
PLANNING TRAJECTORY WITH SPEED

CONTROLLED MANOEUVRES FOR A TWO-LINK

RIGID MANIPULATOR

Reza Fotouhi 1 Walerian Szyszkowski 2

Peter N. Nikiforuk 3

University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,

Canada

Abstract: A two part trajectory and speed planning procedure for a two-link rigid
manipulator is presented. The planning is done at the joint level using cubic spline
functions, and the trajectory of the robot is specified by a sequence of knots in space
Cartesian coordinates. These knots are transformed into two sets of joint coordinates,
and piecewise cubic spline functions are used to fit these two sets employing a time
scale to construct an initial trajectory for the manipulator. Linear scaling of the time
variable is used to accommodate the angular velocity and acceleration constraints
imposed at the joint level. A new nonlinear time scaling scheme is then used for speed
control so as to fit the manipulator’s tip velocity to a pre-specified profile. Simulation
results for the manipulator with payload masses following a planned trajectory are
presented.
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1. INTRODUCTION

The problem of concern in this paper is typical
of many industrial manipulators. It is that of a
two-link rigid manipulator required to perform a
manoeuvre in which the tip is to follow a trajectory
consisting of several linear segments with a prede-
fined velocity profile. At each corner connecting two
neighboring segments the tip velocity is reduced
to zero so as to allow the drop off or pick up of
some known tip masses. Between the corners the
tip is to move either with a constant acceleration,
or deceleration, or with a constant velocity. Some
constraints imposed on the angular velocities and
accelerations of the links must be met as well.

This task is divided into two parts: trajectory
planning and speed control. The desired trajectory
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is given as a sequence of knots (positions of the
robot’s tip) between two or more corners in space
Cartesian coordinates. The space coordinates of the
knots are then transformed into two sets of joint
coordinates. The control is performed at the joint
level and it is desirable, therefore, to construct
the trajectory at that level. Cubic approximation
polynomials are then used to fit the sequences of
knots in the joint coordinates. The functions of
approximation for the trajectory in the joint co-
ordinates pass through the given knots and are
sufficiently smooth to provide for continuous motion
(Schumaker, 1981; Craig, 1986).

Path planning has been studied by a number of
authors. An optimum path planning problem at
the joint level using cubic spline polynomials was
studied by (Xiangrong and Xiangfeng, 1994). Cubic
B-spline functions were used by (Thompson and
Patel, 1987), and (Wang and Horng, 1990). It was
claimed that, with the B-spline approach, local
modification of the path was possible for one or
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Fig. 1. Physical parameters used in formulation of two-link rigid manipulators, l1 = 2lc1 = 1.6 [m],
l2 = 2lc2 = 1.6 [m], m1 = 1 [kg], m2 = 1 [kg], ma = 1 [kg], mb = 4 [kg] for t1 ≤ t ≤ t61 and
mb = 0 for t61 < t ≤ t121 , g = 0, and I1 = m1l

2
1/12 = 0.213 [kg.m2] = I2.

more joints without affecting the other joints. A
cubic spline function was used to plan the geometric
trajectory as well as for maintaining a constant
speed along the geometric path by (Wu and Jou,
1991). The problem was transformed into an initial
boundary value problem. Two algorithms for fine-
tuning B-spline motions to obtain a near constant
kinetic energy were presented by (Srinivasan and
Ge, 1998). The concept of trigonometric splines was
proposed by (Simon and Isik, 1991).

More specifically, in this paper the path planning is
done at the joint level using cubic spline functions.
To accommodate the angular velocity and accelera-
tion constraints a linear scaling of the time variable
is applied. For speed control the approach proposed
by (Fotouhi et al., 2000a) is used. This approach
utilizes a nonlinear scaling of the time variable to
fit the manipulator’s tip velocity to a pre-specified
profile. Unlike that used by (Wu and Jou, 1991), this
approach can be implemented for any speed profile,
not only for constant speed.

2. MANIPULATOR DYNAMICS

The equation of motion of the Two-Link Rigid
Manipulator(TLRM) shown in Figure 1 in the joint
space can be derived in the form

M(ϕ)ϕ̈(t) +Q(ϕ, ϕ̇) = τ(t) (1)

where the mass matrix M and the force vector Q
are nonlinear functions of the joint variables

M(ϕ) =

[

a11 a12

a12 a22

]

(2)

Q(ϕ, ϕ̇) =

{

−a13(2ϕ̇1 + ϕ̇2)ϕ̇2 + a14g
+a13ϕ̇1

2 + a24g

}

(3)

and aij are known functions of the physical pa-
rameters and rotations (ϕ1, ϕ2) [see (Fotouhi et
al., 2000b) for details]. The vector of controls τ
is represented by the torques τ1 and τ2, and ϕ is
the vector of joint variables also referred to as the
state variables. The states ϕ1, ϕ̇1 are the rotation
and angular velocity of the shoulder link, ϕ2, ϕ̇2

are the rotation and angular velocity of the elbow
link, and g is the gravitational acceleration. The
manipulator’s tip is to follow a desired trajectory
given by the knots in the space (y, z). The y − z
coordinates of the knots can be easily converted into
positions specified at the joint level (e.g. ϕ1 − ϕ2).
The desired trajectory given in the joint coordinates
is denoted as ϕd.

3. TRAJECTORY PLANNING

3.1 Initial trajectory

The geometric trajectory is obtained by N knots
in the space coordinates system (y, z) given by
the pairs (yi, zi), i = 1, . . . , N . These knots can
be transformed into the joint rotations ϕ1i

, ϕ2i

of the manipulator by the following transformation
(Figure 1)

ϕ1 = α− χ (4)

χ= cos−1

(

y2 + z2 + l21 − l22

2l1
√

y2 + z2

)

(5)

α= tan−1

(

z

y

)

(6)

ϕ2 = cos−1

(

y2 + z2 − l21 − l22
2l1l2

)

(7)

Using these knots and considering constant time
steps, dt, between the knots calculated as dt =



tf/(N − 1) where tf is the desired travelling time,
two sets of cubic spline interpolation polynomials
can be fitted to approximate the initial trajectory.

3.2 Feasible trajectory

The trajectory is considered feasible if the con-
straints imposed on the angular velocity and ac-
celeration at each joint are met. An infeasible tra-
jectory can be made feasible by using linear scaling
to adjust the time intervals between each pair of
adjacent knots.

The time variable t is replaced by the scaled time
t̄ = λt, where λ is the adjustment factor. The joint
velocity and joint acceleration are then

dϕ

dt̄
=

1

λ

dϕ

dt

d2ϕ

dt̄2
=

1

λ2

d2ϕ

dt2
(8)

The velocities and accelerations are matched for
each joint to pre-specified constraints given as

|ϕ̇1(t)| ≤ V L1 |ϕ̇2(t)| ≤ V L2 (9)

|ϕ̈1(t)| ≤ AL1 |ϕ̈2(t)| ≤ AL2 (10)

The scaling factor λ can be selected as follows

λ1 = max(max(
|ϕ̇1(t)|

V L1
),max(

|ϕ̇2(t)|

V L2
)) (11)

λ2 = max(max(
|ϕ̈1(t)|

AL1
),max(

|ϕ̈2(t)|

AL2
)) (12)

λ = max(1, λ1,
√

λ2) (13)

Then, the scaled time variable t̄ and the scaled
velocities and accelerations are

t̄ = λt ϕ̇(t̄) =
1

λ
ϕ̇(t) ϕ̈(t̄) =

1

λ2
ϕ̈(t) (14)

3.3 Following a specified velocity profile

In this section the fitting of a specified profile to
the velocity along the trajectory is addressed. This
profile of the tip of manipulator is specified as vs

b in
time. Equation (22) is an example of vs

b .

In order to fit a feasible trajectory into this given
velocity profile, a nonlinear scaling is used that
adjusts individually (and differently) the time in-
tervals between consecutive knots as follows. The
time step variable dt is replaced by the scaled time
step d̄t = λ(i)dt. The factor λ(i) is used to adjust
the time step between ti and ti+1 and is calculated
from

λ(i) = ciλi + (1− ci)λi+1 (15)

where

ci =
vs

b(ti)

vs
b(ti) + vs

b(ti+1)
λi =

|vb(ti)|

|vs
b(ti)|

(16)

The velocities vb(ti) and vs
b(ti) are the actual and

specified linear velocities of the tip of the manip-
ulator, respectively. Next, the time variable t is
replaced by the scaled time

t̄ = t̄i + λ(i)(t− ti) (17)

for ti ≤ t ≤ ti+1 (and for t̄i ≤ t̄ ≤ t̄i+1). The scaled
velocities and accelerations are

ϕ̇(t̄i) =
1

λ(i)
ϕ̇(ti) ϕ̈(t̄i) =

1

λ(i)2
ϕ̈(ti) (18)

The error between actual tip velocity, vb(t̄i), and
specified tip velocity, vs

b(t̄i), for every scaled time
step is defined as

Ei = E(t̄i) =
|vb(t̄i)| − |v

s
b(t̄i)|

max(|vb(t̄i)|, |vs
b(t̄i)|)

(19)

The values of Ei and the adjustment factors λ(i) in
consecutive iterations indicate the convergence of
the procedure. The steps above are repeated until
either the least square norm ‖E‖ is sufficiently close
to zero or the norm ‖λ‖ is close to one where:

‖E‖ =

√

√

√

√

(

N
∑

i=1

E2
i

)

/N (20)

‖λ‖ =

√

√

√

√

(

N
∑

i=1

λ(i)2

)

/N (21)

The norm ‖λ‖ indicates the rate of scaling at
the knots for each iteration. There is no further
improvement when this norm reaches one. Some
limits on λ(i) can be imposed to obtain a smooth
convergence of the iterations, such as, λmin ≤
λ(i) ≤ λmax, where λmin < 1, and λmax > 1. For
simulation purposes the following limits were used:
λmin = 0.5, λmax = 1.5 for the first iteration; and
λmin = 0.25, λmax = 4.0 for other iterations.

4. SIMULATION RESULTS

For simulation purposes a trajectory of the shape
shown in Figure 2, consisting of two linear pieces,
with a particular tip velocity profile and obeying
angular velocity and acceleration constraints, was
considered. The initial and the desired trajectories
in the horizontal y − z plane (g = 0) are shown
in this figure. As shown in Figure 1, I1 and I2 are
the mass moment of inertia of the links w.r.t. their
centers of mass, m1 and m2 are the masses of the
shoulder and the elbow links, respectively,ma is the
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Fig. 3. Rotations of the links for the desired and
initial paths.
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Fig. 4. Angular velocity of the shoulder link for the
desired, ϕ̇1d, and initial, ϕ̇in

1d, paths.

mass at the elbow joint, and mb is the mass at the
tip of the manipulator. This mass differs between
the stops. The lengths of the links are l1 and l2,
whereas lc1, lc2 locate the centers of mass of the
links. In the simulation the physical parameters of
the manipulator were set as those given in Figure
1.

For the cubic spline interpolation 121 knots (points
position) were chosen along the curve. For the case
presented here, the desired profile of linear tip
velocity, vs

b , was specified as

vs
b = 3.0

t− t1
t11 − t1

for t1 ≤ t ≤ t11

vs
b = 3.0 for t11 ≤ t ≤ t51

vs
b = 3.0

(t61 − t)

t61 − t51
for t51 ≤ t ≤ t61

vs
b = 3.0

(t− t61)

t71 − t61
for t61 ≤ t ≤ t71

vs
b = 3.0 for t71 ≤ t ≤ t111

vs
b = 3.0

t121 − t

t121 − t111
for t111 ≤ t ≤ t121

(22)

where tin1 = 0, tin11 =
tin
f

12 , t
in
51 =

5tin
f

12 , tin61 =
tin
f

2 ,

tin71 =
7tin

f

12 , tin111 =
11tin

f

12 , and tin121 = tinf = 1.34

are also indicated in Figure 2. The final time tinf

(seconds) was calculated using s =
∫ tin

f

0
vs

bdt where
s = 3.354 m is the known distance travelled by
the manipulator tip and vs

b is specified by Equation
(22). The cubic spline interpolation of the angles
of rotation versus time for the initial (ϕin

1d
, ϕin

2d
)

and desired (ϕ1d
, ϕ2d

) maneuvers are plotted in
Figure 3. The angular velocity of the shoulder (ϕ̇in

1d,
ϕ̇1d) and elbow links (ϕ̇in

2d, ϕ̇2d), and the linear tip
velocity of the manipulator (vin

b , vs
b , vb), are shown

in Figures 4, 5 and 6 respectively.

For the first and last knots in the cubic spline inter-
polation the following conditions were used: ϕ̇11

=
ϕ̇1(0) = 0, ϕ̇1N

= ϕ̇1(tf ) = 0, ϕ̇21
= ϕ̇2(0) = 0, and

ϕ̇2N
= ϕ̇2(tf ) = 0. The velocity (V L1, V L2) and

acceleration (AL1, AL2) constraints for each joint
were V L1 = 5 [rad/s], V L2 = 5 [rad/s], AL1 = 100
[rad/s2], AL2 = 100 [rad/s2]. As can be observed
from Figures 4 and 5 for the initial trajectory, the
angular velocity of the shoulder and elbow links
reached about 1.5 rad/s and 4 rad/s respectively.
The angular acceleration of the shoulder and el-
bow links reached 100 rad/s2 and −300 rad/s2

respectively, which clearly violated the constraints
imposed on the angular acceleration of the joints.
The procedure discussed in section 3.2 (using the
linear scaling of time) was applied to satisfy the
constraints on the angular velocity and acceleration
of the joints.

The trajectory was next modified using the new
nonlinear scaling of the time described in section
3.3 so as to approach the desired profile of the tip
velocity, which resulted in a maneuver time of tf =
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Fig. 7. Linear velocity of tip of the manipulator for
the desired path, vb, in different iterations.
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1.3 seconds as shown in Figure 6. Figure 7 shows the
convergence of the procedure for fitting this linear
velocity, vb, to its specified profile, vs

b . As can be
seen from this figure, vb almost converges to vs

b after
only four iterations which can be attributed to the
limiting value of λmin and λmax. Figures 8 and 10
show the first error norm and second error norm for
the convergence of iteration for speed planning. As
can be seen from Figure 8, for N = 121 the error
norm could not be reduced to less than about .0025,
which can be attributed to the number of knots
chosen. Actually, when the error norm reached a
small value, in this case .004, the second error norm
reached one in only ten iterations. It was found that
the greater the number of knots the smaller the
error. For example, as shown in Figure 9, doubling
the number of knots to N = 121, decreased the
error approximately six times to .0025. The second
norm or λ-norm, shown in Figure 10 for N = 121,
was used to determine the best solution (iteration)
when the first error norm could not be reduced any
further. The set that caused the least fluctuations of
λ(i) was selected, that is the set for which |(1−‖λ‖)|
is minimum.
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5. CONCLUSIONS

A two-phase trajectory planning for a two-link rigid
manipulator was presented. The problem was solved
in two stages. First, a geometric trajectory planning
using cubic spline functions was performed to con-
struct an initial trajectory. The motion constraints
(maximum angular velocity and maximum angular
acceleration) were met using a linear scaling of the
time variable. Then a new approach was applied
to the speed control (fitting the manipulator’s tip
velocity to a pre-specified profile) using a nonlinear
scaling of the time variable. It was demonstrated
that the specified velocity profile can be followed
very closely. The method used here can be imple-
mented to follow any specified speed profile very
closely. Simulation results were presented which
show the convergence and effectiveness of the path
planning approach.
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