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Abstract: This paper considers the stability robustness of Markovian jump linear systems
in continuous-time with respect to their transition rates. The system under study is a linear
continuous-time one with Markovian jump parameters where the mode transition rate
is perturbed. By using stochastic Lyapunov function approach and Kronecker product
transformation techniques, we develop a sufficient condition for the robust stochastic
stability of the underlying system, which is in terms of an upper bound of the perturbed
transition rate. A numerical example is presented to illustrate the potential use of the
proposed technique.
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1. INTRODUCTION

As is well known, many physical systems have vari-
able structures subject to random changes, which may
result from the abrupt phenomena such as compo-
nent and interconnection failures, parameters shifting,
tracking, and the time required to measure some of
the variables at different stages. Systems with this
character may be modelled as hybrid ones, that is,
the state space of the systems contains both discrete
and continuous states. Among this kind of systems,
jumping linear systems have been a subject of great
practical importance which has attracted a lot of in-
terest for the last three decades. In jumping linear
systems, the dynamics of the discrete and continu-
ous states are modelled, respectively, by a finite state
Markov chain and linear differential equations subject

to the discrete process. There has been a dramatic
progress in jumping linear quadratic (JLQ) control
theory since the pioneering work on JLQ control by
Krasovskii and Lidskii (1961). The JLQ control prob-
lem was solved by Sworder (1969) using stochastic
maximum principle for state feedback in finite hori-
zon case. Wonham (1971) also obtained the same re-
sults using dynamic programming for both finite and
infinite horizon cases. Mariton and Bertrand (1985)
provided an approach to output feedback JLQ control
problem. The continuous-time partially observable sit-
uation was studied by Fragoso (1988). An analysis
of the discrete-time version of JLQ control problem
was given in (Chizecket al., 1986) for the case of
without driving noise, and (Fragoso, 1989) for the case
of with driving noise, respectively. Recently, the prob-
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lems of controllability, stabilizability, and continuous-
time JLQ control have been theoretically addressed by
Ji and Chizeck (1990) and the references therein. Feng
and Loparo (1990) has studied the problem of almost
sure instability of the random harmonic oscillator. The
stochastic stability properties of jumping linear sys-
tems has been systematically investigated in (Fenget
al., 1992) and shown that several stability concepts are
equivalent. Kalmanovich and Haddad (1994) tackled
the problem of JLQ when the discrete Markov process
in systems is not directly observable and obtained nec-
essary conditions for optimality. The counterpart of
H∞ control of jump linear systems was investigated
by Pan and Basar (1994) via zero-sum differential
games. Also, Srichander and Walker (1989) made the
stochastic stability analysis for continuous-time fault
tolerant control systems, in which the system has two
random processes with Markovian transition charac-
teristics (one representing the random failures of the
system and the other representing the failure detection
and identification (FDI) decision behaviour).

On the other hand, design of control systems that
can handle model uncertainties has been one of the
most challenging problems and received considerable
attention from control engineers and scientists in the
past decades. There are two major issues in robust
controller design. The first is concerned with the ro-
bust stability of the uncertain closed-loop system (see
for example, Khargonekaret al. (1990) and the ref-
erences therein), and the other is robust performance
(see for example, (Karanet al., 1994) and (Xieet
al., 1992). The problems of robust stochastic stabil-
ity, stabilization, and control have been extensively
studied in the past ten years. For some representa-
tive prior work on this general topic, we refer the
reader to (Boukas, 1993; Boukas, 1995; Boukas and
Shi, 1998; Shi and Boukas, 1997; Shiet al., 1998; Shi
et al., 1999; Shi et al., 2000). and the references
therein. However, to the best of our knowledge, the
study of robust stochastic stability for jumping lin-
ear continuous-time systems with perturbed transition
rates has not yet been fully conducted. This problem
is quite important in real physical systems, simply be-
cause the system mode jumping from one state to an-
other is not always certain. The transition rate almost
always has some kind of perturbation with a known
upper bound.

In this paper, we consider the stability robustness
of continuous-time Markovian jump linear systems
(MJLS) with respect to transition rates. Note that sta-
bility of MJLS has been investigated via the notion
of stochastic stability introduced in (Ji and Chizeck,
1990), while necessary and sufficient conditions for
the stochastic stability of MJLS have been obtained
using stochastic Lyapunov functions in the work by
Feng and Loparo (1990) and Fenget al.(1992). By us-
ing stochastic Lyapunov function approach, together
with the help of Kronecker product transformation
techniques, we develop a sufficient condition for the

robust stochastic stability of the underlying system,
which is in terms of an upper bound of the perturbed
transition rate. A numerical example is presented to
show the potential of the proposed techniques.

Notation. The notations in this paper are quite stan-
dard.Rn andRn×m denote, respectively, then dimen-
sional Euclidean space and the set of alln × m real
matrices. The superscript “T ” denotes the transpose
and the notationX ≥ Y (respectively,X > Y ) where
X andY are symmetric matrices, means thatX−Y is
positive semi-definite (respectively, positive definite).
I is the identity matrix with compatible dimension.
E{·} is the expectation operator with respective to
some probability measureP . The trace andi-th eigen-
value of a matrixM are denoted bytr(M) andλi(M)
respectively. Minimum and maximum singular values
of a matrixM are denoted byσmin(M) andσmax(M)
respectively whereσmax(M) = λmax(MT M).

2. MAIN RESULT

Consider the following autonomous Markovian jump
linear system (MJLS) with the state vectorx(t) ∈ RN

S : ẋ(t) = A(ηt) x(t) (1)

The system mode{ηt, t ≥ 0} is a time homogeneous
Markov process with right continuous trajectories and
taking values in a finite setM = {1, 2, · · · ,M} with
stationary transition probabilities

Prob (ηt + h = j|ηt = i)

=
{

πijh + o(h), i 6= j
1 + πiih + o(h), i = j

whereh > 0, limh→0
o(h)

h = 0 andπij ≥ 0 is the
transition rate from modei at timet to modej at time
t + h, and

πii = −
m∑

j=1
j 6=i

πij .

Let x(t, x0, η0) denote the trajectory of the statex(t),
of the systemS in (1), from the initial statex0 with
an initial system modeη0. As introduced in (Ji and
Chizeck, 1990),stochastic stabilityof a system can be
defined as follows.

Definition 1. The systemS in (1) is said to be stochas-
tically stable about the equilibrium point0, if for any
initial statex0 ∈ Rn and for any initial modeη0 = i
wherei ∈ M, the following holds∫ ∞

0

E
{
‖x(t, x0, η0)‖2

}
dt < ∞.

Stochastic stability of Markovian jump linear systems
can be checked using the following result given in
(Fenget al., 1992).



Lemma 1.((Fenget al., 1992)) The systemS in (1) is
stochastically stable if and only if there exists a set of
symmetric positive definite matricesP i satisfying

AT
i P i + P i Ai +

M∑
j=1

πij P j + Qi = 0 (2)

for any given set of symmetric positive definite matri-
cesQi wherei ∈ M.

The above equation can be rewritten to obtain the
following result.

Lemma 2.The systemS in (1) is stochastically stable
if and only if there exists a block diagonal symmet-
ric positive definite matrixP satisfying the following
equation for any given symmetric block diagonal pos-
itive definite matrixQ.

AT P + P A + Γ [I ⊗ (P E)] + Q = 0 (3)

where⊗ denotes the Kronecker product as defined in
(Graham, 1981) and

A =


A1 0 0
0 A2 0
...

...
...

0 . . . 0 AM

 ∈ RNM×NM ,

P =


P 1 0 0
0 P 2 0
...

...
...

0 . . . 0 PM

 ∈ RNM×NM ,

Γ =


v1 0 . . . . . . 0
0 v2 0 . . . 0
...

...
...

...
... 0

0 . . . . . . 0 vM

 ∈ RNM×NM2

wherevi is defined byvi =
[
πi1I πi2I . . . πiMI

]
and

Q =



Q1 0 . . . . . . 0
0 Q2 0 . . . 0
...

...
...

...
...

...
0 . . . 0 QM

 ∈ RNM×NM ,

E =
[
I . . . I

]T ∈ RNM×N .

From the above lemma, we obtain the following theo-
rem which gives bounds on the transition rates for the
stochastic stability of Markovian jump linear systems.

Theorem 1.Consider a MJLSS identical toS in (1),
but with jumping ratesπij such that

πij = πij + ∆πij

Then this system is stable if

max
i


 M∑

j=1

∆π2
ij

1/2
 ≤

min
i

{
σmin(Qi)

}
λ−1

max

(
M∑
i=1

P
2

i

)
(4)

and

M∑
j=1

∆πij = 0,

for all i = 1, . . . ,M where

∆πij > −πij (5)

for i 6= j wherei, j = 1, . . . ,M . In (4), the matrices
P i andQi are positive definite matrices satisfying (2)
for i = 1, . . . ,M .

Proof : Define an energy functionE(X) for the system
in (1) as

E(x(t), ηt) = xT (t) P ηt x(t)

Then the system is stable if

L(E)(x(t), ηt) =

xT (t)
(

A(ηt)T P ηt
+ P ηt

A(ηt)

+
M∑

j=1

πηt,j P j

)
x(t)

< 0

where L is the infinitesimal generator acting on
E(x, η). Therefore

AT P + P A

+
(
Γ + ∆Γ

)
[I ⊗ (P E)] ≤ 0

AT P + P A + Γ [I ⊗ (P E)]

+(∆Γ) [I ⊗ (P E)] ≤ 0

−Q + (∆Γ) [I ⊗ (P E)] ≤ 0

Thus, a sufficient condition can be given as

σmax

{
(∆Γ) [I ⊗ (P E)]

}
≤ σmin(Q)

= min
i

{
σmin(Qi)

}
(6)

whereσmax(·) andσmin(·) denote the maximum and
minimum singular values of(·) respectively. Note that

σmax

{
(∆Γ) [I ⊗ (P E)]

}
≤

σmax{(∆Γ)} σmax[I ⊗ (P E)]



Now, we can choose∆Γ such that

σmax(∆Γ)σmax[I⊗ (PE)] ≤ min
i

{
σmin(Qi

}
(7)

We should note that the above inequality provides a
more conservative bound on the permissible pertur-
bation∆Γ since any value of∆Γ which satisfies the
bound in (7) will also satisfy the inequality in (6). On
the other hand,

σmax[I ⊗ (P E)] = ρ1/2
max

(
P E

)
= ρ1/2

max

(
M∑
i=1

P
2

i

)

= λmax

(
M∑
i=1

P
2

i

)

Moreover,

σmax {∆Γ} = π1/2
max(∆ΓT ∆Γ)

= π1/2
max(∆Γ ∆ΓT )

= max
i∈M

{
∆vi ∆vT

i

}1/2

= max
i∈M


 M∑

j=1

∆π2
ij

1/2


Consequently, the perturbed system is stable if the
bound in (4) is satisfied.

Next, we give an example to illustrate the above result
for the case of scalar Markovian jump linear systems.

3. EXAMPLE

In this section, we consider the robust stability of a
scalar Markovian jump linear system given by

S :

{
ẋ(t) = a(ηt) x(t), t ≤ 0
x(0) = x0 ∈ R

(8)

where the transition rate matrixΠ, associated with the
system modeηt, is given by

Π =
[
−π1 π1

π2 −π2

]
(9)

whereπi > 0. Our aim is to investigate the stability of
the systemS which is identical to the nominal system
S except that the transition rates are perturbed as

πi = πi + ∆πi (10)

Note from (Fenget al., 1992) that the perturbed sys-
temS is stable if and only if

2a1p1 + π1(p2 − p1) + 1 = 0, (11)

2a2p2 + π2(p1 − p2) + 1 = 0 (12)

where ai = a(i) and q1 = q2 = 1. The above
equations can be solved as

p1 =
n1

d
, p2 =

n2

d
(13)

n1 = π1 + π2 − 2a2, (14)

n2 = π1 + π2 − 2a1, (15)

d = 4a1a2 − 2a2π1 − 2a1π2. (16)

Therefore the conditionsp1 > 0 and p2 > 0 are
satisfied if and only if

n1 > 0, n2 > 0, d > 0
or

n1 < 0, n2 < 0, d < 0 .
The first set of constraints can be rewritten with the
additional constraints onπ1, π2

π1 + π2 > 2max{a1, a2}, π1 > 0, (17)

2a1a2 > a2π1 + a1π2, π2 > 0 (18)

and the second set of constraints becomes

π1 + π2 < 2min{a1, a2}, π1 > 0, (19)

a2π1 + a1π2 < 2a1a2, π2 > 0. (20)

However, (19) cannot be satisfied if eithera1 or a2

is negative. Thus, the constraints in (17) and (18) are
necessary and sufficient conditions for the stability of
the system in terms ofπ1 andπ2 when either of the
subsystems is stable. However, the above necessary
and sufficient conditions (17)-(20) are, in general, very
difficult to calculate for higher dimensional systems.

We can also use (4) to obtain a bound on∆πi in (10)
for i = 1, 2 for the stochastic stability of the perturbed
systemS as

max
i=1,2

{| ∆πi |} <
1√
2

mini=1,2(
√

qi )√
p2
1 + p2

2

(21)

wherep1 andp2 can be calculated for the systemS
from (11) with the transition ratesπ1 andπ2.

Now, let us consider the example given in (Ji and
Chizeck, 1990) where the system is a scalar MJLS as
given in (8) where

a1 = 1/3, a2 = −4/3 (22)

and the probability transition rate matrixπ in (9) is
given by

π1 = 1, π2 = 1.

It can be found that this system is stable since from
(13) and (14),p1 and p2 can be calculated with the
above values of the transition ratesπi as

p1 = 21, p2 = 6 .

The admissible values of(π1, π2) for the stochastic
stability of the perturbed systemS with the parameter
values in (22) can be found from (17)-(20) as



R =
{

(π1, π2)
∣∣∣∣π1 + π2 >

2
3
,

4π1 − π2 >
8
3
, π1 > 0, π2 > 0

}
Note that the above bounds are necessary and suffi-
cient for the stochastic stability of the perturbed sys-
temS, however these bounds are in general very diffi-
cult to compute for higher dimensional systems.

On the other hand, we can also obtain bounds from
(21) on(∆π1,∆π2), or equivalently on(π1, π2) also
using (10), as

max
i=1,2

{| ∆πi |} <
1√
2

1√
212 + 62

= 0.00324

Thus, the above result yields an admissible(π1, π2)-
regionR1 for the stochastic stability of the perturbed
systemS as

R1 =
{

(π1, π2)
∣∣∣∣|π1 − 1| < 0.00324,

|π2 − 1| < 0.00324, π1 > 0, π2 > 0
}

These two admissible regionsR andR1 can be seen in
Figure 1. It is not surprising thatR1 allows relatively
small perturbation bounds on the transition rates since
the values of the nominal system transition rates are
close to the boundary of the admissible transition rate
regionR. On the other hand, if we choose the nominal
system transition rates as

π1 = 2, π2 = 1

then from (13) and (14) we obtain

p1 =
51
26

, p2 =
21
26

.

Now, from (21) we obtain the following bound

max
i=1,2

{| ∆πi |} < 0.3333 .

The above bound defines an admissible transition rate
regionR2 as

R2 =
{

(π1, π2)
∣∣∣∣|π1 − 2| < 0.3333,

|π2 − 1| < 0.3333, π1 > 0, π2 > 0
}

This region is also shown in Figure 1 where it can
be seen thatR2 is much larger thanR1 since it is
obtained with nominal system transition rate values
that are not close to the boundary ofR. We can
conclude that the nominal systemS, with π1 = π2 =
1, is not as robust against transition rate perturbations
as the same system withπ1 = 2, π2 = 1.

4. CONCLUSION

In this paper, we considered robust stability of continuous-
time Markovian jump linear systems in terms of the

−3 −2 −1 0 1 2 3
−3
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0
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2
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R 

R1

Fig. 1. Robust stability bounds on the transition rates
for the scalar Markovian jump linear system with
a1 = 1/3, a2 = −4/3. R is the necessary
and sufficient admissible region(π1, π2). The
nominal system transition rate values(π1 =
1, π2 = 1) and (π1 = 2, π2 = 1) are used to
obtainR1 andR2, respectively.

perturbed transition rates. Using stochastic Lyapunov
functions, a bound on the transition rates was given
so that the system remains stochastically stable. An
example was given to illustrate the result for scalar
systems where there exists a necessary and sufficient
condition on the robust stability of the system.
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