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Abstract: In this paper, we consider the problem of estimating the state of a class of perspective
systems. The problem can be converted into the observation of a dynamical system with
nonlinearities. A new discontinuous state observer, which is motivated by the sliding mode
control method and adaptive techniques, is proposed for the obtained dynamical system. The
attraction of the new method is that the algorithm is very simple and easy to be implemented,
and it is robust to measurement noises. Further, minor a priori knowledge of the system is
required in the new formulation. Simulation results show the superiority of the new method to

the traditional ones.

Keywords: Nonlinear observer; Perspective observation; Identification of non-linear system;

Discontinuous observer; Sliding mode method

1. INTRODUCTION

In the study of machine vision, observing the position
of a moving object in the space by the image data with
the aid of a CCD camera has been studied in the past
years (Ayache, 1991; Ghosh, ef al., 2000; Jankovic, et
al, 1995; Sridhar, et al., 1993). A very typical method
is the application of the extended Kalman filter (EKF)
(Matthies, et al., 1989; Sridhar et al., 1993). Even
though the convergence conditions of EKF have been
recently established both as observer and filter
(Boutayeb, et al., 1997, Reif, et al., 1999), it is well

known that the EKF may fail in some real applications.

A fatal shortcoming of EKF is that the algorithm is
very complicated and can hardly be implemented
practically with real image data. Further, the a priori
knowledge about the noise is required. To overcome
these difficulties, Jankovic et al. (1995) proposed a
new recursive formulation called “identifier based
observer” (IBO) based on a parameter identifier
considered in model reference adaptive control
(Narendra, et al., 1989). The proposed IBO is
guaranteed to converge in an arbitrarily large (but
bounded) set of initial conditions, and since the
convergence is exponential it is believed that the
performance of IBO is reliable, robust and would
quickly compute the position on real data (Jankovic, et
al., 1995). It should be noted that the a priori
information about the upper bound of the state is
required in the formulation of IBO, and the
performance of IBO is similar to that of the EKF.

In this paper, we consider the state identification
problem for the perspective system, where the motion
parameters are assumed known. The formulated
problem can be converted into the observation of a
dynamical system with nonlinearities. To identify this
class of nonlinear system, the method proposed by the
authors (Chen, et al., 2000) may be helpful in the
formulation of the observer. In this paper, a new
identification method is proposed to identify the space
position of a moving object, where the upper bound of
the state is adaptively updated online. The proposed
method is a combination of the sliding mode method,
adaptive method, and discontinuous observer
techniques (Jankovic, ef al., 1995; Utkin, 1992). The
discontinuous input in the sliding mode method is
modified by a differentiable approach, and the
“equivalent control” method is clarified theoretically.
The attraction of the new method lies in that the
algorithm is very simple, easy to be implemented
practically, and robust to measurement noises. Further,
the proposed method requires minor a priori
knowledge about the system and can cope with a much
more general class of perspective systems. Simulation
results show that the new method is superior to the
traditional ones.

The organization of the paper is as follows: Section 2
formulates the problem. In section 3, the robust
observer is proposed. In section 4, examples are given
to illustrate the new algorithm, and to compare the
performance with the traditional methods.



2. PROBLEM STATEMENT

Consider the movement of the object described by
' D‘l(t)[l Dlu(t) ay, (1) al}(t)DDcl(t)D b, ()0
jﬁz(l‘)m |j121(t) ay (1) a23(t)|]|jfz(t)[| %’ (t)EF
B0 B ay() aOH:0OF B:0OH
where x(¢) = [xl ®), x,(1), x3(t)] is the position in the
space, a;(1)(i,j=1,2,3) and b,()(i=1,23) are

the motion parameters. It is supposed that the observed
position in the image plane is defined by

O
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The perspective system is composed of equations (1)
and (2).

In this paper, we make the following assumptions.

(Al). The parameters a,(t)(i,j=1,2,3) and
b,(t)(i=1,2,3) are known bounded functions
of time ¢ b,(t)(i=1,2,3) are piecewise
differentiable, and have bounded derivatives
(at the undifferentiable points, we mean the left
and right side derivatives).

(A2). x;(t) meets the condition x,(¢) >n >0, where

n is a constant.
(A3). y(¢) is bounded.
Remark 1: Tt is easy to see that assumptions (A2) and
(A3) are reasonable by referring to the practical

systems.

The purpose of this paper is to estimate the position
x(¢) by using the observed information y,(¢) and

»,(¢) in the image plane.

3. FOMULATION OF THE OBSERVER

Define

»(t 3)

(f)
Then, equation (1) can be rewritten as
0 3,(t) =a,; +(ay, —ay)y, +a,y, _5131)’12
O —apy Y, *(b —byy)y;
%yz(t) Zay, tayy H(ay —ay)y, ~ayyy; 4)
0 —ayy; +(b, ~b;y,) s
EJ@U) =(ayy, tayy, tay)y; _b3J/32

It is obvious that the position of the object in the space

can be calculated as

(1 :J’1(t) X, yz(t) (1) =
WO0=L 0 PO e 0T y;(r)

if y,(¢#) is available. So, the remaining task is to

)

estimate y;(?).

In the following, the observer of system (4) is
formulated. We consider the system described by

E[V(t) =ay; +(ay, —ayn)y, tapy, - an)’l

+(b, -b +A () —1—
B. —anpny, *( V)5 +A( )|€1|+61
Bﬁz(t) Say tayy, H(ay —ay)y, ~ayyy,
P e
B —a32y22 +(b, =byy,) s +A2(t)|ez|—-lz-52 ©)

Bj’z(t) =~ayy, tay,y, tas)y, _stAhz
0 rae (w),
090, +0) =M Gign(5,(;, ~0))
where the initial condition is determined as
71(0)=3,0), 3,(0)=»,(0), »;(0)=y5, (7)
Vs, is apositive constant; £, is defined as
t, =minft: > 1, and |,(0]22M} ®)
and t,=0; M >0 is a large constant; e(f) and
e,(t) are respectively defined as
Q =V, &=V " ©)
J, >0(i =1,2) are design parameters; ¢@(t) and w(¢)
are respectively defined as
A1) =[(b, =byyy), (b, _b3YZ)]Ts (10)

. o O
A0 an

|ez| p)

_ S& €
w(t) = A 1(t) |el| +51

){l (¥) and )(2 (¢) are respectively defined as
EQa |el| zf|el| > 25

At 12

(0= D 0 otherwise (12

/\ (0= E’Qaz|ez| lf|ez|>25 (13)
D 0 otherwise

a, a, and a, are positive constants, }(1(0) and

)(2(0) can be any positive constants.

Remark 2: t; defined in (8) are the discontinuous
points of the system (6). By observing (6) and (8), it
can be easily seen that P,(#) is bounded by

|9:(0)| <2M .

Now, combining (4) and (6) yields
Bé () =(b, —b,y,)e, = A (1) ——
0 1 | T03)1)€ T A |el|_'_51
=) « e

e, (1) :(bz —b3y2)63 _Az(t)—z

0 eof#0,

Ue; () =~(asy, +ayy, +as)e; —b, (,Vz )3 )es

—ag’ (tyw(t)

where e,(f) is defined as
&=y, = ;. (15)

, (0)=0

» €(0)=0 (14)

Remark 3: For i=12, the terms A, () ——— are

e |+5

introduced to assure that |el.(t)| and |el.(t)| are very
small. This is motivated by the sliding mode method



where the discontinuous form )(l.(t) Lign(e;) 1is

|(bl. —-b,y, )e3|(their boundedness can be confirmed by

modified as A (t) . The upper bounds of

assumptions (A1)-(A3) and Remark 2) are not needed
in the new method, and are adaptively updated by (11)
and (12).

Remark 4: For the system

z(t) =v(t) — N Bign(z(?)) , (16)
where |v(t)| <N, we can prove that z(f) - 0 as
t - oo i.e. a sliding mode exists on z(¢) =0. We can
never prove that z(¢f) - 0 as ¢t — o . However, in
the literature of traditional sliding mode control, z(t)

is also considered as 0 when the sliding mode occurs,
and regard N Ldign(z(¢)) as the estimate of v(¢)

(the so-called “equivalent control method”) [12]. It is
obvious that this approach is short of theoretical proof.
This difficulty is overcome by our new approach (see
also Remark 3 and Lemma 1).

About the constructed system (6), we have the next
lemma to state the boundedness of ji @), |ei(t)| and
|e’i(t)|, and to assure that |el.(t)| and |e'l.(t)| can be
controlled by the design parameters , and 9, .

Lemma 1: For the constructed system (6), it can be
|el.(t)| and /fl.(t) are
uniformly bounded, and there exist 7,>0 and
£,(3,)>0 such that |e, ()| <28, and |¢,(1)]<€,(3)
as ¢t>T;, where £,(5,) -0 as 0, - 0.
Proof: The proof is composed of two steps.
Step 1 For i=12, |el.(t)| and A,(t) are uniformly
bounded, and there exist ¢ >0 such that |ei(t)| <26,
as t>1,.
By remark 3, suppose the upper bound of
(b, =byy)e, (1) is A, ie.

(6, =byy)es (1) <A (17
Now, consider the Lyapunov candidate

proved that, for (=12,

ro =@y B io-AH. s
a, o :

If |e1(t)| >20,, then differentiating V(¢) yields
40

=26,(0)(b, by )es - 20— +2(0.5K (1) - A e

2
_4a
]+,

=2(e,(1)(B, ~byy)e, =Aer|)+ 24, Oh1 i v o

s 20
i

—A (D]ey]

< —

((Oe

5.4.(0), (19)

|
3™
2
=73
where jl (t) 2)(1(0) >0 is employed in the last step.
Thus, V,(t) decreases monotonically from F;(0) at

a speed faster than %5%(0) if |el(t)| >20,. So, it

takes finite time that V{(¢#) decreases to any possibly
nonnegative value if the presupposition |e1 (t)| >290,
holds. Further, by noticing the fact Vl(t)2|el(t)|2 ,

from (19), it can be seen that the condition
|e1(t)|>251 cannot be satisfied forever as V(¢)

decreases monotonically at a speed faster than
2 _» -
351)\1(0). Therefore, the condition |el(t)|5251 can

be satisfied in finite time. Then, there exists ¢, >0
such that |el(t)|s251 as t>t , and V(¢) is
uniformly bounded for 0<¢<¢ (which also means
that |el(t)| and )(l(t) are also uniformly bounded
for 0<¢r<t ). By (l11), it can be seen that
jl(t):/il(tl) for t>¢ Therefore, jl(t) and

|e1 (t)| are uniformly bounded for all #>0.

Similarly, it can be proved that |e2 (t)| and )(2 () are
uniformly bounded, and there exists ¢, >0 such that
ley(1)] 20, forall t>¢,.

Step 2 For i=12, |é,.(t)| are uniformly bounded,
and there exist 7.>¢, such that |é,.(t)|ss,.(6,.) as
t>T,, where €,(0,) -0 as 0, - 0.
For t>¢ , differentiating the first equation in (14)
yields

2,0,

. d -
é.(t) 7(@1 ~byy, )ez)—ma)qr;—;)z, (20)
€ 1

where }(l(t)=0 (as t>¢ ) is employed.
Differentiating (¢,(¢))* yields
éld,

qel|"'51)2

<2e1<z>t-fi(b “bae)-2A )5 2D

%(e'm) —2e1<z>9"—<b ~boy)es)-2A ()0

where the facts |e1(t)|s251 and )\l(t)Z/\l(tl) are
employed.

By calculating di((bl—b3yl)e3), it can be easily
t

known that di((bl ~b,,)e;) is a bounded signal by
t



observing Remarks 2-3, the assumptions (Al)-(A3),
and the result in Step 1.

ol
K—ngzatlxa;((bl b;yoe}% 2)
05,

If |e'1(t)|>1A6K

1\

—(el 0y <2¢, (r)|%< “Asd |€1 0 H

<2|el(t)|Ek H 205K7 (03

Let

, then, from (21), it yields

9, (1)
ie. |e’l (t)| decreases monotonically at a speed faster
2
than 20A6 LS Thus, the  presupposition
9A,(t)
. 109, .
|el(t)|> = cannot be satisfied forever. Then,

1\
there exists an instant 7, ¢, such that

106,K
é(n
40l A@)

(24)

forall ¢+>7T;.

Therefore, |é1(t)|
choosing very small J,. Further, from (23), it can be

very small as ¢>7, by

seen that the decreasing speed of |é1(t)| can be

increased by choosing a very small 9, .

Similarly, it can be proved that there exists an instant
T, 2t, such that |e'2(t)| is bounded and very small
as t>T7, by choosing very small J,. Thus, the
lemma is proved.

Remark 5: In the constructed system (6), »,(r) and
¥,(t) are the auxiliary outputs. The dynamics of
7@ and 7,(r) are introduced in order to estimate
the unknown signals (b, —by,)e; and (b, —b;y,)e;.
Lemma 1 tells us that their corresponding estimates

o e
are A (¢ and A, () —2—

()| | 2()|ez|+6z
two equations in (14)) (see also Remarks 3-4). These

estimates are employed in the third equation in (6) to
force J,(¢) to be very close to y,(t) as t is very

(see the first

large.

The next theorem gives the condition to guarantee the
generated signal p,(¢) in (6) to be very close to

»,(¢) astis very large.

Theorem 1. Suppose there exist a positive constant
B and a very small positive constant p such that

[0 e
:Jtﬁp ((bl _b3)’1(1—))2 +(b2 -b,y, (T))2 )J'[ >p

for all #=0. If the parameter o is chosen large
enough, then e;(f) is uniformly bounded and

(25)

decreases exponentially. Further, there exist 7, =0
and €(9,, 9,) >0 such that

le; ()| < £(3,, 8,) (26)
2
as t=T,, where £(J,,0,) - 0 as 25" - 0. Thus,

5(¢) generated in (6) is the approximate estimate of
y,(¢) as t is very large by choosing very small
parameters O, and J,.

Proof: By the assumptions (A1)-(A3) and Remarks
2-3, it can be easily seen that

|(a31y1 +a,,y, *a5;) +b, (y3 + )731 is a bounded signal,

i.e. there exists y >0 such that
y :SUPﬂ(au)ﬁ tayy, tay) +h ()/3 +JA/3)} .27
>0
Let

k()=

2ae,(1)¢" (t)Dl(( ;@ (28)

From Lemma 1, it can be seen that there exists
d(d,,8,)>0 such that

K(1)=d(9,, 3,) (29)
as t> maX(Tl,Tz), where d(5,,9,) -0 as

2

Now, from (14), differentiating (e, (1))’ yields

%(33(0)2 =2ez(t)(_(a31Y1 tay,y, tay)e _bz(yz +)A/3)e3)

~ 20, (0 (OYW{1)
2y{e, (1)) —2ae, (g (t)HW)eg(t) ulg
< —2(acp 090 -y Jes O +K (). (30)
Let
(0= 2l0g" @) -y). (31)

It can be seen that there exist a positive constant U
such that

o<ps< J’ eyt (32)
0.5u+yp
—5

From the assumption (25), it can be easily seen that
there exist a constant 8 such that

+9
0< Jj G(r)dr (33)
forall t+=0 andany & satisfying 0<3<p. Let

) =%(e3 OF +cOleO)f -k@). (4

for all r+=0, if a is chosen as a >



Then, s(¢#)<0. Solving the differential equation (34)
yields

(e3 (t))z _ e—ﬁc(r)dr (63(7,))2 +J;e‘ﬁ<(r)d1 (s(l) +K(I))dl

< O ()] +d@, 5,) [ T 33)
where T > maX(Tp Tz)'

Now, express ¢t—T7 as t-T=kp+0 , where
0 <0 <p. Then, we have

[c(mydr = z [, ST + [ 17 ¢(1)dT 2k +6.

(36)
For T+(-)p<i<T+Ilp , by expressing
I =T +(-Dp+w with 0<w<p, we have
Jc(ydr = ;’jﬁ;‘;mc(r)dr
i€ OAT + L0500 if 020
g COAT+ T ,CDdT  if 0<w
N [(k ~[+Du+6 if 02w
Tdk-u+e ifozw
>(k-1u+6. (37)
Thus,
~fe@ar p fc(r)df ~fer
[ ai= 2@, o€ dr g e
< ZJJ:(Ifl —(k—l)l—l—edl +J;+kpe—9dl
<pze(klu9+pe—9
~ku u
9 € _26 +1
= _ . 38
1-é! G8)
Then, substituting (36) and (38) into (35) yields
(e.0f <e"‘“e‘9 (D) +
1”6 a, 6)+pe 2 a5, 8, (39)

ie. (e3 (t))2 decreases exponentlally if it is not very
small.

By the boundedness of the right hand side of (6), it

follows that ¢, —¢,_, is greater than a positive constant,

say X (As p is very small, we can conclude that
X >>p), for all i. On every such a time interval, the

variable ((33(t))2 decreases exponentially (see (39))
and, at ¢ , the estimation error e,(f) satisfies
les(t; +0)| <|e;(,=0)| . Thus, |es(t)| decreases
exponentially until it becomes very small. Therefore,
|e3(t)| is bounded and (26) is proved.

Remark 6: The condition (25) can be thought of the
observability condition for the perspective system. The
condition (25) means that if

(b1 =b,y, (t))2 +(b2 -b,y, (t))2 is very small or zero at

some instant, it must increase fast enough thereafter.
Further, it can be proved that if
(b, =By, () +(b, =By, (1)) is zero in some time
interval, it must be identically zero. Moreover, the
condition in [5] is much more strict than the condition
(25) in this paper. Therefore, it can be seen that the
assumption (25) is reasonable for a large class of
perspective systems.

Remark 7: The design parameters o, >0 and J, >0
(i=1,2 ) determine the estimating speed and the
estimating  precision. The parameters a, >0
(i=1,2) should be chosen large enough to rapidly

adjust A.(¢).

4. EXAMPLES AND SIMULATIONS

In this section, we present the simulation results for
two examples. The simulation is done by Matlab. The
sampling period is chosen as 0.05. Suppose the
measured image data is corrupted by 1% with random
noise.

Example 1: Consider the movement of the object
described by

@0 §-02 04 —0.600k )0 0050
dg 0.0

CHROFQLT 02 03 05 0255,
F.(08 B03 -04 04 H&,»E B03F

O,(0)0 01 O
0 0.0 <O
HO=HsE (45)
B, (0F BSH

01

O,

NER 3= ¥

03t

-03F

04}

05k

08, 1 2 3 2 5 1 6

Fig. 1 The difference between y, and its estimate

)73 by using the new observer for Example 1.

01

ok
01F Y2~ ¥
0zt
03t
04t
05t

-06
0

1 2 4 5t 6
Fig. 2 The difference between y, and its estimate

)33 by using the IBO for Example 1.



For this example, the condition (25) is satisfied for
p=0.05 and B=0.05. In the observer design,

7,(0) is chosen as 7,(0)=1. The parameters are
chosen as a=20, a,=a,=5, 9,=0,=03,

M =10, A(0)=A,(0)=0.2.

Comparison between the proposed new observer and
the IBO in Jankovic et al (1995) is performed.
Because of the trade-off of the estimation error and the
converging speed, the estimation error is compared
based on the same converging speed. Figure 1 shows
the difference between y, and its estimate p, by
using the new observer. Figure 2 shows the difference
between ), and its estimate p, by using the IBO.
It can be seen that the estimation error in Figure 1 is
much smaller than that in Figure 2, i.e. the
performance of the new observer is better than that of
the IBO. Since the performance of the extended
Kalman filter (EKF) is similar to that of IBO, it can be
concluded that the performance of the new observer is
also better than that of the EKF. Further, it can be seen
that the formulation of the new observer is much
simpler than that of the IBO, not to say EKF. And the
a priori knowledge about the noise is not needed in the
new method. Therefore, it can be concluded that the
new observer is superior to the traditional IBO and
EKF.

Example 2: Consider the periodic movement of the
object described by

dgcl(z)g 0o -2m o%cl(z)g B 0 E
gﬂ‘z(’)D:%" 0 OpOgtg 0 o
@c}(t)g EO 0 O%C}(t)ﬁ @ﬂcos@m)a
o, (0)0 00
FoF=4E (46)
H.(0H BB

In the observer design, 7,(0) is chosenas p,(0)=1.
The parameters are chosen as a =20, a, =a, =5,

3,=58,=2, M =10, A(0)=A,(0)=02.

04

-04

06 ‘ : ‘ : :
0 1 2 3 4 5 1 6

Fig. 3 The difference between y, and its estimate

)33 by using the new observer for Example 2.

Figure 3 shows the difference between y, and its

estimate J, by using the new observer. It can be
that (bl _b3y1(t))2 +(b2 —b3y2(t))2
= 2reosem) P (1 () + (5,0 ) takes the value

zero periodically. The method proposed by Jankovic et
al (1995) cannot be applied to this movement.

easily  seen

5. CONCLUSIONS

In this paper, we consider the state identification
problem of a class of perspective system, where the
parameters are assumed known. The formulated
problem can be converted into the observation of a
dynamical system with nonlinearties. A new
discontinuous observer, which is motivated by the
sliding mode control method, is proposed to identify
the state of the perspective systems. Minor a priori
knowledge about the system is required. The attraction
of the new method lies in that the algorithm is very
simple and easy to be implemented, and can cope with
a large class of perspective systems. Further,
simulation results show the robustness to measurement
noises and the superiority to the traditional ones.
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