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Abstract: Singularly perturbed relay systems (SPRS) in which the reduced systems
have the stable periodic motions with internal sliding modes are studied. The slow
motion integral manifold of such systems consists of the parts which correspond
to the di�erent values of relay control and the solutions may contain the jumps
from one part of the slow manifold to another. For such systems a theorem
about existence and stability of the periodic solutions is proved. An algorithm of
asymptotic representation for this periodic solutions using boundary layer method
is presented. It is shown that in the neighbourhood of the break away point the
asymptotic representation starts with the �rst order boundary layer function.
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1. INTRODUCTION

There are a wide class of relay control systems which
work in periodic regimes. For example, such regimes
arise every time in relay control systems with time
delays because a time delay does not allow an ideal
sliding mode to be realized, but results in periodic
oscillations ( Fridman et al, 2000). In controllers of
exhaust gases for fuel injector automotive control
systems ( Choi and Hedrick, 1996) the sensors can
measure only the sign of the controlled variable with
a delay. In such systems only oscillations around zero
value can occur. In the controllers for stabilization of
underwater manipulators it is possible to realize only
oscillations because of the manipulators properties
(Bartolini et al, 1997).

Some relay systems work in periodic regimes with
internal sliding modes. As the simplest modeling
example of the periodic oscillations with the internal
sliding modes we will consider the pendulum which

1 This research was supported under the grant of Consejo
Nacional de Ciencia y Tecnologia (CONACYT) N990704

has dry friction contact with an inclined uniformly
rotating disk (Rumpel, 1996). First this pendulum is
moving together with disk until returned point and
returning back. In real relay control systems every
time we have some unmodeled dynamics which can
correspond, for example, to the presence in system
of fast actuators or inertial sensors. Usually such
dynamics destroy the qualitative behavior of control
systems. The complicated model of sliding mode
control systems taking into account the presence of
fast and inertial sensors is described by singularly
perturbed relay systems (SPRS).

SPRS describe the complete model of fuel injector
systems taking into account the inuence of the
additional dynamics (the car motor). The knowledge
of properties of SPRS it is necessary in the con-
trollers for stabilization of the underwater manipu-
lator �ngers to take into account the inuence of the
elasticity of these �ngers. In the simplest pendulum
systems SPRS describe the inuence of the second
small pendulum on the oscillation of �rst one.
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For smooth singularly perturbed systems there are
two main classes of slow periodic solutions. Slow
periodic solutions of the smooth singularly per-
turbed systems "without jumps" are situated on
slow motion integral manifold. The other important
class of such solutions are the relaxation solutions
( Mishchenko and Rosov, 1980), which contain the
"jumps" from the neighbourhood of the one stable
branch of slow motion manifold to the neighbour-
hood of another one.

The slow motion integral manifold of relay systems
is discontinuous and consists at least of parts which
correspond to the di�erent values of control. This
means that the desired periodic solution of SPRS
should have the jumps from the small neighbourhood
of the one sheet of integral manifold to the neigh-
bourhood of another one. From this viewpoint the
qualitative behavior of this periodic solution will be
nearer to the relaxation solution. The main speci�c
feature of systems with relaxation oscillations is the
following: at the moment of time corresponding to
the jump from the neighbourhood of one branch of
the stable integral manifold to the neighbourhood of
another one, the value of the right hand side is small.
That is why in order to �nd the asymptotic repre-
sentation of the relaxation solution it was necessary
to make special asymptotic representations. The sit-
uation with SPRS is di�erent. The right hand side of
a SPRS is switches immediately after the switching
moment and the right hand side of fast equations
in SPRS after this moment is very big. It allows to
use the standard boundary layer functions method (
Vasil'eva et al, 1995) for asymptotic representation
of slow periodic solution of SPRS.

This paper is devoted to the investigation of the
inuence of additional dynamics on the periodic
motion of the relay systems with internal sliding
modes. We will consider the SPRS, for which the
reduced systems have the periodic solution with
internal sliding mode. A theorem about existence
and stability of slow periodic solutions for singularly
perturbed relay systems with internal sliding mode is
proved. The algorithm for asymptotic representation
of the periodic solution is suggested and it is proved
that there is no zero order boundary layer function in
the asymptotic approximation of periodic solutions
at break away point.

2. PROBLEM STATEMENT

Consider the SPRS in the form

�dz=dt = g(z; �; s; x; u); ds=dt = h1(z; s; �; x; u);
(1)

d�=dt = h2(z; s; �; x; u); dx=dt = h3(z; s; �; x; u);

where z 2 Rm; s; � 2 R; x 2 Rn; u(s) =
sign (s); g; hi (i = 1; 2; 3) are the smooth functions
of their arguments, � is the small parameter. Denote
by Z;�; S;X the domains in which the variables
(z; s; �; x); (s; �; x); (s; x) and x are de�ned. Suppose

that h1; h2; h3; g 2 C2[ �Z � [�1; 1]]: Then putting
� = 0 and expressing z from the equation

g(z0; s; �; x; u(s)) = 0; (2)

we have the reduced system

z0 = '(s; �; x; u);

d�s0=dt = H1(�s0; ��0; �x0; u);

d��0=dt = H2(�s0; ��0; �x0; u); (3)

d�x0=dt = H3(�s0; ��0; �x0; u):

Suppose that the measure of the sliding domain
S = f(z; �; x) :

h1(z; 0; �; x; 1) < 0; h1(z; 0; �; x;�1) > 0g
on the surface s = 0 in system (3) is nonzero in
� � f0g and � is the border of S is described by
equations s = 0 \ �� = 0 () ueq(z; 0; x) �
1 () h1(z; 0; 0; x; 1) � 0

�
; and moreover for all

(z; x) 2 � 2 Rm �Rn

h1(z; 0; 0; x;�1)> 0; h2(z; 0; 0; x; 1)> 0:

Suppose that the solution of system (1) in the sliding
domain S is uniquely described by the equivalent
control method (see for example Utkin, 1992)

�dz=dt = g(z; �; 0; x; ueq(z; �; x)); (1�)
d�=dt = h2(z; 0; �; x; ueq(z; �; x));

dx=dt = h3(z; 0; �; x; ueq(z; �; x));

where the equivalent control u = ueq(z; �; x) at all
(z; �; x) 2 S is determined by equation
h1(z; 0; �; x; ueq) = 0 and everywhere in S the
inequality jueq(z; �; x)j < 1 is true.

The main speci�c feature of system (1) is the fol-
lowing: the zero approximation of the slow motion
integral manifold for system (1) consists of three
sheets �z �0 = '�(s; �; x) = '(s; �; x;�1); and

�z �0 = '�(�; x) = '(0; �; x; �ueq(�; x));

corresponding to the value of relay control u = �1
and u = �ueq(�; x); where �ueq(�; x) is the value of
equivalent control determined by equation

H1(s; �; x; �ueq(�; x)) = 0:

It is obvious, that

ueq('(0; �; x; �ueq(�; x)); �; x) = �ueq(�; x):

For the description of periodic solution in the re-
duced system consider two auxiliary systems. The
system

d�s+0 =dt = H1(�s
+
0 ; ��

+
0 ; �x

+
0 ; 1);

d��+0 =dt = H2(�s
+
0 ; ��

+
0 ; �x

+
0 ; 1); (3+)

d�x+0 =dt = H3(�s
+
0 ; ��

+
0 ; �x

+
0 ; 1)

describes the motions in (3) for u = 1: Consider the
system

d���0=dt = H2(0; ��
�
0; �x

�
0; �ueq); (3�)

d�x�0=dt = H3(0; ��
�

0; �x
�

0; �ueq);

corresponding to the motions in (3) in sliding mode
on s = 0:



Let us denote

� = fx : H1(0; 0; x; 1) = 0; H1(0; 0; x;�1) > 0g
as the border of sliding domain of system (3). Then
the points (0; 0; x) 2 � are the points in which
solutions of (3) are leaving the sliding domain. Sup-
pose that for solution of system (3) with the initial
conditions

s0(0) = 0; �0(0) = 0; x0(0) = x0; x0 2 �

the following conditions are true

(i) there exists t = �(x0) the smallest root of
equation �s+0 (�) = 0; such that
h1('+(0; ��

+
0 (�); �x

+
0 (�)); 0; ��

+
0 (�); �x

+
0 (�); 1) < 0;

h1('+(0; ��
+
0 (�); �x

+
0 (�)); 0; ��

+
0 (�); �x

+
0 (�);�1) > 0;

��+0 (�) < 0;

(ii) for solution of system (3*) with initial conditions

���0(�) = ��+0 (�); �x�0(�) = �x+0 (�);

there exists t = T (x0) the smallest root of equation
���0(T ) = 0 such that

� for all t 2 [�; T )
h1('�(0; ���0(t); �x

�
0(t)); 0; ��

�
0(t); �x

�
0(t); 1) < 0;

h1('
�(0; ���0(t); �x

�
0(t)); 0; ��

�
0(t); �x

�
0(t);�1) > 0;

� H2(0; 0; �x�0(T );�1) > 0:

Fig. 1. The Poincare map 	(x0).

Now we can de�ne the Poincare map 	 : x0 !
�x�0(T (x

0)) of the border of the sliding domain �
generated by system (3) into itself (see �g. 1).

The systems (1) and (3) are discontinuous, and
consequently for investigation of stability for their
periodic solution it is impossible to use equation in
variations. That is why we will write down the condi-
tions of existence and stability of periodic solutions
for systems (1) and (3) in the form of the Poincare
map properties.

Suppose that for the system (3) the following hy-
potheses are true:

(iii) there exists an isolated �xed point of the
Paincare map 	(x) : 	(x�0) = x�0; x

�
0 2 �; corre-

sponding to the periodic solution of (3), such that
det@	

@x
(x�0) 6= 0;

(iv) k@	
@x
(x�0)k < q < 1:

Denote by �0 = �(x�0); T0 = T (x�0): Consider the
broken line L0(t) =

8>>>><
>>>>:

'+(s+0 (t); �
+
0 (t); x

+
0 (t)) for t 2 (0; �0);

'�(��0(t); x
�
0(t)) for t 2 (�0; T0);

(1� �)'+(0; ��+0 (�0); �x
+
0 (�0))+

+�'�(��+0 (�0); �x
+
0 (�0));

� 2 [0; 1] for t = �0:

In this paper the su�cient conditions are found
for existence of the isolated orbitally asymptotically
stable periodic solution of system (1) with internal
sliding modes near to the broken line

(L0(t); s0(t); �0(t); x0(t)):

An algorithm for the asymptotic representation of
this periodic solution is suggested. This solution
consists of boundary layers at the break away point
t = 0 and at the point t = �0 and it is proved
there is no zero order boundary layer function in
the asymptotic representation of periodic solution at
break away point.

3. EXISTENCE AND STABILITY OF THE
SLOW PERIODIC SOLUTION

We will consider only situations in which the fast
motions in (1) are uniformly asymptotically stable.
This means that for systems

dz

d�
= g(z; s; �; x; 1); (4+)

dz

d�
= g(z; 0; �; x; ueq(z; �; x)); (4�)

which describe the fast motions in (1) for u = 1 and
(1*) respectively, for some � > 0; � > 0 the following
conditions are true:

(v) the matrix @g
@z (z; s; �; x; 1) is stable on the set

Z+ = f(z; s; �; x) : (z; s; �; x) 2 Z ; s > 0;

k('+(�s+0 (t); ��+0 (t); �x+0 (t)); �s+0 (t); ��+0 (t); �x+0 (t))
�(z; s; �; x)k < �; t 2 [0; �0]g

and

ReSpec
@g

@z
(z; s; �; x) < �� < 0;

(vi) the matrix @g
@z (z; 0; �; x; ueq(z; 0; �; x)) is stable

on the set

Z� = f(z; 0; �; x) : (z; 0; �; x) 2 Z;

k('�(���0(t); �x�0(t); �ueq(���0(t); �x�0(t))); ���0(t); �x�0(t))�
�(z; 0; �; x)k < �; t 2 [�0; T0]g

and moreover

ReSpec
@g

@z
(z; 0; �; x) < �� < 0:

It is natural to suppose that at the time moment of
input into the sliding mode the corresponding point
of system (1) solution is situated in the interior of at-
tractivity domain for slow motion integral manifold
of system (1*). Suppose that



(vii) point '+(0; ��+0 (�0); �x
+
0 (�0)) is an internal point

of attractivity domain of '�(��+0 (�0); �x
+
0 (�0)) which

is equilibrium point of system dz=d� =

g(z; 0; ��+0 (�0); �x
+
0 (�0); ueq(z; ��

+
0 (�0); �x

+
0 (�0))

and at all points of segment connected the points
'+(0; ��+0 (�0); �x

+
0 (�0)) and '�(��+0 (�0); �x

+
0 (�0)) the

su�cient conditions for sliding mode existence are
true, which means that for all point of segments

� = �'�(��+0 (�0); �x
+
0 (�0))

+(1 � �)'+(0; ��+0 (�0); � 2 [0; 1]

h1(�; �x
+
0 (�0)); 0; ��

+
0 (�0); �x

+
0 (�0); 1) < 0;

h1(�; �x
+
0 (�0)); 0; ��

+
0 (�0); �x

+
0 (�0);�1) > 0:

For the proof of existence and stability of system
(1) periodic solution consider the properties of the
Poincare map �(z; x; �) of the border of sliding
domain � into itself, generated by (1).

Theorem 1. Under conditions (i) � (vii) for su�-
ciently small � in the neighborhood of the broken
line (L0(t); �s0(t); ��0(t); �x0(t)) there exists orbitally
asymptotically stable periodical solution with period
T (�) = T0+O(�) and boundary layers at t = 0 near
to the point t = �0: The zero order boundary layer
function at t = 0 is equal zero.

The contraction properties of the Poincare map
�(z; x; �) at the point ('(x�0); 0; 0; x

�
0) one can con-

clude analogously Fridman, (1997) from :

� the theorems about the smoothness of singular-
ly perturbed systems solutions at the end of the
�nite time interval (Strygin and Sobolev, 1988);

� the theorems about asymptotic properties of
singularly perturbed relay systems solutions
(Fridman and Rumpel, 1996).

4. ASYMPTOTIC REPRESENTATION FOR
SOLUTION

Suppose that h1; h2; h3; g 2 Ck+3[ �Z � [�1; 1]] and
conditions (i) � (vii) are true. Denote by yT =
(zT ; s; �; xT ) and vT = (s; �; xT ): Then the asymp-
totic representation of the point �(�) and period the
T (�) of desired periodic solution of system (1) on
interval [0; ~Tk+1(�)] has the form

Yk(t; �) =
kX

i=0

[�yi(t) + ��i y(� k+1)]�
i +

kX
j=1

�+
j y(� )�

i;

(AS)

Vk(t; �) =
kX

i=0

�vi(t)�
i +

kX
i=2

�+
i v(� )�

i

+
kX

i=1

��i v(� k)�
i; � = t=�; �k+1 = (t� ~�k+1(�)))=�;

~�k+1(�) = �0 + ��1 + � � �+ �k+1�k+1;

~�k+1(�) = �0 + ��1 + � � �+ �k+1�k+1;

~Tk(�) = T0 + �T1 + � � �+ �kTk;

k � �
i y(� ) k< Ce�� ; C;  > 0; for � > 0

� �

i y(� ) � 0 for � < 0;

k �+
i y(� k+1) k< Ce��k+1 ; for �k+1 > 0

�+
i y(� k+1) � 0 for �k+1 < 0:

Theorem 2. Under conditions (i) � (vii)

j ~Tk(�)� T (�)j < C�k+1

and uniformly on t 2 [0; T̂ (�)]; where T̂ (�) =
maxfT (�); ~Tk+1(�)g; the following inequalities hold

k y(t; �) � Yk(t; �) k< C�k+1;

k v(t; �) � Vk(t; �)) k< C�k+1:

The proof of this theorem follows from asymptotic
properties of singularly perturbed relay systems so-
lutions (Fridman and Rumpel, 1996).

5. EXAMPLE

Let us show the existence and stability and design
the asymptotic representation for slow periodic so-
lution with internal sliding mode for SPRS in form

�dz=dt = �z + u; ds=dt = 2s + � + 5� 5u;

d�=dt = �6s� � + x+ 4z; dx=dt = �x + �z; (5)

where u = sign [s(t)]; z; s; �; x 2 R;� is the small
parameter. Let us show that for system (5) the
conditions of theorem 1 and 2 are true. For � = 0
system (5) takes the form

�z0 = u; d�s0=dt = 2�s0 + ��0 + 5� 5u; (6)

d��0=dt = �6�s0 � ��0 + �x0 + 4u; d�x0=dt = ��x0:
Than for system s > 0 instead of (6) one has

d�s+0 =dt = 2�s+0 + ��+0 ; d��
+
0 =dt = �6�s+0 � ��+0 + �x+0 + 4;

d�x+0 =dt = ��x+0 : (6+)

The set
S = f� : �10 < � < 0 g

is a stable sliding mode domain for system (6). The
motions into S; are described

d��0=dt = � ���0
5
+ �x�0 + 4; d�x�0=dt = ��x�0: (6�)

Then for the solution of the system (6+) with initial
conditions

�s +0 (0) = 0; �� +
0 (0) = 0; �x+

0 (0) = �

we have

�s +0 (t; �) = 1 +
e�t�

6
+

�p
15

15
+ �

p
15

�

�e t

2 sin

p
15t

2
�
�
�

6
+ 1

�
e
t

2 cos

p
15t

2
;

�� +
0 (t; �) = �2� e�t�

2
+

�
2
p
15

5
+�

p
15

30

�
e
t

2 sin

p
15t

2

+

�
2 +

�

2

�
e
t

2 cos

p
15t

2
;



�x0
+(t; �) = e�t�:

The last equation of (6) is independent and only the
solution of the equation �x0(t) � 0 can correspond
to the periodic solution of (6). Then to �nd �0 as
the input moment into the sliding mode we have the
equation

�s +0 (t; 0) = 1 +

p
15

15
e
t

2 sin

p
15t

2
� e

t

2 cos

p
15t

2
= 0:

Then �0 � 2; 45; �� +
0 (�0; 0) � �7; 03:

The solution of system (6) on the switching surface
takes the form

�� �0(t; ��
+
0 (�0; 0)) = 20� (20� �� +

0 (�0; 0)�

�5

4
�x+
0 (�0; 0))e

�(t��0)
5 � 5

4
�x+
0 (�0; 0)e

�(t��0);

�x �0(t; ��
+
0 (�0; 0)) = �x+

0 (�0; 0)e
�(t��0):

Now the period of system (6) periodic solution is
de�ned by equation �� �0(T0; ��

+
0 (�0; 0)) =

= 20� (20� �� +
0 (�0; 0))e

�(T0��0)
5 = 0:

And consequently

Fig. 2. Periodic solution of the reduced system.

T0 � 3; 96;
@�x �0
@�

(0) = e�T0 � e�3;96 � 0; 019 6= 0:

This means that for system (5) the conditions of
Theorems 1 and 2 are true.

To �nish with zero approximation of desired periodic
it is necessary to de�ne

�z0(t) =

8<
:
1 for 0 � t � �0;
�� �0(t; ��

+
0 (�0; 0)) + 5

5
; for �0 � t � T0:

Then

d�+
0 z=d� = ��+

0 z; �+
0 z(0) = � �� +

0 (�0; 0)

5
;

�+
0 z(� ) = � �� +

0 (�0; 0)

5
e�� :

Let us compute the �rst approximation of desired
periodic solution. Equations for the slow part of �rst
approximation for u = 1 have the form

�z +1 = 0; d�s+1 =dt = 2�s+1 + ��+1 ; (7)

d��+1 =dt = �6�s+1 � ��+1 + �x+1 ; d�x+1 =dt = ��x+1 + 1:

Than the solution of (7) with initial conditions

�s+1 (0) = ��+1 (0) = 0; �x+1 (0) = x�1

takes the form

�s +1 (t) =
1

4
+
1

6
e�t(x�1 � 1) + +

��p15
60

+

p
15

30
x�1

�

�e t

2 sin

p
15t

2
�
�
x�1
6
+

1

12

�
e
t

2 cos

p
15t

2
;

�� +
1 (t; x

�
1) = �1

2
� 1

2
e�t(x�1 � 1) +

p
15

30

�
x�1 + 2

�

�e t

2 sin

p
15t

2
+

x�1
2
e
t

2 cos

p
15t

2
;

�x+
1 (t; x

�
1) = (x�1 � 1)e�t + 1:

Then taking into account that we have �0 �
2; 45; �s +1 (�0) � 0; 45� 0; 45x�1;

�� +
1 (�0) � �1; 34� 0; 42x�1; �x

+
1 (�0) � 0; 91+0; 09x�1:

Then

�1 = �[�� +
0 (�0)]

�1�s +
1 (�0)! �1 � 0:063� 0:063x�1:

� �

1�(� ) = 4

�Z
1

�+
0 z(�)d� = 4

�� +
0 (�0; 0)

5
e�� :

� �
1�(0) = 4

�� +
0 (�0; 0)

5
; � �

1x(� ) � 0:

The initial conditions for the �rst approximation of
slow variables on the sliding surface are de�ning by
equations

���1(�0; x
�
1)+��1�(0) = ��+1 (�0; x

�
1)+ �1(x

�
1)
�� +
0

dt
(�0; 0);

�� �1(�0; x
�
1) = �� +

1 (�0; x
�
1) + �1(x

�
1)(4� �� +

0 (�0; 0))�

4
�� +
0 (�0; 0)

5
; �x�1(�0; x

�
1) = �x+1 (�0; x

�
1)� �1(x

�
1)�x

+
0 (�0);

�� �1(�0; x
�

1) � �1:12x �1 + 4:98;

�x �1(�0; x
�
1) � 0:09x �1 + 0:91:

At the same time the slow coordinates of system (6)
periodic solution are describing by equations

d�� �1=dt = � �� �1
5

+ �x �1 � 4d�z�0(t)=dt;

d�x �1=dt = ��x �1 + �z �0:

Now

�� �1(t; x
�

1) = 25� (3:34 + 0; 11x �1)e
�(t��0)

�(1:01x �1 + 16:67 + 11; 08t)e�(t��0)=5;

�x�1(t) = 5� 6:76e�(t��0)=5+ e�(t��0)(2:67+ 0:09x�1):

Taking into account that t = T0 we have

�� �1(T0; x
�
1) � 4:38� 0:77x �1;

�x �1(T0; x
�
1) � 0:59 + 0:0x �1:

The value x �1 is determined by equation
�x �1(T0) = x �1; which means that

x �1 � 0:60; �1 � 0:025; �1 � 0:22; T1 � 0:25



Fig. 3. � coordinate for the periodic solution of
the original system (line) and it's �rst order
asymptotic representation (points) for � = 0:2.

6. CONCLUSIONS

Singularly perturbed relay systems (SPRS) for which
the reduced systems have stable periodic motions
with internal sliding modes are studied. For such
systems a theorem about existence and stability of
the periodic solutions is proved. The algorithm for
the asymptotic representation of this periodic solu-
tions using boundary functions method is presented.
It is proved that in the asymptotic representation of
periodic solutions with internal sliding modes there
are two boundary layers:

� the boundary layer at the point of input in-
to the sliding mode which corresponds to the
jump of solution to the small neighbourhood of
the slow motion integral manifold of singularly
perturbed system describing the behavior of
original SPRS into the sliding domain;

� the boundary layer at the break away point in
which the solution is leaving the sliding domain.

It is proved that the zero order boundary function
in the asymptotic representation of the periodic
solution at the break away point is equal to zero
because the zero approximation of the slow motion
integral manifold at this point is continuous.
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