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Abstract: This paper addresses the problem of synthesis of suboptimal robust
controllers in the ¢; setting. For MIMO plants under coprime factor perturbations
and an exogenous disturbance bounded in {,, the worst case f,, norm of the
system output is sho wnto be a linear fractional function of the induced norms of
system’s transfer functions. Then computing the suboptimal controller is reduced to
approximate solution of finite family of standard ¢, optimization problems. The model
validation and identification problems are briefly discussed for systems with weighted

perturbations.
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1. INTRODUCTION

The theory of robust control in the ¢; setting deals
with the £, signal spaces and systems under norm
bounded perturbations and bounded exogenous
disturbances. Basic results on stability robustness
and performance robustness have been obtained in
Dahleh and Ohta (1998), Khammash and Pearson
(1993, 1991). By problem of synthesis of ¢; opti-
mal robust controller is meant an optimal problem
where the cost function is the w orst-possiblef,
norm of the output, overthe class of allowable
disturbances and perturbations. Since the optimal
problem is a complicated nonconvex problem, an
auxiliary problem of achieving a prescribed per-
formance level is usually considered. The latter
w as reduced in Khammash and Rarson (1993) to
minimizing the spectral radius of a certain matrix
composed of the ¢; norms of system’s impulse
responses. A general solution of this problem was
givenin Khammash et al. (1998). The solution
w as based on linear relaxation and searhing over
a mesh in a set of scaling diagonal matrices. In
order to get an approximate solution of the aux-
iliary problem with an ¢ tolerance, the number
of linear programming problems to be solved is in

the order of (£) "1 where n equals to the number
of independent perturbations and the constant C
depends on a priori upper and low erbounds on
some variables.

In the present paper, several classes of MIMO
systems under coprime factor perturbations are
considered. The robust performance measure for
these classes is shown to be a linear fractional
function of the norms of the system’s transfer
functions so that the auxiliary problem of achiev-
ing a prescribed performance level is reducible to
a standard mixed sensitivit yproblem of ¢; opti-
mization. Then solving the problem of minimiza-
tion of the spectral radius becomes redundant and
the algorithms proposed in Sokolov (2000, 2001c)
for synthesis of suboptimal robust controllers for
SISO systems can be applied to MIMO systems
as well. In order to get a suboptimal robust con-
troller with an e tolerance, the number of linear
programming problems to be solved is in the order
of —log, e (Sok ole, 2000,2001c).

Implementation of any results of robust con-
trol theories is impossible without knowledge of
the nominal system and the weights (norms)



of perturbations. This gives rise to problems of
model validation and more complicated problems
of identification (Poolla, et al., 1994; Smith and
Doyle, 1992). We show that the model valida-
tion problem for the considered systems is easily
solvable on-line in the case of signals weighted
diagonally at the inputs of perturbations while
less general scalar weighting perturbations opens
the door to solving identification problem. In par-
ticular, the methods of synthesis of adaptive ¢;
suboptimal robust controllers proposed in Sokolov
(2001a, b) for SISO systems can be extended to
MIMO systems.

Notation |z|s := max;|z;| for a vector z =
(1,...,xp)* € R™.

£2, — the space of real vector valued sequences
z = (2(0),z(1),...), (k) € R*, with the norm
ol = supy, 2(k)]oo-

{1 — the space of absolutely summable sequences
with the norm ||z[|, := ), |z(k)| for = € £;.

{™ — the space of arbitrary vector valued sequences
of dimension n, £ := ¢!,

A map F : (P — (7 is said to be £, -stable if it is
causal, takes ¢£_ into £¢, and

F
1F) = sup M@l o
ecer,  |IZlloo
z#0

A linear causal time-invariant system H : (P — (4
is defined by the convolution

He(t):= S H(kye(t - k), H(k) == (Hy(k)),
k=0

where the same notation H is used for the ¢ X p
matrix of impulse responses H;; € €. If Hy; € ¢4
for all ¢, j then the system H is {,,-stable and the
induced norm of H is

15| = max Y [1Hills -
i

The matrix function H(X) := Y -, H(k)A¥ of the
complex variable X is called the transfer matrix of
the system H and ||[H(N)|| := ||H]|.

2. ¢; OPTIMAL ROBUST CONTROL
PROBLEM

Consider the system in Fig. 1 where H = H(G, K)
is the matrix of impulse responses of a linear time-
invariant causal nominal system comprised of a
nominal plant G and a controller K, z € £™= — the
regulated output, w € £ — the exogenous dis-
turbance, A — the linear time-variant or nonlinear
perturbation,

A Eé:: {A:dlag(AlaaAn) |
A 0L — (P s strictly causal, [|A;]] < 1}.

Fig. 1. System with structured uncertainty

The system in Fig. 1 is said to be robustly stable
against the class of perturbations A, if for any
A € A the mapping of w into z is £y -stable
(Khammash and Pearson, 1991).

The problem of synthesis of {1 optimal robust
controller is stated as follows:

J(H):= sup  sup
AcA  lwlleo<

lellae — inf . ()
Under zero perturbation (A = 0) problem (1) is
the standard problem of synthesis of ¢; optimal
controller (Barabanov, 1996; Dahleh and Diaz-
Bobillo, 1995).

Represent the matrix H of impulse responses in
the block form

HOO HOn
H=H(G,K)=| : :
HnO Hnn

where the dimensions of the blocks are associated
with the dimensions of n+1 input and n+1 output
signals. In particular, Hyg is a n, X n,, matrix and
H;; is a ¢; X pj matrix, 4,7 > 1.

Let the nominal plant G be stabilizable and K
be some stabilizing controller so that the nominal
system H is f..-stable. For simplicity of presen-
tation assume for a while that all signals in the
system are scalar and define

[Hoollr « -+ || Honllx

H := : :
|Hrollr -+~ | Hnnllx

Represent the matrix H in the block form

2 Hoy Ho
H=|."".
{Hw Hy

:|, Hoo—].X]., Hll—nxn.
It was shown in Khammash and Pearson (1991)
that the system in Fig. 1 is robustly stable against
the class A if and only if p(H11) < 1 where p(-) de-
notes the spectral radius of a matrix. An explicit

formula for the robust performance measure .J(H)
was obtained in Khammash (1997):

J(H) = F(H)
where

f(ﬁ) = ﬁOO + ﬁOl(I - ﬁll)ilﬁlo . (2)



One can see that (1) is a complicated nonconvex
problem of mathematical programming. A stan-
dard way of its approximate solution is in solving
an auxiliary problem

JH)<vy, 7>0, (3)
with subsequent searching for a near to optimal
value of the parameter v. The auxiliary problem
can be reduced to the problem J(H) < 1 by
scaling the signal z. It was shown in Khammash
and Pearson (1991) that

(VAeA sup  ||z]]leo < 1)
llwlloo <1
if and only if A
p(H) <1.

Based on this result, the robustness synthesis
problem was stated in Khammash and Pearson
(1993) as follows

igpmy (4)

Let H = H(Q) = T1 — T>QT5 be the standard pa-
rameterization of stable systems using the Youla
parameter ) (Dahlen and Diaz-Bobillo, 1995). It
was shown in Khammash and Pearson (1993) that
problem (4) is equivalent to

. . 1
Anfy nf [|IDTH(Q) D (5)

D ::{D | D:diag(do,---,dn+1), d; >0}
An approximate solution of problem (5) proposed
in Khammash et al. (1998) is based on linear re-
laxation, gridding, and introducing a priori lower
and upper bounds for variables, the scaling coeffi-
cients d;, and the cost function. To obtain an ap-
proximate solution of (5) with an € accuracy under
additional restriction on the number of variables,
the number of linear programming problems to be
solved is in the order of

()"

where the constant C' depends on the above-
mentioned lower and upper bounds.

In the next section, it will be shown that the
auxiliary problem (3) for MIMO plants under
coprime factor perturbations is reducible directly
to known problems of /; optimization so that
solving computer consuming problem (5) becomes
redundant.

3. MIMO PLANT UNDER COPRIME
FACTOR PERTURBATIONS

Consider the closed loop control system

Mgz =Ngutv, u=Kz (6)

where M (¢ ') and N(¢~!) are n. xn. and n. xn,,
left coprime polynomial matrices in the shift oper-
ator ¢~! (¢ tx(t) := z(t — 1)) and K is a rational
matrix of controller. The transfer matrix of the
plant G is G(\) = M~Y(A\)N(\) (det M(0) # 0).
The total disturbance v in the plant G is of the
form

vi=Az+ Nu+w (7)

where A; and A, are the perturbations and w is
the exogenous disturbance. In view of the equality

(M = Az = (N + As)u+w (8)

the perturbations A; and Ay can be considered
as independent perturbations in the output and
control, respectively.

The initial conditions in system (6) are assumed
to be zero. The formulae for J(H) derived below
hold for nonzero initial conditions as well if the
cost function J(H) is replaced by a steady-state
robust performance measure as follows. In (1), the
seminorm

lim sup |z(t) oo

t—+o00
substitutes for the norm ||z||. and the class
of perturbations A is additionally restricted by
fading or finite memory perturbations (Sokolov,
2001a).

Introduce the Youla parameterization of all stable
transfer functions G, and G, from the total
disturbance v to the output z and control wu,
respectively. Let G = NM ! be the right coprime
factorization of G and polynomial matrices X and
Y be solutions to the Bezout equation

MX-NY=1.
Then all stable transfer functions G., and G,
associated with stabilizing rational controllers K
are of the form (Barabanov, 1995)
Gow=X—-NQ, Guw=Y-MQ
where @ is the Youla parameter (that is, arbitrary
stable rational n, X n. matrix).

A representation of the closed loop system (6) and
(7) associated with the Fig. 1 is of the form

z i sz sz sz w
zZ| = sz sz sz fl ) (9)
u L Guv Guv Guv _52

a1 _[Ar 0 z |
] |0 Az |u]

so that the system has 2-block uncertainty: n =
2. Owing to a special structure of the system
matrix H, the robust performance measure J(H)
becomes a linear fractional function of the norms
of the transfer functions G., and G,.



Theorem 1. The system (6) and (7) is robustly
stable against the class A if and only if

G0l + [|Guoll < 1. (10)
If the system is robustly stable, then

Gl
J(H) = .
H) = Ta =G

(11)

The proof is omitted.

Remark. The robust stability condition (10) was
first obtained in Dahleh (1992) where an optimal
problem for robust controller synthesis was stated
as minimizing the left hand side of (10). This is
equivalent to minimizing the denominator of the
robust performance function (11).

It follows from Theorem 1 that for any v > 0 the
auxiliary problem J(H) < v is equivalent to the
problem

1
(; n 1) IGll + Gl <1. (12)

Problem (12) is a standard mixed sensitivity prob-
lem of ¢, optimization and can be solved approx-
imately by known methods (Dahleh and Ohta,
1995; Khammash 2000). Then the synthesis of
/1 suboptimal robust controller can be realized
similarly to Sokolov (2000).

The uncertainty in the plant (8) is structured.
In the literature on robust adaptive control, sys-
tems with unstructured uncertainty (n = 1) have
received wider acceptance. In this case the total
disturbance in the plant is of the form

v:ALﬂan (13)

and the following theorem holds.

Theorem 2. The system (6) and (13) is robustly
stable against the class A if and only if

max{[|Gz|, |Guoll} < 1.

If the system is robustly stable, then

_ Gl
1-— HlaX{”sz“ ) ||Guv||}

J(H)

The proof is omitted.

It follows from Theorem 2 that for any v > 0 the
auxiliary problem J(H) < « is equivalent to the
problem

1
;”sz” + max{||Go[, |Guoll} < 1. (14)

Although problem (14) is not a standard problem
of ¢, optimization, its approximate solution can

be obtained by a simple extension of the scaled-Q
method proposed in Khammash (2000) and the
synthesis of ¢, suboptimal robust controller can
be realized similarly to Sokolov (2001c).

For simplicity of presentation we considered so
far perturbations with equal weights, that is,
with equal maximal admissible norms. In the
next section we consider systems with weighted
perturbations keeping the linear fractional form
of the robust performance function.

4. WEIGHTED PERTURBATIONS
4.1 Systems allowing model validation

Consider two classes of systems (6) with the fol-
lowing total disturbance v. In the case of struc-
tured uncertainty,

v=A1D%z+ Ay D"u + d,w (15)

where
D = diag{df, e 7dfz:}7

D" = diag{d{,---,d, },

and 0, € R. Without loss of generality one can
assume d7, d¥, and d,, to be nonnegative.

In the case of unstructured uncertainty,

Dz
v—A[Duu}+5ww. (16)
Theorem 3.
6’(11 zZvU

1= [ID*G|l = ID Gl
for the system (6) and (15), and

Ou |Gl

H) =
TH) = (DG DG}

for the system (6) and (16). Any of the systems
is robustly stable iff the denominator of J(H)
associated with the system is positive.

The proof is omitted.

Remark. Note that perturbations in (15) and (16)
are weighted at the inputs of the operator A.
Therefore the weighting matrices D* and D" enter
into the system matrix H as left factors. Since left
multiplying is associated with rows operations of
the transfer matrices G, and G,,, the system
matrix H keeps its special structure with repeated
columns owing to which the robust performance
measure J(H) becomes a linear fractional func-
tion of the norms of the transfer matrices G, and

Guo.



It follows from Theorem 3 that for any v > 0 the
auxiliary problem J(H) < « for the system (6)
and (15) is equivalent to the problem

6w z u
7||qu|| +[I1D*Gol + ID*Guoll < 1, (17)

and for the system (6) and (16) — to the problem

6“’ z u
7||sz|| + max{[| D*Gu ||, | D*Guol|} < 1(18)

Then the synthesis of ¢; suboptimal robust con-
trollers can be realized similarly to Sokolov (2000,
2001c).

Now we proceed to the problem of model valida-
tion. Let z{ = (2(0),---,z(t)) be the measured
outputs of some physical system subjected to the
control actions uf = (u(0),---,u(t)). A model
G = M 'N and weights D*, D%, and 4§, are
said to be not invalidated by the observed input-
output data z§, uf if there exists A € A and w,
[lw]loo < 1, such that equations (6) and (15) (or
(16) in the case of the hypothesis of unstructured
uncertainty) hold on the time interval [0, ¢].

Theorem 4. A model G = M~ N and weights
D? D, and J, are not invalidated by the ob-
served input-output data z§, uf if and only if

|(M2)(r) = (Nu)(T)|oo <0t (19)

max | D*z(s)|oo + max | D"u(s)|oo
s<T s<T

forall 7=0,1,---,¢ in the case of the hypothesis
of structured uncertainty (15) and

|(M2)(r) = (Nu)(T)|oo <0t (20)

max max{|D*z(s)|oo , | D"u(8)]|oo }

for all 7 = 0,1,---,¢ in the case of the hypothesis
of unstructured uncertainty (16).

The proof is omitted.

Remark. Since the maxima in the right hand sides
of (19) and (20) can be computed recursively,
the model validation problem is solvable on-line.
Note that the case of unstructured uncertainty
was discussed in Poolla et al. (1994) and is covered
by more general Theorem 5.9 from Poolla et al.
(1994).

4.2 Systems allowing identification

Consider two classes of systems (6) with the fol-
lowing total disturbance v. In the case of struc-
tured uncertainty,

v=20.A12+ 0,Aou+ dpw (21)

where §, > 0 and §, > 0 are the weights of the
perturbations in the output and control, respec-
tively. In the case of unstructured uncertainty,

v:éoA[z]+6ww, (22)

where §, > 0 is the weight of the unstructured
perturbation.

Theorem 5.

B 5|
TH) = 751G T = 0ul Gl

for the system (6) and (21), and

5ullGaol
H) =
TH) = 15, maxl[Gon | 1G]}

for the system (6) and (22).

Theorem 5 is a special case of Theorem 3 as-
sociated with D* = 6, and D% = ¢, in the
case of structured uncertainty and D* = §,I and
D" = §,1 in the case of unstructured uncertainty.
Then the auxiliary problems J(H) < v for the
system (6) and (21) and the system (6) and (22)
are reducible to problems wich are similar to (17)
and (18).

For the system (6) and (21), inequalities (19) take
the form

|(M2)(r) = (Nu)(T)|oo < 0wt (23)

. max |2(s) |0 + 0y max |u(s)|oo
s<T s<T

0,1,2,---. For the system (6) and (22)
inequalities (20) take the form

T =

(M2)(T) = (Nu)(T)|oo < but  (24)
B masx mac{2(5) oo, [u(5)]c)}
7 = 0,1,2,---. A possibility of estimation of

unknown M, N, 0w, Oy, 0y, 0, follows now from
the fact that the coefficients of polynomials M
and N and all of the weights become coefficients
at known functions of the observed input-output
data. Then inequalities (23) and (24) can be
rewritten as linear inequalities with respect to
the unknown coefficients and estimation schemes
proposed in Sokolov (2001b) for SISO systems can
be applied for the considered MIMO systems.

5. CONCLUSION

The problem of synthesis of ¢; suboptimal ro-
bust controllers for MIMO plants under coprime
factor perturbations and bounded exogenous dis-
turbance has been considered. The robust perfor-
mance measure was taken as the worst-possible



lo norm of the system output. It was shown
that the auxiliary problem of achieving a pre-
scribed performance level is reduced to the stan-
dard mixed sensitivity problem of ¢ optimization.
Since implementation of any results on robust
control is impossible without knowledge of the
nominal system and the weights of perturbations,
the model validation and identification problems
were briefly discussed. It was shown that in the
case of signals weighted diagonally at the inputs
of perturbations the model validation problem is
solvable on-line while scalar weighting perturba-
tions opens door to solving identification problem.
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