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Abstract: We have proposed a new parameter adjustment law that guarantees the
stability of the error system that has a positive definite solution for a Riccati equation
instead of the strictly positive realness condition, even if the plant has exogenous
disturbances. However, the parameter adjustment law has a disadvantage that the
transient response of the closed-loop system has large overshoot. In this paper, we
try to improve the transient performance by introducing the imaginary axis shifting.
Moreover, we apply an adaptive scheme to the position control of current-fed induction
motors by the field-oriented control method. Copyright (©) 2002 IFAC
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1. INTRODUCTION

Strictly positive realness plays an important
role in the model reference adaptive control
theory(Narendra, 1989). If the error system in
the model reference adaptive control system is
strictly positive real, the gradient-type parameter
adjustment law acts to stabilize the error sys-
tem. However, the adaptive control synthesis is
rendered difficult when the relative degree of the
plant exceeds unity, because the error system is
not strictly positive real. Recently, we proposed
a new parameter adjustment law that guaran-
tees the asymptotic stability of the error system
that has a positive definite solution for a Riccati
equation instead of the strictly positive realness
condition(Matsuo, 1995). However, the parameter
adjustment law has a disadvantage that the tran-
sient response of the closed-loop system has large
overshoot.

In this paper, we try to improve the transient per-
formance of closed-loop system. Yamamura pro-
posed the spiral vector method to derive analyti-
cal solutions of electromagnetic transients of AC
machines by introducing a new idea of damped
inductance(Yamamura, 1992). We compare the
spiral vector with the imaginary axis shifting in
the control theory, and present an adaptive con-
trol system with a spiral vector to improve the
transient response in the position control system
of current-fed induction motors. An adaptive con-
troller is designed based on the motor dynamics
approximated by a second-order dynamical sys-
tem since the current control loop time constant
is small enough to be negligible in current-fed
induction motor with the field-oriented control.

Our approach has the following features:

(1) The solution for the Riccati equation exists
when the relative degree of the plant exceeds



unity. Thus, we can deal with plants with a
relative degree >= 2 in much the way same
as with a relative degree = 1.

(2) By increasing the exponential part of the
spiral vector, we can reduce overshoots of the
adaptive control systems.

(3) We can reduce the stability of the error sys-
tem with bounded disturbances to the exis-
tence of a positive definite solution for a Ric-
cati equation, and derive an Lo performance
condition.

2. RELATIONSHIP BETWEEN SPIRAL
VECTOR AND IMAGINARY AXIS SHIFTING

The spiral vector method applied by Yamamura
to analysis of AC motors provides a new an-
alytical solution of both steady and transient
states(Yamamura, 1992). The spiral vector is de-
fined as the following exponential function:

i= A%, = -A+jw (1)

where A means the phaser.

We consider the following differential equation:

AW = Bloplt), p="y @)

where y(t) is an output, u(t) is an input,

Alp)=ag+arp+ -+ a,p”
B(p)=bo+bip+ -+ bup™.

If the input u is the following spiral vector:

ut) = Upe®, Uy = [V]er?,

the solution of (2) is given by

) = RO+ A ()

where d1,---,d, are all the solutions of charac-
teristic equation A(p) = 0, under the assumption

that there are no multiple roots. %(% 1s an exten-
sion of the frequency response.

If the input and output of (2) are written in the
following spiral vector form:

ut) = e~u(t), y(t)=e"yt).  (4)

The relationship between y and « is obtained as

Alp = 9)y(t) = B(p — d)u(l). (5)

The spiral vector can be considered as a kind of
imaginary axis shifting.

3. CONTROLLER DESIGN WITH
IMAGINARY AXIS SHIFTING

We consider the plant obtained by shifting the
imaginary axis as a plant model to design a con-
troller with a good tracking performance. Setting
the original plant as (2), we have such a d-shifted
plant as

1(0) = FE=Sa0) = (0
_ eétMu _ eétMe—éta
=AY = Ay )
If the LTT controller,

u(t) = C(p)y(l) (6)

stabilizes the d-shifted plant, g(¢) converges to 0
as t — oo. Thus, y(t) converges to 0 faster than
e=% as t — oo. The representation of the LTI
controller can be expressed as follows:

a(t)=Cp)y(t), e u(t) = C(p)e’y()
u(t) = e_étC(p)eéty(t), u(t) = Cp+9)y(t).
Therefore, the LTT controller for the plant (2) can

be obtained by shifting inversely the imaginary
axis.

In designing an adaptive controller, the imaginary
axis in the transfer function of the error system
is shifted to improve the tracking speed. If an
adaptive controller for the -shifted plant is given
by

ﬁ(t) = f(p,t, g(t),ﬂ(t)),

the controller for the original plant becomes

u(t) = e_étf(p,t,eéty(t),eétu(t)). (7)

4. PARAMETER ADJUSTMENT LAW
BASED ON RICCATI EQUATION

In this section, we propose a modified parameter
adjustment law that does not require the strictly
positive realness.

The error system for the SISO plant in the pres-
ence of a bounded disturbance w(t), is given by

é(t) = Ae(t) + bi(de(k(t) — k)TC(1) + baw(t)
(8)
ey(t) =cie(t) + diw(t) (9)
where A € R**"™ b € R™ and ¢ € R" are known,

A 1s asymptotically stable, e € R" is an error
state vector, ey, € R is an output error, k is



an unknown parameter vector containing plant
parameters, k is an estimate of k,( € R"is a
piecewise continuous regressor vector, w(t) is a
disturbance with a bounded power norm, and 4.
is an unknown scalar parameter.

We suppose the following:

(1) dc is limited such that 0 < &, < d¢ < &y, in
which the lower and upper bounds, §, and
dm, are known.

(2) (A,b,c?) is of minimal phase type.

The adaptive gain error (¢) is defined as

0(t) = k(t) — k.

We propose the following parameter adjustment
law:

J(s) = Fis) + 2, (10)
where
F(s) = 2h(s) Na(s)~"
- f a b
h(s) = !

(rs+ 1)netm’
Na(s)=cT(sT — A)~'b,

m > 0, n, is the relative degree of N,(s) and f
Is any positive constant less than or equal to §,.
The transfer function h(s) is stable with the same
relative degree as n,. and satisfies the following
equation:

|1 — h(jw)| < eg for all w < wy

The constant ¢; decreases and the frequency wg
increases as the parameter 7 > 01in h(s) decreases.
The proposed method can be considered as a
frequency weighted gradient-type adaptive law.
Noting that N,(s) is of minimal phase type and
the transfer function form of e, (¢) is given by

ey(t) = Na(s){0.07¢(1)},
we obtain

F(s)e (1) = %h@){ﬂ:(t)}.

The following lemma assures that the parameter
adjustment law (10) makes the error system (8)
and (9) robustly stable.

Theorem 1. Consider the error equations (8) and
(9) with the parameter adjustment law (10),
where w(t) is a disturbance with a bounded power
norm satisfying the following inequality:

T

1
lim —/w(t)Tw(t)dt < M2,
T—oo -
0

If the frequency of 6(¢)T((t) is lower than wp,
and there exist positive definite matrices P, ) and
positive numbers 3, ¢, and ¢; such that

Sm
ATP+PA+ ﬁ(Pbl —e)(b{ P —¢f)
1
EszbgP =—Q —2ecic10] (11)
Ky >0, (12)

_|_

then (e(t),0(t)T¢(t)) has a finite power norm.
Moreover, the following inequality is satisfied:

T
1 Smil2d? + @2 K2
li — T t 2dt < 1 2 2 M2
im / (ef o))t < (T 4 2l
0

where
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[(1:(5,”(%(1—60)—%—W),[(2_a—
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5 SYSTEM MODEL
5.1 Motor model
The induction motor can be described in a stator

fixed (a,b) reference frame by the following equa-
tions (Bodson, 1994; Kim, 1997; Marino, 1998):

&= A(w)z + Bu (13)
0=w (14)
) 1 . . 1
W= _jw + /'L('l/)ralsb - 1/)7'625(1) - _TL(15)
[ isa
r= Z.sb u= Usq
o 1/)7'(1 ’ a Ush
_1/)7“6
[ —y 0 &n npwé
| 0 =y &
Alw) = Lsn O —-n  —npw
| 0 Lgn npw —9
ro1
0
ol )
B= 0 oL
0 0
| O 0

where



L? Ly
c=1— ST = np
LsL, JL,
R, Ly
U_L_Tag - O'LTLS
_ L2.R, + LR,
N oLZL

In the above equations, we define the following

notations:

Tsayleb stator currents

Yra, Vrb rotor fluxes
Ler mutual inductance
L.(,Ly) stator (, rotor) inductance
R:(,Rr) stator (, rotor) resistance
U= |:usa :| stator voltages

Ush
[ rotor position
w mechanical speed
T electromagnetic torque
L load torque
Np pole pair number
J moment of inertia

5.2 Feedback controller

A current-fed induction motor with the field-
oriented control (FOC) can be approximated by a
DC servo-motor(Dote, 1998).

Denoting the modulus § and the angle p of the

flux as
6: \/ 72'(1 + 1/)36

_ 1/)7“6
p = arctan ,

ra

we have the following dynamic equations for the
current-fed field-oriented controller (Kim, 1997):

0=w (16)

B 1
w= —jw + puintt — jTL (17)
B=-=nB+ Lsnit" (18)

Rr/i .

— new 19
npﬁzjlz ( )
The input variables of the current-fed field-
oriented controller are 7 and Y, and are

designed as the following scheme:

e The first input 27°" is designed so that § —
Bar (B4r:constant).

o The second input ¢°¥ is designed so that

the rotor position and its speed converge to
desired values.

The actual control signal of the current-fed FOC
is given by

where

Tr— cosp —sinp
T |sinp cosp |’

We employ the indirect FOC since there is no need
to estimate the rotor flux.

o Indirect FOC : The rotor fluxes are re-
placed to their estimates.

Usqa _ 1 T pa 1 ? irllew isa
Ush o E{e 0 — igew B Z.sb }

Ba
B4 and p, are the estimates of rotor flux given
by
Ba= Bar (20)
Rop

5= ‘new 21
Pd npﬁcleJZZ ( )

where Rr i1s the estimate of the rotor resis-
tance.

The control commands 7
selected as follows:

- 47" is given by the following equation so

as to trace the desired value 34,

Snew

and #5°% are

new __ 6d7‘
Y =
Lsr
- 15°Y is generated by the adaptive con-

troller so as to satisfy the desired posi-
tion and speed.

6. ADAPTIVE CONTROLLER DESGIN OF
INDUCTION MOTOR BASED ON DC
MOTOR MODEL

6.1 Control method

The controller design procedure consists of the
following steps:

1. Derivation of the approximate model of the
current-fed induction motor with FOC.

2. Derivation of the input-output relation based
on the coprime factorization.

3. Design of the adaptive controller with the
spiral vector.

6.2 Design model of induction motor

When the high-gain current feedback of a servo-
motor is carried out, the mechanical equation of
a motor with model uncertainties is given by the
following equation (Dote, 1998):



R d26 . do
(J + ANz +(D+AD)

dt
= (Kp + AKp)i—Tp, (22)
6 rotor angle (output)
w = % rotor speed
1 current in the motor (input)
17 load
J nominal value of inertia
D nominal value of friction coefficient
Krp nominal value of torque constant
AJ variation of inertia
AD variation of friction coefficient
AKr variation of torque constant

It is assumed that the available signal is just
a rotor angle #. The transfer function from the
current to the rotor angle is

Kp , 1
HWZRE:EWW—E;
=amw—é@W}

where T,(t) is the following equivalent torque
including the parameter variations:

2
T, (t) = Aj%gt) + AD%(;) — AKqpi(t) + Ty (t)

The reference model 1s

(P + map o+ m2) 0 (1) = mim (1)

where 7, (1) is a reference input, yn,(t) is a ref-
erence output, and p? 4+ myp + my is a stable
polynomial.

The spiral vector forms of the signals of the motor
are defined as

2

i(t) = e70%(t), 6(t) =e%0(1)

The input-output relation between the spiral vec-
tor signals 6 and ¢, is given by

0(t) = e G(p)e™ (i) — TL(1))

€

= Glp - 0)(i(t) - (1))

where
Kr e
— T~ G —_ (5 = = =
! p(Jp+ D) (p=9) p?+01p+ 92
/() = ——To(0).
Krp

6.3 Input-output relation

In this section, we design an adaptive con-
troller of the servomotor using the coprime
factorization(Matsuo, 1995).

The coprime factorization of G(p — J) is given by

51 N(P)
G(p—94)) = , B
(v ) P2+ 61p+ 02 M(p)
where
b P’ +61p+ 0o
N == = —_—
W)= rrarra MV T prarrd

N(p) and M (p) satisfy the following Bezout iden-
tity:

Y(p)M(p)+ X(p)N(p) =1 (23)

From the above equation, the input-output rela-
tion is obtained such that

6(t) = N(p){i(t) + X (n)(
) :

t)
—(1=Y(p)i(t) = Y (p)T.(t)}
Using the spiral vector signals 6,, and 7, the
reference model is rewritten as
_ mo
Hm 1) = —— — — m t
0 102-1-771110-1-7712Z ®)
_ B i ms(p? + dip + do)
p*+dip+do p1 p*+map+me
1
=N(p){=-Co(t)}
B

_ ma(p? + dip + dy)
p? 4 mip+ mo

im (1)}

Co i ().

6.4 Controller without disturbance estimator

Neglecting the equivalent disturbance term in
designing a controller, we apply the parameter
adjustment law based on a Riccati equation to
the error equation. After re-shifting the imaginary
axis, the actual input of the original plant satisfies

5 () = e~ (k(H)TE(1))
malp it )
p +m1ﬁ+mz
7&”9@)
P>+ dip-l-do
t) = S —L
&(t) Pz-l-d%bp—l-doe (t)
eéti(t)

6ti(t)

The parameter adjustment law is given by

P’ + dier do

———————————¢€
p? 4+ dip+ do



do_ P’ +dip+do_ _
Ek(t) = {—Of(P)W@(t) —v)e®)}

6.5 Controller with disturbance estimator

If the variations of the motor parameters AJ, AD
and AKrp are almost constant, it is not necessary
to add the adaptive estimator of these parameters
to the adaptive controller. Since the adaptive con-
troller can estimate the plant parameters includ-
ing the variations, we add the following adaptive
estimator of the load 77 to the controller. The
input law is given by

e (1) = e~ (KT (1) i(1)] [i(ft)] |

To avoid the instability of the internal signal in
the adaptive loops, d is switched as follows:

bep (1< 1
s={% s ()

7. SIMULATION RESULTS

The performance of the adaptive control scheme
for rotor position was investigated through simu-
lation with MATLAB/SIMULINK. We used the

motor parameters in Table 1 as in Bodson et

100 .
al(1994). The reference model was GO Figure
Table 1. Motor parameters

R, 3.9 Q R 1.7 Q

L, 0.014 H L 0.014 H

L 0011 H np 3

J 0.00011 kgm? | B 0.00014 Nm/rad/s

1 shows the closed-loop responses of the rotor
position when the estimate of the rotor resistace
Rr 18 %RT and the adaptive controller without
the disturbance estimator is implemented with the
spiral vector factor § = 0.01,6 and 9. The simu-
lation results showed that the adaptive controller
did not need the disturbance estimator and the
switching of the spiral vector factor was available
to reduce the overshoot maginitude of the closed-
loop system in the transient period.

8. CONCLUSIONS

In this paper, we considered the relationship be-
tween the spiral vector method in the motor
transient analysis and the imaginary axis shifting
in the control theory. Comparing the proposed
adaptive controller with other nonlinear control
design methods of induction motors, our adap-
tive mechanism has a simple structure, because it

0 05 1 1.5 2 25 3 35 4 4.5
Time[sec]
T

I
1.5 2 25 3 35 4 4.5

Time[sec]
T

s
=
8
o5k : : :
5=9
L L L L L L L L L

0 05 1 1.5 2 25 3 35 4 4.5
Time[sec]

Fig. 1. Closed-loop position responses when d,, =

0.01(top), 6(middle),9(bottom).

can be designed based on modified gradient-type
adaptive algorithm and the plant model for the
controller design i1s a 2nd order linear system.
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