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Abstract: Submerged entry nozzle connects the tundish and the mold in the continuous 
casting of steel. Continuous casting is usually done in series including 3–6 successive 
heats. Casting of a heat takes about 35–50 minutes. The nozzle is changed after each 
series and the new series is started with a new nozzle. About 360–720 tons of steel goes 
through a nozzle during its lifetime.  
 
The casting speed and the stopper rod position give the indication of nozzle clogging, 
but they cannot, however, answer the question, how long time the casting can continue 
and when the nozzle should be changed. In this paper, feedforward neural networks 
with backpropagation training were used in modelling the nozzle clogging behaviour at 
Rautaruukki Steel mill, at Raahe site. Copyright © 2002 IFAC  
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1.  INTRODUCTION 
 
This paper shows the results of a research project that 
aimed to find reasons for nozzle clogging in the sub-
merged entry nozzle in continuous casting of steel, 
and also to develop tools for predicting the occur-
rence of this phenomenon. It is known that better 
management of casting brings along considerable 
potential for production increase and quality im-
provement. 
 
The casting plant at Rautaruukki Raahe Steel consists 
of five single strand continuous casters. Casting 
process starts by opening the steel ladle (see Fig. 1). 
Then the steel flows in a continuous stream through 
the ladle into the tundish. From the tundish the steel 
flows through a submerged entry nozzle into a mold 
where the solidification of steel starts. Partly solidi-
fied cast strand is pulled out from the mold by rollers. 
The inner part of the cast strand is solidified in the 
secondary cooling zone by air-water spray cooling. 
At the end of the casting machine, a torch cutting 
machine cuts the cast strand to slabs. 

2.  NOZZLE CLOGGING PROBLEM 
 
2.1 What is nozzle clogging? 
 
Submerged entry nozzle connects the tundish and the 
mold in the continuous casting of steel (Fig. 2). It is a 
tube with a diameter of about 15 cm and it divides 
the molten steel into two directions on the both sides 
of the nozzle. The direct flow downwards should be 
avoided, because in this case aluminium compounds 
in slag would stay in molten steel. The nozzle trans-
fers molten steel from the tundish to the mold and 
separates steel from the atmosphere.  
 
Usually one cast series includes 3–6 successive heats 
meaning the same number of ladles. Casting of a heat 
takes about 35–50 minutes. Each series is designed to 
consist of the same steel quality. The nozzle is 
changed after each series and the new series is started 
with a new nozzle. About 360–720 tons of steel goes 
through a nozzle during its lifetime. The risk of 
nozzle clogging increases all the time so that when 
about 360 tons of steel has been cast (after the third 
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ladle) the nozzle condition must be monitored care-
fully. The operators estimate, based on vision and the 
casting plan, if the clogging should be removed or 
the nozzle changed in the middle of the cast series. 
Nozzle clogging is not an instantaneous phenome-
non, but rather it develops with time.  
 
The clogging can be removed by pumping the 
stopper rod and in this way continue the casting 
series without changing the nozzle. Different nozzle 
materials and designs and dimensions of the nozzle 
are available. 
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Fig. 1. The continuous casting process.  
 
 

Stopping rod

Tundish

Nozzle

Clogging areas

Mold level

 
 
Fig. 2. Location of the submerged entry nozzle in the 

continuous casting process.  
 

2.2 Reasons and remedies 
 
There are several reasons that contribute to nozzle 
clogging: 
 

- metallurgical factors: steel cleanness and 
aluminium content, 

- hydrodynamic factors: steel flow rate and 
nozzle geometry, 

- thermodynamic factors: cold steel and heat 
transfer inside the nozzle,  

- nozzle material, and 
- unpredictable disturbances and operational 

faults. 
 
Clogging mechanism depends on the cleanness of 
steel (Miyazawa, 2001). With clean steels, the 
clogging consists of solidified steel, but in other 
cases powdered aluminium oxide dominates. 
 
Several methods have been used in avoiding nozzle 
clogging (Rackers and Thomas, 1995, Pilet and 
Bhattacharaya, 1984, Okamoto et al., 1982, Takasugi 
et al., 1990): 
 

- calcium silicate injection, 
- improving steel cleanness, 
- argon injection into the nozzle, and 
- nozzle material, construction and geometry. 

 
The effects of nozzle clogging to mold level control 
has been studied by Dussud et al. (1998) and Graig et 
al. (2001). 
 
 
2.3 Nozzle clogging detection 
 
There are some variables that can tell about increased 
risk for nozzle clogging. Fig. 3 shows trends of cast-
ing speed and stopper rod position in two cases. The 
uppermost figure shows the case without any nozzle 
clogging and the lower one shows the opposite case. 
The difference is clear and the experiences have 
shown that these two variables can give the first indi-
cation of nozzle clogging. 
 
Using the casting speed and the stopper rod position 
cannot, however, answer the question, how long time 
the casting can continue and when the nozzle should 
be changed. Figure 4 shows a block diagram for the 
system that aims to estimate also the time available 
for undisturbed casting. 
 
 

3. DATA ACQUISITION AND ANALYSIS 
 
This paper reports the study that concerns with the 
possibilities to predict nozzle clogging or, more 
exactly, to estimate the amount of steel that can be 
cast without changing the nozzle. This is based on 
historical data collected from Rautaruukki Steel 
Mill’s converter plant and two casters. The first 



analysis revealed that nozzle clogging exists with 
aluminium-killed steel grades that have gone via the 
stirring station to the casters. Modelling was done 
with feedforward networks trained by backpropaga-
tion. 
 
3.1 Data 
 
Data was collected from casters 5 and 6, from 5800 
heats from each. All the heats were not used in mod-
elling. Clogging occurs with aluminium-killed heats 
and other heats were left outside. Four steel grade 
groups were concerned and they will be called grades 
1, 2, 3 and 4 in the following. The heats that had 
gone via the ladle furnace were omitted. Silicon-
killed heats were also left without further considera-
tion as also heats with serious disturbances. 
 
 
3.2 Correlation analysis 
 
The analysis considered only these heats where 
nozzle clogging existed. First attempts were made 
keeping all the heats for casters 5 and 6 together. 
Correlations were, however, weak, and therefore the 
data was first divided according to the caster and 
further into smaller data groups based on four steel 
grades (1–4).  
 
So, correlation analysis was made separately for two 
machines and four grades. It meant eight data groups 
and the results were used in defining the potential 
variables for nozzle clogging models.  
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Fig. 3. Examples of casting speed and stopper rod 

position in undisturbed case (upper figure) and in 
a nozzle clogging case (lower figure).  

 
 
 

Does the rod position show
the risk of clogging?

No
Small risk

Casting continues

Casting continues

Yes

High risk

Use neural nets to calculate
how many tons can be cast

Is the prediction reasonable?

No

Yes

Nozzle change  
 
Fig. 4. Nozzle clogging detection based on the stop-

per rod position and neural network model. 
  
 
In correlation analysis, a total of 67 variables were 
considered. All main temperatures and compositions 
were included starting from the converters until the 
casters together with other process variables and 
some additional variables that were calculated from 
process variables. The most significant are listed in 
Table 1 later in Chapter 4. It was also found that in 
some cases data from two successive heats were 
needed.  
 
 

4. MODELLING APPROACH 
 
Nozzle clogging was modelled using neural net-
works. Modelling with neural networks consists of 
two phases: training and testing. In training, network 
parameters are updated aiming to minimise the dif-
ference between estimated and actual response val-
ues. In this case, training utilised backpropagation 
procedure. In testing, response is calculated using 
constant network parameters. Testing is done with a 
data set that was not used in training. Training is 
continued, until the error in the testing phase reaches 
its minimum. Excessive training must be avoided. 
 
 
4.1 Pre-Processing for Neural Networks 
 
Before training, all input and output variables were 
scaled. Usually, the scaling is done in intervals -1 – 
+1 or 0 – +1. Most of the inputs were scaled using 
the Matlab-function prestd() that scales the variables 
to the average value of zero and the standard devia-
tion 1. The serial number of the heat is scaled inside 
the interval 0.16–1.16 by dividing it by 6. The serial 
number starts from 1 and the longest series count to 



seven heats. The mold width (koklev) was scaled 
inside the interval 0 – +1 using equation 1: 
 
Koklev=(koklev-1000)/800           (1) 
 
The output variable of the network is the amount of 
cast tons with a certain nozzle without pumping. Its 
values were scaled inside the interval 0.16–1.16 by 
dividing the actual measurement value by 720 that is 
the total amount of six heats in tons. 
 
 
4.2 Network Structure 
 
Modelling used feedforward networks with only one 
hidden layer. These networks model steady-state 
dependencies between input and output variables. 
Two activation functions were applied, namely a 
hyperbolic tangent (y = tanh(x)) and a linear function 
(y=x). Modelling used Matlab’s NN-toolbox. The 
first layer included non-linear tanh-functions and the 
second layer a linear y= x function. This made non-
linear modelling possible.  
 
 
4.3 On the Training Data 
 
Three principles were used while selecting the input 
variables for the neural networks: 
 

- The variables had a correlation with cast 
tons over 0.20  

- They were not the set points for process 
controllers 

- They were not correlating with each other. 
The limit was chosen as 0.50. 

 
The amount of data limits the size of the network. 
The number of training parameters should not exceed 
the number of training points. In practice, network 
modelling is difficult if the number of data point is 
less than 60, because training requires 30 points at 
minimum and almost the same number is needed for 
testing. With five inputs and 30 training points, a 
conventional network can include only 5 neurons. 
These limitations were especially met in the caster 6.  
 
 

5. MAIN RESULTS 
 
5.1 Significant Variables 
 
Several models were developed for both casters. The 
best models can predict the cast tons with ±60 tons 
accuracy in over 80 % of cases. Models for caster 6 
show a better accuracy. Fig. 5 shows a typical exam-
ple. Table 1 shows a summary of 12 models for 
caster 5 and 14 models for caster 6. It shows the vari-
ables that were used in the models. There are no sur-
prises in this table; the listed variables can be 
assumed to effect on nozzle clogging also by a priori 

knowledge. The original results are shown in project 
reports (Ikäheimonen, Leiviskä, Ruuska, 2001). 
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Fig. 5. An example of test results. 
 
 
5.2 Cross-Testing 
 
Cross-testing considered applying the model devel-
oped for caster 5 to the data from caster 6. Only 
grade 1 showed reasonable results. This confirms the 
earlier results claiming that different variables effect 
the nozzle clogging in different casters.  
 

Table 1. The most significant variables. N denotes 
how many times the variable was included in 26 

models considered. 
Variable N 
Serial number of heat in the series 15 
Casting speed*mold width 10 
Mold width 9 
Tundish temperature of the first heat 8 
Steel temperature after stirring station 6 
Nitrogen content at stirring station 6 
Average tundish temperature 5 
Aluminium oxide content at stirring 4 
Temperature deviation in tundish 4 
 
 
5.3 Testing with Successful Cases 
 
Modelling used only data from cases where clogging 
occurred. Models for caster 6 were tested using data 
from corresponding successful heats. The result was 
as expected. It is impossible to tell how many tons 
could have been cast in successful cases, if casting 
had continued with the same nozzle. Therefore, the 
predicted cast tons given by the models remain in 
these cases lower than actual. The average error is 
about one heat, 120 tons. The result is important from 
the model application point of view: models never 
predict too high cast tons. The opposite result could 
lead to erroneous operator actions: cast could con-
tinue in spite of increased clogging risk. Fig. 6 shows 
an example run. 
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Fig. 6. An example from testing the NN-model with 

data from successful cases. 
 
 

6. CONCLUSION 
 
Nozzle clogging problem causes production losses 
and quality impairment in continuous casting, espe-
cially with aluminium-killed steels. Variations in 
stopper rod position and casting speed provide the 
operator with the first information on increased risk 
of nozzle clogging. This cannot, however, answer the 
question, how long time the casting can continue and 
when the nozzle should be changed. In this paper, a 
system is proposed that aims to estimate also the time 
available for undisturbed casting. 
  
The estimate of the amount of steel that can be cast 
without changing the nozzle is predicted using neural 
network models. These models are based on data 
collected from Rautaruukki Steel Mill’s converter 
plant and two casters; numbers 5 and 6. A total num-
ber of 5800 heats and 67 variables were analysed. 
However, the number of variables effecting nozzle 
clogging is quite small. Feedforward networks with 
backpropagation were applied. Separate model for 
both casters were needed and, in addition to this, data 
had to be divided in four quality groups. This shows 
that different variables dominate in different cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results seem promising; in several cases the cast tons 
are estimated with the accuracy of ±60 tons in more 
than 80% of cases. Not so encouraging was the find-
ing that different variables become dominating in 
different machines. The models were trained using 
clogging cases, only. When testing the models with 
successful castings, it was found that the models 
never gave too high predictions. 
 
 

REFERENCES 
 
Craig, I.K., F.R. Camisani-Calzolari, P.C. Pistorius 

(2001). A contemplative stance on the automa-
tion of continuous casting in steel processing. 
Control Engineering Practice 9, pp. 1013-1020. 

Dussud, M., S. Galichet, L.P. Foulloy  (2000). Appli-
cation of fuzzy logic control for continuous 
casting mold level control. IEEE Trans. on Con-
trol Systems Technology, 6. no. 2, pp. 246-256. 

Ikäheimonen, J., K. Leiviskä, J. Ruuska (2001). 
Report B32, University of Oulu, Control Engi-
neering Laboratory. (In Finnish) 

Miyazawa, K. (2001). Continuous casting in Japan. 
Science and Technology of Advanced Materials, 
2, pp. 59-63. 

Pielet, H.M., D. Bhattacharya (1984). Thermody-
namics of nozzle blockage in continuous casting 
of  calcium-containing steels. Metallurgical 
Transactions B, 15, pp. 547-562. 

Rackers, K.G. and B.G. Thomas (1995). Clogging of 
continuous casting nozzles. Steelmaking Confer-
ence Proceedinfs, pp. 723-734. 

Okamoto, K., T. Nakamura, M. Kondo (1982). 
Development of alumina-graphite immersion 
nozzle for continuous casting. Iron and Steel 
Engineering, no. 9, pp. 47-52. 

Takasugi, H., T. Masaoga, A. Shirayama, T. Mori, H. 
Murakami (1990). Prevention of alumina build-
up in submerged entry nozzles for continuous 
casting of low carbon Al-killed steels. 6th Inter-
national Iron and Steel Conference, Nagoya, pp. 
462-469. 

 
 
 


