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Abstract: This paper reports on a new approach in modelling and controlling an 
alternating aerobic-anoxic wastewater treatment plant. The plant is controlled using a 
model predictive approach adapted for the specific problem. The model embedded in 
the control structure is a linear time-variant approximation to ASM No.1. The 
predictive structure only considers the zero frequency component of controlled 
variables for the optimal duty cycle value calculation. Simulations of the controller 
behaviour are presented considering no plant-model mismatch. 
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1. INTRODUCTION 
 
Activated sludge wastewater treatment plants are the 
most common type of plants for wastewater 
treatment. The process involves the biochemical 
reduction of carbonaceous material and other toxic 
compounds commonly found in municipal and 
industrial wastewater. Within the process, numerous 
biochemical reactions occur, most of them with 
highly non-linear dynamics.  
 
Due to this, the models that represent the complete 
system dynamic behaviour are complex and full of 
uncertainties, though some reduced models have 
proved to predict the system behaviour at some 
extent (Jeppsson, 1995; Anderson et al., 2000). In 
addition, besides the flow schemes, which depend on 
the plant configuration, the only directly controllable 
variable is the injected dissolved oxygen into the 
wastewater.  
 
Several control approaches have been proposed, 
simulated and tested to achieve control goals. One of 
the most recent control structures under research is 
the alternating aerobic-anoxic approach. Under this 

control scheme, switching the aeration system on and 
off indirectly controls the effluent characteristics. 
 
Some theoretical and experimental studies developed 
by Kim et al, (2000), and Puta et al, (1999) find the 
optimal switching times in the sense of minimising a 
cost function using a mathematical model of the 
plant. In particular, Puta et al., (1999) includes the 
energy consumption as part of the function, therefore 
it considers a monetary factor.  
 
The control approach discussed in this paper, uses a 
linear time variant modification of the model 
developed by Anderson et al, (2000), and finds the 
optimal switching time under a zero frequency signal 
tracking. Simulation results are presented for the case 
of no plant-model mismatch in a sequential batch 
reactor (SBR) with constant flow, and influent 
composition. 
 
The paper is organised as follows. Section 2 
describes the wastewater system and the modelling 
involved. The controller structure is described in 
Section 3. Finally, simulation results are presented in 
Section 4, and conclusions are drawn in Section 5. 
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 2. WASTEWATER SYSTEM DESCRIPTION  
AND MODELLING 

 
Modelling of activated sludge wastewater treatment 
plants is a very complex task, due to its severe non-
linear behaviour. Several models to represent 
activated sludge wastewater plants have been 
proposed. A good overview of different models can 
be found in Chotkowski et al, (2001) and Brdys and 
Zhang (1999). 
 
Of all the different models, one in particular has been 
accepted within the scientific community as a 
standard for scientific research. This model, the 
Activated Sludge Model No.1 (Henze, et al., 1987), 
collects most of the biochemical reaction dynamics 
involved in the process, and therefore is considered a 
benchmark for the development of application 
specific models for wastewater treatment plants. 
 
The ASM No.1 is a very complex mathematical 
structure, which consists of 13 non-linear differential 
equations with 19 parameters (in its original version), 
most of them with a high degree of uncertainty. 
Because of this reason the applicability of the ASM 
No.1 is restricted to benchmarking for simpler 
models and research. 
 
In an activated sludge process   different biochemical 
reactions occur. These processes can be classified 
into two different categories: aerobic and anoxic 
reactions. Aerobic reactions make use of the oxygen 
dissolved in the water body and the two main 
reactions are the oxidation of the carbonaceous 
material and nitrification. Under anoxic conditions, 
denitrification reactions are predominant. These 
reactions make use of nitrate as the oxidation agent 
instead of oxygen to produce free nitrogen and other 
compounds. 
 
Anderson et al, (2000) presented two linear 
approximations to the ASM No.1, one for each 
phase: aerobic and anoxic. These models are obtained 
by approximating the half saturation non-linear terms 
to linear terms. The model is also of reduced order, 
which is accomplished by not including: soluble inert 
organic matter (SI) and particulate inert organic 
matter (XI), which are decoupled from the system; 
dissolved oxygen (So), since it is assumed to be 
controlled; alkalinity (Salk), since denitrification can 
partially recover some alkalinity consumed through 
nitrification; and growth of particulate products (XP), 
which does not interact with the other variables. In 
addition, dissolved oxygen is considered not to be a 
limiting factor during the aerobic process and to be 
totally absent during the anoxic phase. The final 
system is composed by two state space 
representations, one for each phase, of eighth order, 
with the following form: 
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In equation (1), Ae and De denote the system matrix 
representation for the aerobic phase and, Aa and Da 
are the system matrix representations for the anoxic 
phase. The variable x(t) is the state vector of the 
system whose components are specified in equation 
(2), and  xinf is the corresponding vector of influent 
characteristics (concentrations) into the system, for 
each state variable. The last term in equation (1) 
should be considered as a disturbance, since there is 
no possible control over the influent characteristics. 
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Since the control principle of this type of structure 
demands the switching between the two models at a 
given frequency and duty cycle, an appropriate 
model representation for the system behaviour over 
the entire time is required. Equation (3) shows the 
proposed model representation. 
 

 
( ) ( )( )( )

( ) ( )( )( ) infae

ae

xD,tgD,tg         

)t(xA,tgA,tg)t(x

⋅⋅−+⋅
+⋅⋅−+⋅=

δδ
δδ

1

1&
 (3) 

 
In equation (3), the switching function g(t,δ) 
represents a train of width modulated pulses of unit 
amplitude as shown in Fig 1. When the switching 
function is unity the aerobic phase is said to be ON, 
and when it is zero the aerobic phase is said to be 
OFF. The switching function depends on time and 
duty cycle ‘δ’, which is defined as the relation 
between the time the aerobic phase is ON (TON), and 
the switching period (Tswitching), as presented in 
equation (4). 
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For mathematical simulation, g(t,δ) has been 
expanded into a finite Fourier series, where the Gibbs 
phenomenon has been eliminated by use of a 
saturation function in the convergence point of 
discontinuities.  Equation (5) denotes the truncated 
Fourier Series expansion of g(t,δ). 
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Equation (3) can be rearranged to give equation (6). 
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where A1=Ae-Aa, A2=Aa, D1=De-Da, and D2=Da.  
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Fig. 1. Switching Function. 
 
 

 
Fig. 2.  Linear Time-Variant model and ASM No.1. 
 
By substituting equation (5) into (6) and considering 
that the expressions contained within the brackets are 
time dependent, equation (6) can be rewritten as a 
time variant system presented in (7). This equation, is 
an approximation, since g(t,δ) is a truncated series. 
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2.1 Model Verification. 
 
In order to verify the validity of this model, 
simulations have been performed using the parameter 
data presented in the original paper of Anderson et al, 
(2000), and comparing it with a simulation of the full 
ASM No.1 also using Anderson et al’s. (2000), 
parameter data. The simulations where performed 
using MATLAB for a switching period of 3 hours 
and a duty cycle of 50% (δ=0.5). Results of these two 
simulations are presented in Fig.2. In the linear 
model, the number of terms used for equation (5) was 
of N=5. 

 
 

 
 
 
 
 
 
 
 
Fig. 3. Controller Structure. 
 
The simulations presented in Fig. 2 are identical to 
the ones presented in Anderson et al., (2000). It can 
be clearly observed that there is a model mismatch, 
but the trends are the same. The model mismatch can 
be corrected by using an off-line or on-line parameter 
estimation as in Jeppsson, (1996).  
 
 

3.   CONTROLLER ARCHITECTURE 
 

The controller architecture follows the line of 
traditional GPC, with some modifications due to the 
cyclic nature of the embedded model. A block 
diagram of the controller is presented in Fig. 3. 
 
 
3.1   Prediction. 
 
The alternating aerobic-anoxic (AAA) wastewater 
time variant system, described by equation (7), can 
be sampled at a specific frequency, and therefore be 
transformed into a discrete system as presented in 
equation (8). 
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Using a recursive approach to calculate the predicted 
state of the system based on measurements of the 
state at sampling time k, it can be easily shown that 
the predictions at any future sampling instant k+n 
and up to the prediction horizon Hp can be calculated 
using equation (9).  
 
It should be clear, that full state measurement is 
assumed. This is an assumption which is difficult to 
overcome. Possible solutions to this problem are the 
use of soft-sensors using estimation algorithms. 
Some research work has been carried out in this field, 
which usually concludes that the main limitation is 
the identifiability of the process (model). Some 
examples of proposed observers can be found in 
Katebi (2001), Jeppsson (1995), Arnold and Dietze 
(2001), and Lindberg (1997). 
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Equation (9) can be arranged into a matrix 
representation, and output predictions can be 
calculated as presented in equation (10). 
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This, in an abbreviated notation, can be written as in 
equation (11). 
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where n varies between 1 and Hp, and denotes the 
row element numbering. 
 
 
3.2   Cost Function and Optimisation. 
 
The selection of an appropriate cost function depends 
on many factors. However, the approach developed 
in this paper makes use of the quadratic error of the 
average value (zero frequency component) of the 
predictions over a complete aerobic-anoxic cycle and 
the set point or a reference trajectory to approach the 
set point. Only the unconstrained case is analysed. 

In order to calculate the output predictions of the 
AAA system the algorithm described by equation 
(10) is used. The average value of each state variable 
arranged in the vector representation presented in 
equation (2) is calculated by the average of the 
predictions over the horizon Hp. Equation (12) shows 
how the average (zero frequency component) of the 
discrete vector signal is calculated. 
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where ]ik[ŷ +  and 8  y ℜ∈ . Therefore, using 
equation (12), the cost function is defined as follows. 
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where γ could be a reference trajectory to approach 
the set point, which is updated on each prediction 
cycle, or the set point; and Q is a weights matrix of 
adequate dimensions which can be time dependent 
and used to include penalizing functions. For this 
case Q has been considered to be the identity matrix 
I.   
 
An additional term can be added to equation (13), to 
penalize steep changes in the control input, and 
represent a minimum energy consumption approach. 
The final cost function is as presented in equation 
(14). In this equation δ is the parameter to be 
optimised at prediction cycle k+1, while δk is the 
optimal δ value found at prediction cycle k. 
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Finally, the search for the optimum value of the duty 
cycle δ that minimizes equation (14) can be done 
using several numeric methods, since it is difficult to 
find a closed analytical form representation for the 
gradient.  
 
 

4.  SIMULATION RESULTS 
 
Two types of simulations have been performed. The 
first one considers a reference trajectory to approach 
the set point, and the second uses the set point 
directly. For the reference trajectory case, a time 
constant of 12 hours for the reference trajectory, with 
a sampling time of 3 hours has been chosen. The 
prediction horizon is of one cycle (3 hours) for both 
cases. The reference trajectory at cycle n can then be 
calculated as (Maciejowski, 2001): 
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where ek is the error between the plant output and the 
set point s at prediction instant k. 
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The set point for SNH and SNO are the ones presented 
in Table 1. The system initial conditions are the 
influent characteristics, presented in Anderson et al., 
(2000). 
 

Table 1 System Set Point 
 

SNH 1.26 [mg/l] 
SNO 5.31 [mg/l] 

 
Simulation results, for the case in which a reference 
trajectory is used are presented in Fig. 4, and Fig. 5 
shows simulations for the case in which the set point 
is used directly. 
 
It is interesting to observe that in the case in which a 
reference trajectory is used, the optimal control input 
δ begins with a lower value than in the case of the 
use of the set point directly. The cost function also 
seems to converge to the minimal value faster when 
using the reference trajectory. The simulations also 
show that once the system is near the setpoint, the 
control input begins to oscillate around the optimal 
value. A possible explanation for this behaviour is 
that the control system (optimiser) is not able to keep 
both controlled variables at the same time in the 
exact setpoints, but in a near neighbourhood.  
 
An important limitation of this method is that the 
maximum output magnitude cannot be controlled 
directly. This means that at certain periods of time 
the output concentrations are higher than the 
permissible. Some possible formulations to solve this 
problem can be the use of constraints to limit the 
effluent concentrations and the calculation of an 
adequate setpoint. 
 
There are several ways in which constraints can be 
included, but probably the use of the weight matrix 
Q, which in this case has been assumed to be the 
identity matrix (I), is the easiest. This matrix could 
include time-dependent penalization functions, which 
include the constraints in the quadratic cost function. 
 
 

5.  CONCLUSIONS 
 

This paper presents a different approach to modelling 
an alternating wastewater treatment plant based on 
Anderson et al.’s, (2000) model, in which an 
approximate reduced-order linear model, has been 
derived. The model is considered to be an 
approximation due to the use of a truncated Fourier 
series. Furthermore, a predictive control algorithm, 
similar to GPC, is deducted. The algorithm 
minimizes a quadratic cost function, which includes 
the mean value of the predictions of the controlled 
variables and the change in the control input (i.e. 
duty cycle – ‘δ’). 
Simulation results are presented for the unconstrained 
case, with no plant-model mismatch, and under 
controlled conditions (i.e. constant flow and influent 

composition). The simulations show that the 
algorithm converges to the proximity of the 
predetermined setpoint. Also, they show that the 
maximum values cannot be directly controlled, 
which means that in this case (i.e. unconstrained 
case) permissible limit violations are almost 
inevitable. This suggests that the inclusions of 
constraints for the controlled effluent variables 
should be investigated. 
 
It was assumed in this work that full state 
information was available. However, this is not 
possible in a real wastewater treatment plant and the 
use of state observers-estimators is necessary. 
Additionally further simulations and studies should 
be carried out for the case in which there is a plant-
model mismatch. 

 

 
 
Fig. 4. System response with reference trajectory. 

 
 

 
 

 
 

 
 

Fig. 5.  System response with no reference trajectory. 



     

ACKNOWLEDGEMENTS 
 

The authors express their gratitude to the European 
Commission under whose contract EVK1-CT-2000-
00056 the SMAC project and this work has been 
performed, and West of Scotland Water for their 
help. 
 
 

REFERENCES 
 

Anderson, J.S., H. Kim, T.J. McAvoy, O.J. Hao  
(2000). Control of an alternating aerobic-
anoxic activated sludge system. Part 1: 
development of a linearization based 
modelling approach. Control Engineering 
Practice, 8, 271-278. 

Arnold, E. and S. Dietze (2001). Nonlinear moving 
horizon state estimation of an activated 
sludge model. Proc. of the 9th 
IFAC/IFORS/IMACS/IFIP Symposium on 
Large Scale Systems: Theory & 
Applications, Bucharest, 2001. 

Brdys, M. and Y. Zhang (1999). Modelling and 
Control of Wastewater Treatment Plants. 3rd 
National Conference: Technology and 
Automation of Water Supply and Sewage 
Systems. Stawiska/Gdansk, Poland, June 23-
25. 

Chotkowski, W., J. Makinia, M.A. Brdys, K. 
Duzinkiewicz, K. Konarczak (2001). 
Mathematical Modelling of the Processes in 
Integrated Municipal Wastewater Systems. 
Proc. of the 9th IFAC/IFORS/IMACS/IFIP 
Symposium on Large Scale Systems: Theory 
& Applications, Bucharest. 

Henze, M., C.P.L. Grady, W. Gujer, G.v.R. Marais 
and T. Matsuo (1987). Activated Sludge 
model No.1. IAWQ Scientific and Technical 
Report No.1. IAWQ. 

Jeppsson, U. (1995). A simplified control-oriented 
model of the activated sludge process. 
Mathematical Modelling of Systems. 1(1), 3-
16. 

Jeppsson, U. (1996). Modelling Aspects of 
Wastewater Treatment Processes. PhD 
thesis. IEA – Lund Institute of Technology, 
Lund University. 

Katebi, M.R. (2001). H∞ state estimation in activated 
sludge processes. Proc. of the 9th 
IFAC/IFORS/IMACS/IFIP Symposium on 
Large Scale Systems: Theory & 
Applications. Bucharest. 

Kim, H., T.J. MacAvoy, J.S. Anderson, O.J. Hao, 
(2000). Control of an alternating aerobic-
anoxic activated sludge system. Part 2: 
Optimisation using a linearized model. 
Control Engineering Practice, 8, 279-289. 

Lindberg, C.F. (1997). Control and Estimation 
Strategies Applied to the Activated Sludge 
Process. PhD thesis. Uppsala University. 

 

Maciejowski, J.M. (2001). Predictive Control with 
Constraints, Prentice Hall, England. 

Puta, H., G. Reichl, and R. Franke (1999). Model 
based Optimisation of a Wastewater 
Treatment Plant. Proc. of the ECC, 
Karlsruhe, September. 


