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�� INTRODUCTION

Controllers are no w ada ysusually implemented
digitally using computers which are connected to
the continuous�time plant via digital to analog
and analog to digital converters� Whenever we are
interested in a non�local behaviour of such systems
or when w e control them using nonlinear con�
trollers� w eneed to consider nonlinear sampled�
data systems� However� the theory needed to ana�
lyze and design controllers for this class of systems
is still not complete� The main stumbling block in
the con trollerdesign for nonlinear sampled�data
systems appears to be the absence of a good model
for con trollerdesign even in the cases when the
continuous�time plant model is known�

An approach for stabilization of sampled�data
nonlinear system via their approximate discrete�
time models has been proposed in �Ne 	si
cet
al�� ����b�� These results were further extended
in �Ne	si
c and Teel� �� to cover plants modeled
as di�erential inclusions� dynamic controllers and
stabilit y with respect to arbitrary non�compact
sets� These papers pro videa framework for con�
troller design but they do not present recipes for
controller design� An example of con trol design
within this framework can be found in �Ne	si
c and
T eel� ��� where bac ksteppingcon trollerswere
dev eloped based on the Euler approximate model

of strict feedback systems� Simulation studies pre�
sented in �Ne	si
c and Teel� ��� indicate that this
approach may yield much better behaviour than
the con troller design based on the con tinuous�
time model follo wed by a discretization of the
controller�

Since plants with disturbances are prevalen t in
con trol theory �there is a strong motivation to
extend the approach of �Ne	si
cet al�� ����b� Ne	si
c
and Teel� �� to this class of plants� The �rst
step in this direction w as �Ne	si
c and D�S�Laila�
��� where a framework for input�to�state sta�
bilization �ISS� of sampled�data nonlinear sys�
tems via their approximate discrete�time mod�
els was presented� Input�to�state stabilit y �see
�Sontag� ������ has found a widespread use in
con troltheory but it is just one of the possible
types of stability for systems with disturbances
that may be of interest� A more general prop�
erty of integral input�to�state stability �iISS� �see
�Angeli et al�� �b� Angeli et al�� �a� An�
geli� ��� Sontag� ������ is proving to be as useful
as ISS�

It is the main purpose of this paper to present a
framework for design of con trollers based onap�
pro ximate discrete�time models that achiev e iISS�
Note that iISS was investigated in �Angeli� ���
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in the case when the exact discrete�time model
of the plant is known� Our results are di�erent
since we do not assume existence of the exact
discrete�time model� which was a standing as�
sumption in �Angeli� ���� We consider dynamic
control laws that can be discontinuous in gen�
eral and present su�cient conditions that guar�
antee that if a controller achieves iISS for an
approximate discrete�time plant model� then the
same controller will achieve semiglobal�practical
iISS of the exact discrete�time plant model� We
emphasize that the semiglobal part of our de��
nition is di�erent from the one used in �Angeli
et al�� �a�� whereas the �practical� iISS that
we consider appears to be new and we are not
aware of related results� Our approach bene�ts
from the results in numerical analysis literature
�Stuart and Humphries� ����� and in particular
�Ferretti� ����� Grune and Kloeden� ����

The paper is organized as follows� In Section �
we present preliminaries and de�nitions needed in
the sequel� Section � contains main results with
proofs�

�� PRELIMINARIES

Sets of real and natural numbers are denoted
respectively as R and N� A function � � R�� �
R�� is of class�K if it is continuous� zero at zero
and strictly increasing� It is of class�K� if it is
of class�K and is unbounded� � is of class L if
it is continuous and ��s� decreases to zero as
s � ��� A continuous function � � R�� �
R�� � R�� is of class�KL if ���� �� is of class�
K for each � �  and ��s� �� is of class L for
each s � � For a given function w � R�� � R

n �
we use the following notation� wf �k� � w�t� for
t � �kT� �k���T � and wf �k� �  otherwise� where
k � N and T � � and w�k� is the value of
the function w��� at t � kT� k � N� We denote
the norms kwf �k�k� � sup���kT��k���T � jw���j and
kwk� �� sup��� jw���j and in the case when w���
is a measurable function �in the Lebesgue sense�
we use the essential supremum in the de�nitions�
If there exists r �  such that kwk� � r orR�
� ��jw�s�j�ds � r� with � � K�� then we
write respectively w � L��r� and w � L��r��
Consider a continuous�time nonlinear plant with
disturbances�

�x�t� � f�x�t�� u�t�� w�t�� � ���

where x � R
nx � u � R

m and w � R
p are re�

spectively the state� control input and exogenous
disturbance� It is assumed that f is locally Lip�
schitz and f�� � � � � The control is taken to
be a piecewise constant signal u�t� � u�kT � ��
u�k�� �t � �kT� �k � ��T �� k � N� where T � 
is the sampling period� Also� we assume that
some combination �output� or all of the states

�x�k� �� x�kT �� are available at sampling instant
kT� k � N� The exact discrete�time model for the
plant ���� which describes the plant behavior at
sampling instants kT � is obtained by integrating
the initial value problem

�x�t� � f�x�t�� u�k�� w�t�� � ���

with given wf �k�� u�k� and x� � x�k�� over the
sampling interval �kT� �k � ��T �� If we denote by
x�t� the solution of the initial value problem ���
at time t with given x� � x�k�� u�k� and wf �k�
and tk �� kT � then the exact discrete�time model
of ��� can be written as�

x�k � �� � x�k� �

Z tk��

tk

f�x���� u�k�� w����d�

�� F e
T �x�k�� u�k�� wf �k�� � ���

We refer to ��� as a functional di�erence equation

since it depends on wf �k�� We emphasize that F e
T

is not known in most cases� Indeed� in order to
compute F e

T we have to solve the initial value
problem ��� analytically and this is usually impos�
sible since f in ��� is nonlinear� Hence� we will use
an approximate discrete�time model of the plant
to design a controller�

Di�erent approximate discrete�time models can
be obtained using di�erent methods� Recently� nu�
merical integration schemes for systems with mea�
surable disturbances were considered in �Grune
and Kloeden� ��� Ferretti� ������ Using these
numerical integration techniques we can obtain an
approximate discrete�time model

x�k � �� � F a
T �x�k�� u�k�� wf �k�� � ���

which is in general a functional di�erence equa�
tion� For instance� the simplest such approx�
imate discrete�time model� which is analogous
to Euler model� has the following form x�k �

�� � x�k� �
R �k���T

kT
f�x�k�� u�k�� w�s��ds �see

�Grune and Kloeden� ����� Since we will con�
sider semiglobal stability properties �see De�ni�
tion ��� we will think of F e

T and F a
T as being

de�ned globally for all small T � even though the
initial value problem ��� may exhibit �nite es�
cape times �see discussion on pg� ��� in �Ne	si
c
et al�� ����b���

The sampling period T is assumed to be a de�
sign parameter which can be arbitrarily assigned�
Since we are dealing with a family of approximate
discrete�time models F a

T � parameterized by T � in
order to achieve a certain objective we need in
general to obtain a family of controllers� param�
eterized by T � We consider a family of dynamic
feedback controllers

z�k � �� � GT �x�k�� z�k��
u�k� � uT �x�k�� z�k�� �

���



where z � Rnz � To shorten notation� we introduce
�x �� �xT zT �T � �x � Rn�x � where n�x �� nx�nz and

F i
T ��x�wf � ��

�
F i
T �x� uT �x� z�� wf �

GT �x� z�

�
� ���

The superscript i may be either e or a� where e
stands for exact model� a for approximate model�
We omit the superscript if we refer to a general
model� We use the following�

De�nition �� uT is said to be locally uniformly
bounded if for any ��x �  there exist strictly
positive numbers T � and �u such that for all
T � �� T ��� j�xj � ��x we have juT ��x�j � �u�

In order to prove our main results� we need to
guarantee that the mismatch between F e

T and
F a
T is small in some sense� We de�ne a con�

sistency property� which will be used to limit
the mismatch� Similar de�nitions can be found
in numerical analysis literature �see De�nition
����� in �Stuart and Humphries� ������ and re�
cently in the context of sampled�data systems
with disturbances �for instance� see �Ne	si
c and
D�S�Laila� ����� In the sequel we use the no�
tation x � x�k�� u � u�k�� wf � wf �k��

De�nition �� The family F a
T is said to be one�step

consistent with F e
T if given any strictly positive

real numbers ��x��u��w�� there exist a function
� � K� and T � �  such that� for all T � �� T ���
all x � Rnx � u � R

m � w � L� with jxj � �x� juj �
�u� kwfk� � �w� we have jF e

T 	 F a
T j � T��T ��

Su�cient checkable conditions for one�step consis�
tency are given next �for the proof of this result
see �Ne	si
c and D�S�Laila� �����

Lemma �� F a
T is one�step consistent with F e

T

if the following conditions hold� �� F a
T is one�

step consistent with �FEuler
T �x� u� wf � �� x �R �k���T

kT f�x� u� w�s��ds� �� given any strictly pos�
itive real numbers ��x��u��w�� there exist �� �
K�� T � � � such that� for all T � �� T �� and all
x�� x	 � R

nx with maxfjx�j � jx	jg � �x� all u �
R
m with juj � �u and all w � Rp with jwj � �w�

the following holds jf�x�� u� w�	 f�x	� u� w�j �
���jx� 	 x	j��

�� INTEGRAL INPUT TO STATE STABILITY

In this section we state and prove the main re�
sults of this paper� The main result �Theorem ��
presents su�cient conditions on the continuous�
time plant model� the controller and the approx�
imate discrete�time plant model that guarantee
that if the controller achieves semiglobal practical
Lyapunov iISS for the approximate model �see

De�nition ��� then the same controller would yield
a semiglobal practical iISS bound on the solutions
of the exact discrete�time plant model �see De�ni�
tion ��� We emphasize that it was shown in �Ne	si
c
et al�� ����b� that if some of these conditions do
not hold� then the controller may not achieve iISS
for the exact discrete�time plant model�

In order to state the following two de�nitions� we
consider the family of systems�

�x�k � �� � FT ��x�k�� wf �k�� � ���

De�nition �� �Lyapunov�SP�iISS�� The family of
systems ��� is Lyapunov semiglobally practically
integral input�to�state stable �Lyapunov�SP�iISS�
if there exist functions ��� �	 � K�� �� � K and
a continuous positive de�nite function �
� and for
any strictly positive real numbers �����	��
� 	��
there exist strictly positive real numbers T � and L
such that for all T � �� T �� there exists a function
VT � Rn�x � R�� such that for all �x � R

n�x with
j�xj � �� and all w � L���	� 
 L����
� the
following holds�

���j�xj� � VT ��x� � �	�j�xj�

�VT
T

� 	�
�j�xj� �
�

T

Z �k���T

kT

���jw�s�j�ds

� 	� �

���

where �VT �� VT �FT ��x�wf ��	VT ��x� and� more�
over� for all x�� x	� z with

���xT� zT �T
�� � ���xT	 zT �T

�� �
����� and all T � �� T ��� we have

jVT �x�� z�	 VT �x	� z�j � L jx� 	 x	j �

The function VT is called an iISS�Lyapunov func�
tion for the family FT �

We use the following version of semiglobal�
practical iISS property �note that it is di�erent
from the de�nition in �Angeli et al�� �a���

De�nition 	� �SP�iISS�� The family of systems
��� is semiglobally practically integral input�to�
state stable �SP�iISS� if there exist � � KL and
�� � � K� such that for any strictly positive
real numbers ���x��w���w	� 	� there exists T � �
 such that for all T � �� T ��� j�x��j � ��x

and w � L���w�� 
 L���w	�� the solutions of
the system satisfy ��j�x�k�j� � ��j�x��j � kT � �R kT
� ��jw�s�j�ds� 	� �k � N�

The following theorem contains the main result of
this paper� It gives checkable conditions on the ap�
proximate model� controller and the continuous�
time plant model that guarantee that if a con�
troller achieves Lyapunov�SP�iISS of the approx�
imate discrete�time plant model� the same con�
troller would achieve SP�iISS of the exact discrete�
time plant model�



Theorem �� Suppose that� �i� The family of ap�
proximate discrete�time models Fa

T is Lyapunov�
SP�iISS� �ii� F a

T is one�step consistent with F e
T �

�iii� uT is uniformly locally bounded� Then� the
family of exact discrete�time models Fe

T is SP�
iISS�

We note that our results allows the family of
controllers to depend discontinuously on states�

Remark �� Under mild conditions �see for in�
stance results in �Ne	si
c et al�� ����a�� it is possible
to over�bound also inter�sample bahaviour and to
conclude from Theorem � that� there exist � � KL
and �� � � K� such that for any strictly posi�
tive real numbers ���x��w���w	� 	� there exists
T � �  such that for all T � �� T ��� j�x�t��j � ��x

and w � L���w�� 
 L���w	�� the solutions of
the system satisfy ��j�x�t�j� � ��j�x�t��j � t 	 t�� �R t
t�
��jw�s�j�ds� 	� �t � t� � �

Remark �� Similarly to results presented in �Ne	si
c
and D�S�Laila� ���� we may also start with
an approximate discrete�time model of the plant
for which we assumed that disturbances are con�
stant during sampling intervals w�t� � w�kT � �
const���t � �kT� �k � ��T �� k � N� In this case�
the approximate and exact models will depend
on w�kT � �not on wf �k�� which means that they
are di�erence equations �not functional di�erence
equations�� It was shown in �Ne	si
c and D�S�Laila�
��� that a �weak� form of consistency property
can be stated in this case and it can be used in
a very similar manner to state a result similar to
Theorem � except that the bound in De�nition
� would hold for a smaller class of disturbances
whose derivatives also need to be bounded� We
did not pursue this direction for space reasons�

�� PROOFS OF MAIN RESULTS

Proof of Theorem �� Let �
 come from item
�i� of Theorem and let ��� � K� and ��	 � L
be generated using Lemma � such that �
�s� �
����s� � ��	�s���s � � Let ���s� �� ��� � ���

	 �s�
and �	�s� �� ��	 � �

��
� �s�� ����s� �� �

	���s�� Let
� be generated via Lemma � using ��� and �	� Let
��s� �� ����s� and ��s� �� ���s��

Let ��x��w���w	� 	� be given� De�ne

�� �� ���
� ��	��x� � �w	 � 	� � � ���

�	 ���w� ���

�
 ���w	 � ����

Let 	� �� �����	��������
� � Let �����	��
� 	�� gen�

erate T �� and L via item �i� of Theorem� where
without loss of generality we can assume that

L � �� Let �� generate �u and T �	 via item �iii�
of Theorem� Let �����u��	� generate � and T �

via item �ii� of Theorem� Let T �� �  be such that

LT �� ��T
�
� ��min

�
�

�
�
	

�

�

L��T �� �� 	� ����

Let �	 �  be such that

���
� ��	��x� � �
 � 	 � �	� �

���
� ��	��x� � �
 � 	� �

�

�
�

����

and denote T � ��
��

���������
� Denote T �� ��

�
������������

� Finally� we introduce

T � �� minfT �� � T
�
	 � T

�

 � T

�
� � T

�
 � T

�
� g �

To shorten notation we denote
V e
k �� VT �F

e
T ��x�k�� w�k���� V

a
k �� VT �F

a
T ��x�k�� w�k���

and Vk �� V ��x�k���

Consider now an arbitrary �xk such that Vk �
�	��x���w	�	 �this implies j�xkj � ���

� ��	��x��
�w	 � 	� 
 ���� w � L���	� 
 L����
� and
T � �� T ��� Using item �ii� and our choice of T �� �
we can write that�

V e
k 	 Vk �	T�
�j�xk j� �

Z �k���T

kT

���jw�s�j�ds

� jV e
k 	 V a

k j� T	� � ����

From our choice of T � we can write using item �i�
of Theorem�

���j�F
a
T � GT �j�� V a

k � Vk � T ����	� � T	�

� �	��x� � �
 � 	 � �	�

which implies from the de�nition of �	 in ���� that

j�F a
T � GT �j � ���

� ��	��x� � �
 � 	 � �	�

� ���
� ��	��x� � �
 � 	� � ���


��

and from our choice of T �� in ���� and the fact
that L � � we have�

j�F e
T � GT �j � j�F

a
T � GT �j� j�F e

T � GT �	 �F a
T � GT �j

� ���
� ��	��x� � �
 � 	� � ���

� jF e
T 	 F a

T j

� ���
� ��	��x� � �
 � 	� � � � �� �

Hence� using local Lipschitz condition of VT in
item �i�� item �ii� and our de�nition of T �	 � T

�



and T �� in ���� we can write that�

jV e
k 	 V a

k j �LT��T � � T	� � ����

From ���� and ���� and our de�nitions of ��� �	
we can write�



V e
k 	 Vk �	T���Vk��	�Vk� ����

�

Z �k���T

kT

���jw�s�j�ds� T�	� �

and using the fact that ���s��	�s� � �	� for all
s � �	������� we can write�

Vk �
	

�
� V e

k 	 Vk � 	
T

�
���Vk��	�Vk�

�

Z �k���T

kT

���jw�s�j�ds � ����

Moreover� using ����� ���� and the de�nitions of
T �� and T �� we can write�

V e
k � V a

k � jV e
k 	 V a

k j � Vk �
	

�
�

	

�
� ����

Introduce wk ��
R kT
�

���jw�s�j�ds and de�ne yk ��
Vk 	 wk� Note that wk is nondecreasing� w� � 
and y� � V�� Then we have from ���� and �����
with ���s� �� ����s��	�s� that

yk�� � yk �
	

�
����

yk �
	

�
� yk�� 	 yk �

	T ���maxfyk � wk� g� ���

whenever yk � �	��x� � �
 � 	 	�
� Note that
since Vk �  and wk � �w	 for all k � � we have
that yk � 	�
��k � � Moreover� we show now
by induction that y� � �� �	��x��	� implies that
yk � �	��x� � 	��k � � For k �  we have that
either y� � �	��� �	��x��	� in which case we have
from ���� that y� � y� � �	��x� � 	 or we have
that y� � �� 	��� in which case from ���� we have
that y� � y� � 	�� 
 	 
 �	��x� � 	� Suppose
now that yk � �	�
� �	��x� � 	�� Then we have
that either yk � �	��� �	��x��	�� in which case we
have from ��� that yk�� � yk � �	��x��	 or we
have that yk � �	�
� 	���� in which case we have
from ���� that yk�� � yk� 	�� 
 	 
 �	��x�� 	�
Hence� for any y� � �� �	��x� � 	� we have that
yk � �	�
� �	��x� � 	���k �  and therefore all
conditions of Lemma � hold with k� � �� We
conclude from Lemma � with �y � �	��x� � 	�
c� � c	 � 	�� and ���s� � ����s��	�s� that

yk � ��y�� kT � � wk �
	

�
�

	

�
� �k � �

which implies �using the de�nition of yk and the
fact that y� � V�� that

Vk � ��V�� kT � � �wk � 	 � �k � 

and consequently

���j�x�k�j�� ���	�j�x�j�� kT �

��

Z kT

�

���jw�s�j�ds� 	��k �  �

which completes the proof�

Lemma �� Given any continuous positive de�nite
function �� � R�� � R�� � there exists a KL
function with the following property� Suppose that
y � N � R and a nondecreasing function w � N �
R�� satisfy the following

yk�� � yk � c� ����

and

yk � c	 � yk�� 	 yk � 	T ���maxfyk � wk� g�
����

for all k � �� k�� with  
 k� � � and all
yk � �y where �y � c� � c	� Then there exists
� � KL such that for all y� � �y and all
k � �� k�� the following holds�

yk � ��y�� kT � � wk � c� � c	 � ����

Proof� First we note that for all yk � c	 we have
from ���� that yk�� � yk and if yk � c	 we have
from ���� that yk�� � yk�c� � c��c	� Moreover�
since �y � c� � c	 we conclude that the set

fy � y � c� � c	g ����

is forward invariant� that is� y� � c� � c	 implies
yk � c� � c	 for all k � �� k���

Suppose now that � � y� � c� � c	 � � De�ne

k� �� minfk �  � yk � c� � c	g

�with k� � k� if yk � c� � c	 for all k � �� k����
Hence� for all k � k� �if k� 
 k�� we have that
yk � c�� c	 since the set ���� is forward invariant
and so ���� holds� De�ne now

k� �� minfk �  � yk � wkg

�with k� � k� if yk � wk for all k � �� k���� Note
that for all k � �� k�� we have from ���� that yk
is non�increasing and also recall wk is assumed to
be a nondecreasing function of time� Hence� for all
k � �k�� k�� �if k� 
 k�� we have that yk � wk and
so ���� holds� Finally� consider k � �� k��� Note
that yk � wk � wi for all i � �� k� and since y is
non�increasing� we have that yi � yk � wi for all
such i� Therefore�  � yi � yi � wi � �yi for all
i � �� k�� From Lemma � and ���� we can write
that

yi�� 	 yi � 	T���yi��	��yi�� �i � �� k� �

From Lemma � we conclude that

yi � ��y�� iT �� �i � �� k� �

and hence the bound ���� holds� which completes
the proof�

Lemma �� Suppose that T �  and y � N � R��

satisfy the following inequality for all k � �� k��

yk�� 	 yk � 	T���yk� � �	��yk� � ����

where k� � N f�g� �� � K� is locally Lipschitz
and �	 � L� Then� there exists � � KL such that
the following holds yk � ��y�� kT �� �k � �� k���



Proof� Consider an arbitrary y� and the cor�
responding sequence yk� We introduce a new
continuous and piecewise linear variable �t �
�kT�	��y��� �k � ��T�	��y���� k � �� k� 	 ���

��t� � yk �

�
t

T�	��y��
	 k

�
�yk�� 	 yk� �

and we let ���k�	��T�	��y��� � yk��� if k
� ����

Note that ��kT�	��y��� � yk for all k � �� k���
Denote t� �� k�T�	��y��� Since � is continuous
and piecewise linear� it is di�erentiable for almost
all t � �� t��� Hence� we can write that for all
t � �kT�	��y��� �k � ��T�	��y���� k � �� k� 	 ��
we have�

���t� �
yk�� 	 yk
T�	��y��

� 	���yk�
�	��yk�

�	��y��
����

Moreover� since yk�� � yk and �	��yk� � �	��y��
for all k � �� k��� we have ��t� � yk for all
t � �kT�	��y��� �k � ��T�	��y���� k � �� k� 	 ���
We can conclude from ���� that

���t� � 	�����t��� for a�a� t � �� t�� �

Using the standard comparison principle �see
Proposition ��� in �Lin et al�� ������ and since
�� is assumed locally Lipschitz� we conclude that
there exists �� � KL such that we have�

��t� � ������ t�� �t � �� t�� � ����

We let t � kT�	��yk� to obtain

yk � ���y�� kT�	��y��� ����

Since yk�� � yk� k � �� k� 	 �� we conclude that
yk � y���k � �� k�� and we since �	 � L� we can
write�

yk � ���y�� kT�	��y���

�� ��y�� kT ���k � �� k��� ����

where it is easy to see that ��s� t� �� ���s� t�	�s�� �
KL�

Lemma 	� �Angeli et al�� �b� Let � � R�� �
R�� be a continuous positive de�ne function�
Then there exist �� � K� and �	 � L such that
��r� � ���r��	�r���r � �

�� CONCLUSION

We have provided a framework for integral input�
to�state stabilization of nonlinear sampled�data
systems via their approximate discrete�time mod�
els� Designing controllers for particular classes of
systems and approximate models is an interesting
topic for further research�
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