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Abstract: We present sufficient conditions that guarantee that if a controller achieves
integral input-to-state stabilit y (iISS) of an approximate discrete-time model of a
nonlinear sampled-data system, then the same controller will achieve semiglobal
practical iISS of the exact discrete-time model by reducing the sampling period.
Results are presented for arbitrary dynamic controllers that can be discontinuous
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1. INTRODUCTION

Controllers are now ada yssually implemented
digitally using computers which are connected to
the continuous-time plant via digital to analog
and analog to digital converters. Whenever we are
interested in a non-local behaviour of such systems
or when w econtrol them using nonlinear con-
trollers, w eneed to consider nonlinear sampled-
data systems. However, the theory needed to ana-
lyze and design controllers for this class of systems
is still not complete. The main stumbling block in
the con trollerdesign for nonlinear sampled-data
systems appears to be the absence of a good model
for con trollerdesign even in the cases when the
continuous-time plant model is known.

An approach for stabilization of sampled-data
nonlinear system via their approximate discrete-
time models has been proposed in (Ne sicet
al., 1999b). These results were further extended
in (Nesi¢ and Teel, 2000) to cover plarts modeled
as differential inclusions, dynamic controllers and
stabilit y with respect to arbitrary non-compact
sets. These papers pro videa framework for con-
troller design but they do not present recipes for
controller design. An example of con trol design
within this framework can be found in (Negi¢ and
T eel,2001) where bac kstepping con trollers were
dev eloped based on the Euler appraimate model

of strict feedback systems. Simulation studies pre-
sented in (Nesi¢ and Teel, 2001) indicate that this
approach may yield much better behaviour than
the con troller design based on the con timous-
time model followed by a discretization of the
controller.

Since plants with disturbances are prevalen tin
con trol theory ,there is a strong motivation to
extend the approach of (Nesicet al., 1999b; Nesic
and Teel, 2000) to this class of plants. The first
step in this direction w as(Nesi¢and D.S.Laila,
2001) where a framework for input-to-state sta-
bilization (ISS) of sampled-data nonlinear sys-
tems via their approximate discrete-time mod-
els was presented. Input-to-state stability (see
(Sontag, 1989)) has found a widespread use in
con troltheory but it is just one of the possible
types of stability for systems with disturbances
that may be of interest. A more general prop-
erty of integral input-to-state stability (iISS) (see
(Angeli et al., 2000b; Angeli et al., 2000a; An-
geli, 2001; Sontag, 1998)) is proving to be as useful
as ISS.

It is the main purpose of this paper to present a
framework for design of con trollers based onap-
pro ximate discrete-time models that ahiev e iISS.
Note that iISS was investigated in (Angeli, 2001)



in the case when the exact discrete-time model
of the plant is known. Our results are different
since we do not assume existence of the exact
discrete-time model, which was a standing as-
sumption in (Angeli, 2001). We consider dynamic
control laws that can be discontinuous in gen-
eral and present sufficient conditions that guar-
antee that if a controller achieves iISS for an
approximate discrete-time plant model, then the
same controller will achieve semiglobal-practical
iISS of the exact discrete-time plant model. We
emphasize that the semiglobal part of our defi-
nition is different from the one used in (Angeli
et al., 2000a), whereas the “practical” iISS that
we consider appears to be new and we are not
aware of related results. Our approach benefits
from the results in numerical analysis literature
(Stuart and Humphries, 1996) and in particular
(Ferretti, 1997; Grune and Kloeden, 2001).

The paper is organized as follows. In Section 2
we present preliminaries and definitions needed in
the sequel. Section 3 contains main results with
proofs.

2. PRELIMINARIES

Sets of real and natural numbers are denoted
respectively as R and N. A function v : Ry —
R>¢ is of class-K if it is continuous, zero at zero
and strictly increasing. It is of class-K if it is
of class-KC and is unbounded. v is of class £ if
it is continuous and ~(s) decreases to zero as
s — +oo. A continuous function f : Ryo X
R>o — R>p is of class-KCL if §(-,7) is of class-
K for each 7 > 0 and S(s,-) is of class £ for
each s > 0. For a given function w : R>g — R”,
we use the following notation: wy[k] = w(t) for
t € [kT, (k+1)T] and wy[k] = 0 otherwise, where
k € Nand T > 0; and w(k) is the value of
the function w(:) at t = KT,k € N. We denote
the norms [Juw [K]l|, = SUD, ¢ 117y l0(7)] and
lw|| == sup,;>g |w( )| and in the case when w(-)
is a measurable function (in the Lebesgue sense)
we use the essential supremum in the definitions.
It there exists r > 0 such that [|w]|, < r or
e Nds < r, with v € Ko, then we
erte respectively w € Lo(r) and w € L,(r).
Consider a continuous-time nonlinear plant With
disturbances:

&(t) = fx(t), u(t),w(t)) , (1)
where £ € R", v € R™ and w € RP are re-
spectively the state, control input and exogenous
disturbance. It is assumed that f is locally Lip-
schitz and f(0,0,0) = 0. The control is taken to
be a piecewise constant signal u(t) = u(kT) =
u(k), Vt € [kT,(k+ 1)T), k € N, where T" > 0
is the sampling period. Also, we assume that
some combination (output) or all of the states

(z(k) := z(kT)) are available at sampling instant
kT,k € N. The exact discrete-time model for the
plant (1), which describes the plant behavior at
sampling instants k7', is obtained by integrating
the initial value problem

#(t) = f(x(t),u(k), w(t)) , (2)

with given wy[k], u(k) and zo = x(k), over the
sampling interval [kT, (k + 1)T]. If we denote by
x(t) the solution of the initial value problem (2)
at time ¢ with given zo = z(k), u(k) and wy[k]
and t := kT, then the exact discrete-time model
of (1) can be written as:

2k +1) = x(k) + / " Fa), ulk), w(n)dr

tr

=: Fp(x(k), u(k), wy[k]) . (3)

We refer to (3) as a functional difference equation
since it depends on wy[k]. We emphasize that F}.
is not known in most cases. Indeed, in order to
compute F7 we have to solve the initial value
problem (2) analytically and this is usually impos-
sible since f in (1) is nonlinear. Hence, we will use
an approximate discrete-time model of the plant
to design a controller.

Different approximate discrete-time models can
be obtained using different methods. Recently, nu-
merical integration schemes for systems with mea-
surable disturbances were considered in (Grune
and Kloeden, 2001; Ferretti, 1997). Using these
numerical integration techniques we can obtain an
approximate discrete-time model

w(k+1) = Fr(x(k), u(k), ws[k]) ,  (4)

which is in general a functional difference equa-
tion. For instance, the simplest such approx-
imate discrete-time model, which is analogous
to Euler model has the following form xz(k +
D) = a(k) + [EIT Fa(h), uk)w(s)ds (see
(Grune and Kloeden, 2001)) Since we will con-
sider semiglobal stability properties (see Defini-
tion 4), we will think of F% and F% as being
defined globally for all small 7', even though the
initial value problem (2) may exhibit finite es-
cape times (see discussion on pg. 261 in (Nesi¢
et al., 19990)).

The sampling period 7' is assumed to be a de-
sign parameter which can be arbitrarily assigned.
Since we are dealing with a family of approximate
discrete-time models Ff, parameterized by T', in
order to achieve a certain objective we need in
general to obtain a family of controllers, param-
eterized by 7. We consider a family of dynamic
feedback controllers

2(k+1) = Gr(o(k), 2(k)) -
u(k) = ur(a(k), =(k)) |



where z € R"=. To shorten notation, we introduce
7= (2T 21T, & € R* | where nz := n, +n. and

Fi(it,wy) = <F%(”’63‘TT($’ZZ))’“’J‘)> . (6)

The superscript ¢ may be either e or a, where e
stands for ezact model, a for approzimate model.
We omit the superscript if we refer to a general
model. We use the following:

Definition 1. ur is said to be locally uniformly
bounded if for any Az > 0 there exist strictly
positive numbers T* and A, such that for all
T € (0,T*), |Z| < Az we have |up(Z)] < A,.

In order to prove our main results, we need to
guarantee that the mismatch between F7 and
F7 is small in some sense. We define a con-
sistency property, which will be used to limit
the mismatch. Similar definitions can be found
in numerical analysis literature (see Definition
3.4.2 in (Stuart and Humphries, 1996)) and re-
cently in the context of sampled-data systems
with disturbances (for instance, see (Ne§i¢ and
D.S.Laila, 2001)). In the sequel we use the no-
tation z = z(k), u = u(k), wy = wy[k].

Definition 2. The family F} is said to be one-step
consistent with Fj. if given any strictly positive
real numbers (A, Ay, Ay ), there exist a function
p € Koo and T* > 0 such that, for all T € (0,7*),
allz € R ,u € R™,w € L with |z] < A,, |u| <
Ay, |lwrll, < Ay, we have |Ff — F| < Tp(T).

Sufficient checkable conditions for one-step consis-
tency are given next (for the proof of this result
see (Nesi¢ and D.S.Laila, 2001)).

Lemma 1. F} is one-step consistent with Ff
if the following conditions hold: 1. F} is one-
step consistent with FFYer (x u w;) = z +
k(;fl)T f(z,u,w(s))ds; 2. given any strictly pos-
itive real numbers (A,, A,, A,), there exist p; €
Koo, T* > 0, such that, for all T € (0,7*) and all
x1,T2 € R™ with max{|z1],|z2|} < A, allu €
R™ with |u] < A, and all w € RP with |w| < Ay,
the following holds |f(z1,u,w) — f(z2,u,w)| <
pi(lz1 — z2]).-

3. INTEGRAL INPUT TO STATE STABILITY

In this section we state and prove the main re-
sults of this paper. The main result (Theorem 1)
presents sufficient conditions on the continuous-
time plant model, the controller and the approx-
imate discrete-time plant model that guarantee
that if the controller achieves semiglobal practical
Lyapunov iISS for the approximate model (see

Definition 3), then the same controller would yield
a semiglobal practical iISS bound on the solutions
of the exact discrete-time plant model (see Defini-
tion 4). We emphasize that it was shown in (Nesi¢
et al., 1999b) that if some of these conditions do
not hold, then the controller may not achieve iISS
for the exact discrete-time plant model.

In order to state the following two definitions, we
consider the family of systems:

E(k+1) = Fr(z(k), ws[k]) . (7)

Definition 3. (Lyapunov-SP-iISS). The family of
systems (7) is Lyapunov semiglobally practically
integral input-to-state stable (Lyapunov-SP-iISS)
if there exist functions aj,as € K, ¥ € K and
a continuous positive definite function as, and for
any strictly positive real numbers (Aq, Ay, Ag, 1)
there exist strictly positive real numbers 7* and L
such that for all T' € (0,7*) there exists a function
Vr : R** — Ry¢ such that for all £ € R"* with
|Z] < A; and all w € Loo(A2) N L5(As) the
following holds:

ar(|2]) < Vr(7) < a(|2])

2
AV ~ 1 (k+1)T R
St < e+ g [

N

where AVy = Vp(Fr(Z,wy)) — Vr(Z) and, more-
over, for all w1, 2, z with |(z] 27)7], |(2d 21)T| €
[0,Aq] and all T € (0,T*), we have

|Vr(z1,2) — Vr(z2,2)| < Llxy — s .

The function Vr is called an iISS-Lyapunov func-
tion for the family Fr.

We use the following version of semiglobal-
practical iISS property (note that it is different
from the definition in (Angeli et al., 2000a)).

Definition 4. (SP-iISS). The family of systems
(7) is semiglobally practically integral input-to-
state stable (SP-iISS) if there exist # € KL and
a,7 € Ky such that for any strictly positive
real numbers (Az, Ay1, Ay2,d) there exists T* >
0 such that for all T € (0,7%), |Z(0)] < Aj
and w € Loo(Aw1) N Ly(Ays2), the solutions of
the system satisfy a(|Z(k)|) < B(|Z(0)],kT) +
Jy " v(ws))ds +6, vk € N

The following theorem contains the main result of
this paper. It gives checkable conditions on the ap-
proximate model, controller and the continuous-
time plant model that guarantee that if a con-
troller achieves Lyapunov-SP-iISS of the approx-
imate discrete-time plant model, the same con-
troller would achieve SP-iISS of the exact discrete-
time plant model.



Theorem 1. Suppose that: (i) The family of ap-
proximate discrete-time models F§ is Lyapunov-
SP-iISS; (ii) F§ is one-step consistent with F¥;
(iii) wy is uniformly locally bounded. Then, the
family of exact discrete-time models F% is SP-

iISS.

We note that our results allows the family of
controllers to depend discontinuously on states.

Remark 1. Under mild conditions (see for in-
stance results in (Nesi¢ et al., 1999a)) it is possible
to over-bound also inter-sample bahaviour and to
conclude from Theorem 1 that: there exist 3 € KL
and a,7 € Ky such that for any strictly posi-
tive real numbers (Az, A1, Aye,d) there exists
T* > 0 such that for all T € (0,T%), |&(t.)| < Az
and w € Loo(Ay1) N Ly(Ay2), the solutions of
the system satisfy a(|Z(t)]) < B(|Z(to)],t — to) +
JE A (lw(s)|)ds + 6, ¥t > to > 0.

Remark 2. Similarly to results presented in (Nesi¢
and D.S.Laila, 2001), we may also start with
an approximate discrete-time model of the plant
for which we assumed that disturbances are con-
stant during sampling intervals w(t) = w(kT) =
const.,Vt € [kT,(k + 1)T),k € N. In this case,
the approximate and exact models will depend
on w(kT') (not on wy[k]) which means that they
are difference equations (not functional difference
equations). It was shown in (Nesi¢ and D.S.Laila,
2001) that a “weak” form of consistency property
can be stated in this case and it can be used in
a very similar manner to state a result similar to
Theorem 1 except that the bound in Definition
4 would hold for a smaller class of disturbances
whose derivatives also need to be bounded. We
did not pursue this direction for space reasons.

4. PROOFS OF MAIN RESULTS

Proof of Theorem 1: Let a3 come from item
(i) of Theorem and let gy € Ko and po € L
be generated using Lemma 4 such that as(s) >
p1(s) - pa(s),¥s > 0. Let pi(s) := pp o ay'(s)
and pa(s) = a2 0 a1 (s), pi(s) = pi(s). Let
3 be generated via Lemma 3 using p| and po. Let
~v(s) := 2%(s) and a(s) := a1 (s).

Let (A, Aw1,Ays2,0) be given. Define

Al = Cll_l(Oéz(Az) + AwQ + 6) + ]- (9)
Ay = Am (10)
Az :i=Ays . (11)
Let 61 := %. Let (A1,Az, A3z, d1) gen-

erate T} and L via item (i) of Theorem, where
without loss of generality we can assume that

L > 1. Let Ay generate A, and Ty via item (iii)
of Theorem. Let (A1, A, Ay) generate p and T
via item (ii) of Theorem. Let T} > 0 be such that

16
LT p(Tf) <min{ =, —
1 ( 4)_m1n{2,4}
Lp(Ty) <6 (12)
Let & > 0 be such that

oy Haa(Ay) + As +640) <
. 1 (13)
a; (aa(Az) + Az +6) + 3

and denote Ty := Denote T} :=

TGR)T50) Finally, we introduce
T = min{T}y, Ty, 15, Ty, T, T3} .

To shorten notation we denote

Vi = Vo(Frp(@(k), wk])), Vi = Ve (Fq(2(k), wlk]))

and Vi := V(&(k)).

Consider now an arbitrary Zj such that Vi <
a2 (A4 )+A o +6 (this implies |71 | < a7 ' (as(Ay)+
Ao + 5) < Al), w € EOO(A2) ﬂ,Cry(Ag) and
T € (0,7*). Using item (ii) and our choice of T,
we can write that:

(k+1)T
Ve — Vi < —Tas(|]) + / F(lw(s))ds
kT
+ |Vke — Vk“| +T6; . (14)

From our choice of T3 we can write using item (i)
of Theorem:

ar(|(F7,Gr)|) S Vi < Vi +TH(Az) + T'éy
<ay(Ay) +As+ 640,

which implies from the definition of ¢ in (13) that

(B, Gr)| < ar M (aa(As) + Ag + 6+ )
<ail(as(Ay) + Az +0) +1/2
<A

and from our choice of T} in (12) and the fact
that L > 1 we have:

|(F, Gr)| < |(F, Gr)| + |(FF, Gr) — (FF, Gr)
<a;(aa(Ag) + A +6) +1/2
+ |Fr — Fr|
<at(as(Ay) + Az +8) +1=A, .
Hence, using local Lipschitz condition of V7 in

item (i), item (ii) and our definition of Ty, T4
and T in (12) we can write that:

Ve = VA <LTp(T) < T6; .  (15)

From (14) and (15) and our definitions of pi, p2
we can write:



Vi = Vi <=Tp1(Vi)p2 (Vi) (16)

(k+1)T
[ Aute)ds + 725,
kT

and using the fact that p;(s)p2(s) > 44, for all
s € [0/2,A], we can write:

0 T
Vi 5= Vi = Vi < —Epl(vk)M(Vk)

(k+1)T
+ [ s . an)
kT

Moreover, using (14), (15) and the definitions of
T) and T§ we can write:
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VkeSVka+|Vke_Vka|SVk+Z+Z . (18)
Introduce wy, := fOkT F(Jw(s)|)ds and define y; :=
Vi — wg. Note that wy, is nondecreasing, wy = 0
and yo = V. Then we have from (17) and (18),
with p(s) := p}(s)p2(s) that

)
Ye+1 <Yk + 3 (19)

)
yk25 = Yk+1 — Yk <
=T p(max{yy + wg,0}) (20)

whenever y < as(A;) + Az +J — As. Note that
since Vi > 0 and wy < Ay for all £ > 0, we have
that y, > —As,Vk > 0. Moreover, we show now
by induction that yo € [0, a2(A,)+0] implies that
Yk < as(A;) 4+ 6,Vk > 0. For £k = 0 we have that
either yo € [0/2, a2(A;)+3] in which case we have
from (19) that y1 < yo < a2(A;) + ¢ or we have
that y, € [0,0/2) in which case from (19) we have
that y1 < yo +0/2 < § < az(A;) + J. Suppose
now that y, € [-As,a2(A;) + 6]. Then we have
that either yi, € [0/2, aa(A,)+4], in which case we
have from (20) that yp11 < yr < az(Ag)+6 or we
have that y, € [-Agz,6/2), in which case we have
from (19) that yr41 <yr+0/2 < < az(Az)+6.
Hence, for any y, € [0, a2(A;) + ] we have that
yr € [-Asz,a2(A,) + d],Vk > 0 and therefore all
conditions of Lemma 2 hold with k* = co. We
conclude from Lemma 2 with A, = a2(A;) + 4,
c1 = c2 =0/2 and p(s) = p(s)p2(s) that
Yk < BYo, kT) + wi +g+g , Vk >0,

which implies (using the definition of y; and the
fact that yo = V5,) that

Vi < B(Vo,kT) + 2wy, +6 , Yk >0
and consequently
ar(|2(k)]) < Blax(|E|), KT)
kT
+2/ F(w(s))ds + 0,Vk > 0 ,
0

which completes the proof.

Lemma 2. Given any continuous positive definite
function p : R>g — R>p, there exists a KL
function with the following property. Suppose that
y : N — R and a nondecreasing function w : N —
R>o satisfy the following

Y1 S Ykt (21)

and

Ye > 2 = yYr1 — Yx < —Th(max{yr + wi,0})

(22)
for all k¥ € [0,k*) with 0 < k* < oo and all
yr < A, where Ay > ¢; + c2. Then there exists
B8 € KL such that for all yo < A, and all
k € [0, k*) the following holds:

Yk < BWo, kT) + wi + 1 + o . (23)

Proof: First we note that for all y; > c> we have
from (22) that yr11 < yr and if yp < co we have
from (21) that yp+1 < yr+c1 < ¢1+c2. Moreover,
since Ay > ¢1 + c2 we conclude that the set

y:ry<e+er} (24)

is forward invariant, that is, yo < ¢; + ¢2 implies
yr < c1 + co for all k € [0, k%).

Suppose now that A > y, > ¢; + ¢2 > 0. Define
ki :=min{k >0:y, <c1 +c2}

(with ky = k* if yr > ¢1 + ¢2 for all k € [0,k%)).
Hence, for all & > k; (if k1 < k*) we have that
Y < ¢1 + c2 since the set (24) is forward invariant
and so (23) holds. Define now

ko :=min{k > 0:y, < wp}

(with ko = k1 if yr, > wy, for all k € [0,%;)). Note
that for all & € [0, k1) we have from (22) that y
is non-increasing and also recall wy, is assumed to
be a nondecreasing function of time. Hence, for all
k € [ko, k1) (if ko < k1) we have that y; < wy, and
so (23) holds. Finally, consider k € [0, ko). Note
that yr > wy > w; for all i € [0, k] and since y is
non-increasing, we have that y; > yr > w; for all
such i. Therefore, 0 < y; < y; + w; < 2y; for all
i € [0,k]. From Lemma 4 and (22) we can write
that

Yirr — ¥i < —Tp1(yi)p2(2yi), Vi €[0,k] .
From Lemma 3 we conclude that
Yi S ﬂ(yoaiT)a Vi € [Oak] )

and hence the bound (23) holds, which completes
the proof.

Lemma 8. Suppose that T'> 0 and y : N — Ryq
satisfy the following inequality for all k € [0, k*)

Yr+1 — Yr < =Tpi(ye) - p2(2yk) » (25)

where £* € NU {00}, p1 € K is locally Lipschitz
and ps € L. Then, there exists 8 € KL such that
the following holds yj, < B(y., kT), Yk € [0, k*).



Proof: Consider an arbitrary y, and the cor-
responding sequence yi. We introduce a new
continuous and piecewise linear variable Vit €
[kT'p2(2y,), (k + 1)Tp2(2y0)), k € [0, k" —1):

n(t) = yx + <W - k) (Y1 — Vi) »

and we let n((k* —1)Tp2(2yo)) = yg—1 if k* # oo.
Note that n(kT p2(2yo)) = yi for all k € [0, k*).
Denote t* := k*Tp2(2y,). Since n is continuous
and piecewise linear, it is differentiable for almost
all t € [0,t*). Hence, we can write that for all
t € [kTp2(2yo), (k + 1)Tp=(2y.)), k € [0,k* — 1)
we have:

. Ye+1 — Yk p2(2yx)

= o S k)5

“ Tp2(2y) 1 )p2(2yo)

Moreover, since g1 < i and pa(2y5) > p2(2y0)

for all k € [0,k*), we have n(t) < y; for all

t € [kTp2(2yo), (k + 1)Tp2(2y,)),k € [0,k* — 1).

We can conclude from (26) that

U(t) < —Pl(ﬂ(t))> fOT a.a.t e [Ovt*) .

Using the standard comparison principle (see

Proposition 2.5 in (Lin et al., 1996)) and since

p1 is assumed locally Lipschitz, we conclude that
there exists #; € KL such that we have:

(26)

n(t) < Br(no,t), Vt € [0,¢7) . (27)
We let t = kT p2(2yy) to obtain
yr < Br(yo, KT p2(2y0)) (28)

Since yi4+1 < Yk, k € [0,k* — 1) we conclude that
Yk < Yo, Vk € [0,k*) and we since ps € L, we can
write:

yr < B1(Yo, kT p2(2yo))
— B(yo, kT),Vk € [0,k%),  (29)

where it is easy to see that 8(s,t) := 51 (s, tp2(s)) €
KL.

Lemma 4. (Angeli et al., 20000) Let p : R>o —
R>o be a continuous positive define function.
Then there exist p; € Ko and ps € L such that
p(r) = p1(r)pz(r),¥r > 0.

5. CONCLUSION

We have provided a framework for integral input-
to-state stabilization of nonlinear sampled-data
systems via their approximate discrete-time mod-
els. Designing controllers for particular classes of
systems and approximate models is an interesting
topic for further research.
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