Recurrent Fuzzy Neural Network

In RFNN, an extention of usual FNN the feedback
connections are added in the second layer of FNN,
and The input/output representation of RFNN

y(k) =
m∑

j=1

ωmj

n∏
i=1

exp(− (xi(k) +O2
ij(k − 1) · θij −mij)2

(σij)2
) (16)

O2
ij(k − 1) =

exp(− (x(k − 1) +O2
ij(k − 2) · θij −mij)2

(σij)2
) (17)

where n is the number of input variables, and m is
the number of term nodes for each input variable.
The used membership function is the Gaussian
function as,

µij = exp(− (xij −mij)2

(σij)2
) (18)

where mij and σij are the center and the width
of Gaussian membership function. The subscript
ij indicates the j-th term of the i-th input xi.

• Local Linear Gaussian Basis Function Network

Local linear Gaussian basis function network is an
extended radial function network which obtained
by replacing the output layer weights with linear
function of the network inputs. Each neuron rep-
resents a local linear model with its corresponding
validity function. Furthermore, the radial basis
function network is normalized, i.e., the sum of all
validity functions for a specific input combination
sums up to one. The Gaussian validity functions
determine the regions of the input space where
each neuron is active. The input space of the net is
divided into N hyper-rectangles each represented
by a linear function.

The output of a local linear Gaussian basis func-
tion network with n inputs x1,x2,. . ., xn is calcu-
lated by summing up the contributions of all N
local linear models

y =
N∑

i=1

(ωi0 + ωi1x1 + . . .+ ωinxn)φi(x) (19)

where ωij are the parameters of the ith linear
regression model and xi is the model input. The
validity functions φi are typically chosen as nor-
malized Gaussian weighting function:

φi(x) =
µi∑N

j=1 µj

(20)

: µi = exp(−1
2

(x1 − ci1)2

σ2
i1

− . . .− 1
2

(xn − cin)2

σ2
in

)

2.4 The Proposed Learning Algorithm

2.4.1. PIPE and MPIPE

PIPE is a recent discrete method for automated
program synthesis[12], which contains probability
vector coding of program instructions, population-
based incremental learning and tree-coded pro-
grams like those used in variants of genetic pro-
gramming. The main principle of PIPE algorithm
is that it increases the probability of the best
program to be found by using adaptive tuning
of the probability distribution for choosing the
proper instructions.

In order to construct a unified framework of
hybrid soft computing models, PIPE is modified
as follows: (1) the sparse tree is constrained by
using different instruction sets; (2) the specified
data structure is added to the node of the tree for
dealing with the parameter learning problem; (3)
the initial probability of selecting instructions and
the mutation probability are modified accordingly.

2.4.2. Structure Optimization

The probability of selecting instruction in the
instruction set I0, I1 and I2 are initialized as

P (Id,w) =
1
li
, ∀Id,w ∈ Ii, i = 0, 1, 2 (21)

where Id,w denotes the instruction of the node
with depth d and width w, li is the number of
instructions in the instruction set Ii. Then, the
learning procedure for structure optimization can
be summarized as follows:

1) Initially a population of the tree (include the
parameters attached to the nodes) is randomly
generated according to the predefined the proba-
bility of selecting instructions.

2) Let PROGb
and PROGel

be the best program of
the current generation (best program) and the one
found so far (elitist program), respectively. Define
the probability and the target probability of best
program as

P (PROGb
) =

∏
Id,w :used to

generate PROGb

P (Id,w) (22)

and

PTARGET = P (PROGb
)

+(1 − P (PROGb
))
ε+ FIT (PROGel)
ε+ FIT (PROGb

)
(23)

where FIT (PROGb
) and FIT (PROGel) denote

the fitnesses of the best and elitist programs. In
order to increase the probability P (PROGb

), the
following process is repeated until P (PROGb

) ≥
PTARGET :

P (Id,w) = P (Id,w) + clr · lr · (1 − P (Id,w))(24)

where clr is a constant influencing the number of
iterations and ε is the fitness constant.

3) Define the mutation probability as

PMp =
PM

(l0 + l1 + l2) ·
√|PROGb

| (25)

where |PROGb
| denotes the number of nodes in

program. All the probabilities P (Id,w) are mu-
tated with probability PMP according to

P (Id,w) = P (Id,w) +mr · (1 − P (Id,w))(26)
4) Repeat this process according to the new prob-
abilities of selecting instructions in the instruction
sets until the best structure found or the maxi-
mum number of MPIPE algorithm is reached.

2.4.3. Parameter Optimization

A number of parameter tuning strategies, i.e., ge-
netic algorithms, gradient descent methods, evo-
lutionary programming and random search algo-
rithm can be used to adjust the parameters used

in hybrid soft computing models. In this research,
the linear-in-parameters are optimized by least
square and the nonlinear-in-parameters are opti-
mized by a random search algorithm [17].

2.4.4. The Proposed Algorithm

The proposed hybrid algorithm can be summa-
rized as follows:

1) Set the initial values of parameters used in
the PIPE and random search. Set the elitist
program as NULL and its fitness value as a
biggest positive real number of the computer
at hand. Create the initial population (tree)
and corresponding weights, parameters used
in the basis functions.

2) Structure optimization by PIPE algorithm,
in which the fitness function is calculated by
Mean Square Error (MSE)

Fit(i) =
1

P − 1

P∑
j=0

(yj
1 − yj

2)
2 (27)

where P is the total number of samples, yi
1

and yi
2 are the actual and model output of

i-th sample Fit(i) denotes the fitness value
of i-th individual.

3) If the better structure found, then go to step
4), otherwise go to step 2). The criterion
concerning with better structure found is
distinguished as follows: if the fitness value
of the best program is smaller than that of
the elitist program, or the fitness values of
two programs are equal but the nodes of the
former is lower than the later, then the better
structure is found.

4) Parameter optimization, in which the param-
eter vector W (k) of best program (tree) is
taken out from the population and is opti-
mized in order to decrease the fitness value
of best program.

5) If the maximum number of random search is
reached, then go to step 6); otherwise go to
step 4).

6) If a satisfied solution is found, then stop;
otherwise go to step 2).

3. EXPERIMENTS

We present some simulation results to verify the
effectiveness of the proposed method for identifi-
cation of nonlinear system.

The used parameters in MPIPE is shown in Table
1. And the initial values of parameters in random
search are listed as

β0 = 0.1, β1 = 1000, α = 0.995, φ0 = 0.1,
φmin = 0.001, Isf0 = 10, Psf0 = 0.3, �Isf1 =
0.02, �Isf2 = 0.1, Isfmax = 100, Ker = 1.001,
ci = 1.01, and cd = 0.995.

Table 1. Parameters of MPIPE Algo-
rithm

Population Size PS 10

Elitist Learning Probability Pel 0.01

Learning Rate lr 0.01

Fitness Constant ε 0.000001

Overall Mutation Probability PM 0.4

Mutation Rate mr 0.4

Prune Threshold TP 0.999999

Initial Weights [-0.5, 0.5]

Example 1

The first plant to be identified is a benchmark
nonlinear autoregressive time series

y(k) = (0.8 − 0.5exp(−y2(k − 1)))y(k − 1)

−(0.3 + 0.9exp(−y2(k − 1)))y(k − 2)

+0.1sin(3.1415926y(k− 1)) + e(k) (28)

where the noise e(k) was a gaussian white se-
quence with mean zero and variance 0.02. Among
600 data points generated, the first 500 points
were used as an estimation data set and 100 data
as a validation data set. The input vector is set as
x = [y(k − 1), y(k − 2)].

Example 2

The second plant to be identified is given by the
following equation [5]
y(k + 1) =
y(k)y(k − 1)y(k − 2)u(k − 1)(y(k − 2) − 1) + u(k)

1 + y2(k − 1) + y2(k − 2)
(29)

The input and output of system are x(k) =
[u(k), u(k−1), y(k), y(k−1), y(k−2)] and y(k+1),
respectively.

The training samples and the test data set are
generated by using input signal of (30) and (31),
respectively.

u(k) =



sin

(
2πk
250

)
, if (k < 500)

0.8sin
(

2πk
250

)
+ 0.2sin

(
2πk
25

)
,

if (k >= 500)

(30)

u(k) = 0.3sin(kπ/25) + 0.1sin(kπ/32)
+0.1sin(kπ/10) (31)

The simulation results for Examples 1 and 2 are
shown in Table 2. From the simulation results, it
can be seen that the proposed method works very
well for generating the different basis function
networks. For the comparison, the VPBF net-
work in general has smaller number of parameters,
good approximation ability and fast convergence
speed for current examples. In general, the evolved
GBRF, B-spline and fuzzy basis function networks

Table 2. The number of parameters, the
training and test error of the evolved

basis function networks

Experiment No. of MSE for MSE for
para. training validation

Ex. 1 VPBF 7 0.000587 0.000596

Ex. 1 GRBF 72 0.000602 0.000653

Ex. 1 B-spline 80 0.000523 0.000618

Ex. 1 Wavelet 75 0.000471 0.000537

Ex. 1 FNN 80 0.000662 0.000570

Ex. 1 RFNN 96 0.000362 0.000371

Ex. 1 LRBF 96 0.000427 0.000450

Ex. 2 VPBF 13 0.000041 0.000071

Ex. 2 GRBF 77 0.000151 0.000126

Ex. 2 B-spline 209 0.000133 0.000097

Ex. 2 Wavelet 209 0.000179 0.000121

Ex. 2 FNN 176 0.000141 0.000065

Ex. 2 RFNN 156 0.000113 0.000055

Ex. 2 LRBF 149 0.000124 0.000087

have smaller size and parameters than the conven-
tional approaches.

4. CONCLUSION

Based on the flexibly computational structure of
tree, a unified framework for evolving the basis
function networks has been proposed in this pa-
per. Simulation results show that the evolved basis
function networks are effective for the identifica-
tion of nonlinear systems.

The study has shown that (1) it is possible and
effective to construct a unified soft computing
model in which it is important to find a proper
representation of the soft computing models, and
(2) it is difficult yet to make a banlance bewteen
the structure and parameter learning. These forms
our future research interestings.

5. REFERENCE

[1] J. Sjoberg et al. (1995). Nonlinear black - box
modeling in system identification: a unified
overview. Automatica. Vol.31. pp.1691-1724.

[2] S. Kawaji and Y. Chen. (2000). Soft Com-
puting Approach to Nonlinear System Iden-
tification. Proc. of the IEEE Int. Conf. on
Industrial Electronics, Control and Instru-
mentation. Nagoya. pp.1803-1808.

[3] S.A. Billings (1992). Neural networks and
system identification. In K. Warwick et al.
(Eds). Neural networks and system control.
Peter Peregrinus. London. pp.181-205.

[4] S. Chen et al. (1990). Nonlinear system iden-
tification using neural networks. Int. Journal
of Control. Vol.51. No.6. pp.1191-1214.

[5] K. S. Narendra et al.(1990). Identification
and Control of Dynamic System using Neural
Networks. IEEE Trans. on Neural Networks.
Vol.1. No.2. pp.4-27.

[6] T. Takagi et al. (1985). Fuzzy identification
of systems and its application to modeling
and control. IEEE Trans. on Syst., Man and
Cybern.. Vol.15. pp.116-132.

[7] C. Xu et al. (1987). Fuzzy model identifica-
tion and self learning for dynamic systems.
IEEE Trans. on Syst. Man and Cybern..
Vol.17. pp.683-689.

[8] J.S. Jang et al. (1997), Neuro-fuzzy and
soft computing: a computational approach to
learning and machine intelligence. Prentice-
Hall.

[9] K. Kristinn et al. (1992). System identifi-
cation and control using genetic algorithms.
IEEE Trans. on Systems, Man and Cybern..
Vol.22. No.5. pp.1033-1046.

[10] Y. Chen and S. Kawaji. (1999). Identification
and Control of Nonlinear System using PIPE
Algorithm. Proc. of Workshop on Soft Com-
puting in Industry’99. Muroran. pp.60-65.

[11] Y. Chen and S. Kawaji. (1999). Evolution-
ary Control of Discrete-Time Nonlinear Sys-
tem using PIPE Algorithm. Proc. of IEEE
Int. Conf. on Systems, Man and Cybernetics.
Tokyo. pp.1078-1083.

[12] S. Rafal and S. Jurgen. (1997). Probabilistic
Incremental Program Evolution. Evolution-
ary Computation. Vol.5. No.2. pp.123-141.

[13] Y. Chen and S. Kawaji. (2000). Evolving
Artificial Neural Networks by hybrid ap-
proaches of PIPE and Random Search Al-
gorithm. Proc. of The Third Asian Control
Conference. Shanghai. pp.2206-2211.

[14] Y. Chen and S. Kawaji. (2001). Evolving
Neurofuzzy Systems for System Identifica-
tion. Proc. of International Symposium on
Artificial Life and Robotics. Tokyo. pp.204-
207.

[15] G.P. Liu et al. (1998). On-line identification
of nonlinear systems using Volterra polyno-
mial basis function neural networks. Journal
of Neural Networks. Vol.11. pp.1645-1657.

[16] G.P.Liu et al. (1999). Multiobjective criteria
for neural network structure selection and
identification of nonlinear systems using ge-
netic algorithms. IEE Proc.-Control Theory
Appl.. Vol.146. No.5. pp.373-382.

[17] J. Hu, et. al. (1998). RasID - Random Search
for Neural Network Training. Journal of
Advanced Computational Intelligence. Vol.2.
No.2. pp.134-141.

[18] S.S. Ge, et al. (1999). Adaptive neural net-
work control of nonlinear systems by state
and output feedback. IEEE Trans. Syst.,
Man, and Cybern.. Vol.29. No.6. pp.818-828.

[19] S. Kawaji et al. (2001). Design of Ad-
ditive Models using Hybrid Soft Comput-
ing Approaches Proc. of IEEE Int. Conf.
on Systems, Man, and Cybernetics. Tucson.
pp.1415-1423.

