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Abstract: In this paper, we consider the problem of estimating the state of a class of perspective 
systems. The problem can be converted into the observation of a dynamical system with 
nonlinearities. A new discontinuous state observer, which is motivated by the sliding mode 
control method and adaptive techniques, is proposed for the obtained dynamical system. The 
attraction of the new method is that the algorithm is very simple and easy to be implemented, 
and it is robust to measurement noises. Further, minor a priori knowledge of the system is 
required in the new formulation. Simulation results show the superiority of the new method to 
the traditional ones.  
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1. INTRODUCTION 
  

In the study of machine vision, observing the position 
of a moving object in the space by the image data with 
the aid of a CCD camera has been studied in the past 
years (Ayache, 1991; Ghosh, et al., 2000; Jankovic, et 
al, 1995; Sridhar, et al., 1993). A very typical method 
is the application of the extended Kalman filter (EKF) 
(Matthies, et al., 1989; Sridhar et al., 1993). Even 
though the convergence conditions of EKF have been 
recently established both as observer and filter 
(Boutayeb, et al., 1997; Reif, et al., 1999), it is well 
known that the EKF may fail in some real applications. 
A fatal shortcoming of EKF is that the algorithm is 
very complicated and can hardly be implemented 
practically with real image data. Further, the a priori 
knowledge about the noise is required. To overcome 
these difficulties, Jankovic et al. (1995) proposed a 
new recursive formulation called “identifier based 
observer” (IBO) based on a parameter identifier 
considered in model reference adaptive control 
(Narendra, et al., 1989). The proposed IBO is 
guaranteed to converge in an arbitrarily large (but 
bounded) set of initial conditions, and since the 
convergence is exponential it is believed that the 
performance of IBO is reliable, robust and would 
quickly compute the position on real data (Jankovic, et 
al., 1995). It should be noted that the a priori 
information about the upper bound of the state is 
required in the formulation of IBO, and the 
performance of IBO is similar to that of the EKF.  

In this paper, we consider the state identification 
problem for the perspective system, where the motion 
parameters are assumed known. The formulated 
problem can be converted into the observation of a 
dynamical system with nonlinearities. To identify this 
class of nonlinear system, the method proposed by the 
authors (Chen, et al., 2000) may be helpful in the 
formulation of the observer. In this paper, a new 
identification method is proposed to identify the space 
position of a moving object, where the upper bound of 
the state is adaptively updated online. The proposed 
method is a combination of the sliding mode method, 
adaptive method, and discontinuous observer 
techniques (Jankovic, et al., 1995; Utkin, 1992). The 
discontinuous input in the sliding mode method is 
modified by a differentiable approach, and the 
“equivalent control” method is clarified theoretically. 
The attraction of the new method lies in that the 
algorithm is very simple, easy to be implemented 
practically, and robust to measurement noises. Further, 
the proposed method requires minor a priori 
knowledge about the system and can cope with a much 
more general class of perspective systems. Simulation 
results show that the new method is superior to the 
traditional ones.   
 
The organization of the paper is as follows: Section 2 
formulates the problem. In section 3, the robust 
observer is proposed. In section 4, examples are given 
to illustrate the new algorithm, and to compare the 
performance with the traditional methods.  
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2. PROBLEM STATEMENT 
 
Consider the movement of the object described by  
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where [ ]Ttxtxtxtx )(),(),()( 321=  is the position in the 
space, )3,2,1,()( =jitaij  and )3,2,1()( =itbi  are 
the motion parameters. It is supposed that the observed 
position in the image plane is defined by 
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The perspective system is composed of equations (1) 
and (2). 
 
In this paper, we make the following assumptions. 
(A1). The parameters )3,2,1,()( =jitaij  and 

)3,2,1()( =itbi  are known bounded functions 
of time t. )3,2,1()( =itbi  are piecewise 
differentiable, and have bounded derivatives 
(at the undifferentiable points, we mean the left 
and right side derivatives). 

(A2). )(3 tx  meets the condition 0)(3 >>ηtx , where 
η  is a constant. 

(A3).  y(t) is bounded. 
 
Remark 1: It is easy to see that assumptions (A2) and 
(A3) are reasonable by referring to the practical 
systems.  
 
The purpose of this paper is to estimate the position 

)(tx  by using the observed information )(1 ty  and 
)(2 ty  in the image plane.  

 
3.  FOMULATION OF THE OBSERVER 

 
Define 
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Then, equation (1) can be rewritten as  
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It is obvious that the position of the object in the space 
can be calculated as 
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if )(3 ty  is available. So, the remaining task is to 
estimate )(3 ty .  
 
In the following, the observer of system (4) is 
formulated. We consider the system described by 
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where the initial condition is determined as  
)0()0(ˆ 11 yy = , )0()0(ˆ 22 yy = , 303 ˆ)0(ˆ yy = ,   (7) 

30ŷ  is a positive constant; it  is defined as  

{ }Mtyandtttt ii 2)(ˆ:min 31 ≥>= − ,       (8) 
and 00 =t ; 0>M  is a large constant; )(1 te  and 

)(2 te  are respectively defined as  
     111 ŷye −= , 222 ŷye −= ;       (9) 

)2,1(0 => iiδ are design parameters; )(tφ  and )(tw  
are respectively defined as 
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)(1̂ tλ  and )(ˆ
2 tλ  are respectively defined as 
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α , 1α  and 2α  are positive constants, )0(1̂λ  and 

)0(ˆ
2λ  can be any positive constants.  

 
Remark 2: it  defined in (8) are the discontinuous 
points of the system (6). By observing (6) and (8), it 
can be easily seen that )(ˆ3 ty  is bounded by 

Mty 2)(ˆ3 ≤ . 
 
Now, combining (4) and (6) yields 
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where )(3 te  is defined as 

333 ŷye −= .           (15) 
 

Remark 3: For 2,1=i , the terms 
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)(ˆ  are 

introduced to assure that )(tei  and )(tei&  are very 
small. This is motivated by the sliding mode method 



 

  

where the discontinuous form )()(ˆ
ii esignt ⋅λ  is 

modified as 
ii

i
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δ
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+

)(ˆ . The upper bounds of 

33 )( eybb ii − (their boundedness can be confirmed by 
assumptions (A1)-(A3) and Remark 2) are not needed 
in the new method, and are adaptively updated by (11) 
and (12).  
 
Remark 4: For the system  

))(()()( tzsignNtvtz ⋅−=& ,          (16) 
where Ntv <)( , we can prove that 0)( →tz  as 

∞→t , i.e. a sliding mode exists on 0)( =tz . We can 
never prove that 0)( →tz&  as ∞→t . However, in 
the literature of traditional sliding mode control, )(tz&  
is also considered as 0 when the sliding mode occurs, 
and regard ))(( tzsignN ⋅  as the estimate of )(tv  
(the so-called “equivalent control method”) [12]. It is 
obvious that this approach is short of theoretical proof. 
This difficulty is overcome by our new approach (see 
also Remark 3 and Lemma 1). 

 
About the constructed system (6), we have the next 
lemma to state the boundedness of )(ˆ tiλ , )(tei  and 

)(tei& , and to assure that )(tei  and )(tei&  can be 
controlled by the design parameters 1δ  and 2δ .  
 
Lemma 1: For the constructed system (6), it can be 
proved that, for 2,1=i , )(tei  and )(ˆ tiλ  are 
uniformly bounded, and there exist 0>iT  and 

0)( >ii δε  such that ii te δ2)( ≤  and )()( iii te δε≤&  
as iTt > , where 0)( →ii δε  as 0→iδ . 
Proof: The proof is composed of two steps. 
Step 1 For 2,1=i , )(tei  and )(tiλ  are uniformly 

bounded, and there exist 0>it  such that ii te δ2)( ≤  
as itt > .  
By remark 3, suppose the upper bound of 

)()( 3131 teybb −  is 1λ , i.e. 
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where 0)0(ˆ)(ˆ
11 >≥ λλ t  is employed in the last step. 

Thus, )(1 tV  decreases monotonically from )0(1V  at 

a speed faster than )0(ˆ
3
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11λδ  if 11 2)( δ>te . So, it 

takes finite time that )(1 tV  decreases to any possibly 
nonnegative value if the presupposition 11 2)( δ>te  

holds. Further, by noticing the fact 2
11 )()( tetV ≥ , 

from (19), it can be seen that the condition 
11 2)( δ>te  cannot be satisfied forever as )(1 tV  

decreases monotonically at a speed faster than 
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be satisfied in finite time. Then, there exists 01 >t  
such that 11 2)( δ≤te  as 1tt > , and )(1 tV  is 
uniformly bounded for 10 tt ≤≤  (which also means 

that )(1 te  and )(1̂ tλ  are also uniformly bounded 
for 10 tt ≤≤ ). By (11), it can be seen that 

)(ˆ)(ˆ
111 tt λλ =  for 1tt > . Therefore, )(1̂ tλ  and 

)(1 te  are uniformly bounded for all 0≥t .  
  
Similarly, it can be proved that )(2 te  and )(ˆ
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uniformly bounded, and there exists 02 >t  such that 

22 2)( δ≤te  for all 2tt > . 
 
Step 2 For 2,1=i , )(tei&  are uniformly bounded, 

and there exist ii tT >  such that )()( iii te δε≤&  as 

iTt > , where 0)( →ii δε  as 0→iδ .  
For 1tt > , differentiating the first equation in (14) 
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By calculating ( )3131 )( eybb
dt
d − , it can be easily 

known that ( )3131 )( eybb
dt
d −  is a bounded signal by 



 

  

observing Remarks 2-3, the assumptions (A1)-(A3), 
and the result in Step 1. 
 
Let 

( ) 





−=

≥ 3131 )(max
1

eybb
dt
dK

tt
.        (22) 

If 
)(ˆ

10)(
11

1
1 t

Kte
λ
δ>& , then, from (21), it yields 

 2
1 ))(( te

dt
d

& 









−≤

1

1
111 9

)(
)(ˆ)(2
δ

λ
te

tKte
&

&  






 −≤ KKte

9
10)(2 1& )(ˆ9

20

11

2
1

t
K

λ
δ−< ,  (23) 

i.e. )(1 te&  decreases monotonically at a speed faster 

than 
)(ˆ9

20

11

2
1

t
K

λ
δ . Thus, the presupposition 

)(ˆ
10)(

11

1
1 t

Kte
λ
δ>&  cannot be satisfied forever. Then, 

there exists an instant 11 tT ≥  such that  

 
)(ˆ

10)(
11

1
1 t

Kte
λ
δ≤&                (24) 

for all 1Tt > . 
 
Therefore, )(1 te&  is very small as 1Tt >  by 
choosing very small 1δ . Further, from (23), it can be 
seen that the decreasing speed of )(1 te&  can be 
increased by choosing a very small 1δ . 
 
Similarly, it can be proved that there exists an instant 

22 tT ≥  such that )(2 te&  is bounded and very small 
as 2Tt >  by choosing very small 2δ . Thus, the 
lemma is proved. 
 
Remark 5: In the constructed system (6), )(ˆ1 ty  and 

)(ˆ2 ty  are the auxiliary outputs. The dynamics of 
)(ˆ1 ty  and )(ˆ2 ty  are introduced in order to estimate 
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estimates are employed in the third equation in (6) to 
force )(ˆ3 ty  to be very close to )(3 ty  as t is very 
large.  
 
The next theorem gives the condition to guarantee the 
generated signal )(ˆ3 ty  in (6) to be very close to 

)(3 ty  as t is very large.  
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i.e. ( )23 )(te  decreases exponentially if it is not very 
small. 
 
By the boundedness of the right hand side of (6), it 
follows that 1−− ii tt  is greater than a positive constant, 
say χ  (As ρ  is very small, we can conclude that 
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Further, it can be proved that if 
( ) ( )2232

2
131 )()( tybbtybb −+−  is zero in some time 

interval, it must be identically zero. Moreover, the 
condition in [5] is much more strict than the condition 
(25) in this paper. Therefore, it can be seen that the 
assumption (25) is reasonable for a large class of 
perspective systems.  
 
Remark 7: The design parameters 0>iα  and 0>iδ  
( 2,1=i ) determine the estimating speed and the 
estimating precision. The parameters 0>iα  
( 2,1=i ) should be chosen large enough to rapidly 

adjust )(ˆ tiλ .  
 

4.  EXAMPLES AND SIMULATIONS 
 
In this section, we present the simulation results for 
two examples. The simulation is done by Matlab. The 
sampling period is chosen as 0.05. Suppose the 
measured image data is corrupted by 1% with random 
noise.  
 
Example 1: Consider the movement of the object 
described by 
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Fig. 1 The difference between 3y  and its estimate 

3ŷ  by using the new observer for Example 1.  

 
Fig. 2 The difference between 3y  and its estimate 

3ŷ  by using the IBO for Example 1. 



 

  

For this example, the condition (25) is satisfied for 
05.0=ρ  and 05.0=β . In the observer design, 

)0(ˆ3y  is chosen as 1)0(ˆ3 =y . The parameters are 
chosen as 20=α , 521 ==αα , 3.021 ==δδ , 

10=M , 2.0)0(ˆ)0(ˆ
21 ==λλ .  

 
Comparison between the proposed new observer and 
the IBO in Jankovic et al. (1995) is performed. 
Because of the trade-off of the estimation error and the 
converging speed, the estimation error is compared 
based on the same converging speed. Figure 1 shows 
the difference between 3y  and its estimate 3ŷ  by 
using the new observer. Figure 2 shows the difference 
between 3y  and its estimate 3ŷ  by using the IBO. 
It can be seen that the estimation error in Figure 1 is 
much smaller than that in Figure 2, i.e. the 
performance of the new observer is better than that of 
the IBO. Since the performance of the extended 
Kalman filter (EKF) is similar to that of IBO, it can be 
concluded that the performance of the new observer is 
also better than that of the EKF. Further, it can be seen 
that the formulation of the new observer is much 
simpler than that of the IBO, not to say EKF. And the 
a priori knowledge about the noise is not needed in the 
new method. Therefore, it can be concluded that the 
new observer is superior to the traditional IBO and 
EKF. 

 
Example 2: Consider the periodic movement of the 
object described by 
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In the observer design, )0(ˆ3y  is chosen as 1)0(ˆ3 =y . 
The parameters are chosen as 20=α , 521 ==αα , 

221 ==δδ , 10=M , 2.0)0(ˆ)0(ˆ
21 ==λλ . 

 

 
Fig. 3 The difference between 3y  and its estimate 

3ŷ  by using the new observer for Example 2. 
 
Figure 3 shows the difference between 3y  and its 

estimate 3ŷ  by using the new observer. It can be 

easily   seen   that  ( ) ( )2232
2

131 )()( tybbtybb −+−  

( ) ( ) ( )( )2
2

2
1

2 )()()2cos(2 tytyt += ππ  takes the value 
zero periodically. The method proposed by Jankovic et 
al (1995) cannot be applied to this movement. 

 
5.  CONCLUSIONS 

 
In this paper, we consider the state identification 
problem of a class of perspective system, where the 
parameters are assumed known. The formulated 
problem can be converted into the observation of a 
dynamical system with nonlinearties. A new 
discontinuous observer, which is motivated by the 
sliding mode control method, is proposed to identify 
the state of the perspective systems. Minor a priori 
knowledge about the system is required. The attraction 
of the new method lies in that the algorithm is very 
simple and easy to be implemented, and can cope with 
a large class of perspective systems. Further, 
simulation results show the robustness to measurement 
noises and the superiority to the traditional ones.  
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