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Abstract: Stability and design issues of simple T-S fuzzy control system with simplified

linear rule consequent (TSS) are investigated. A systematic approach to find a common

matrix P for TSS fuzzy system is presented first, where system matrix A; is

decomposed into proportional part A4, and the remainder A4,. Hence an iterative

approach to find a common matrix P for pairwise commutative A, ’s can be used. And

the stability of the global system is guaranteed if AA, satisfies certain conditions.

Secondly, qualitative instruction for system design can be obtained, by which

systematic steps for controller design of TSS are formed. Copyright © 2002 IFAC
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1. INTRODUCTION

T-S fuzzy model (Takagi and Sugeno, 1985) is
essentially a nonlinear model. It can describe
dynamical characteristics of a complex nonlinear
system. Since its consequent is usually a linear model,
linear control theory can be used to design proper
controller. Buckley proved that this kind of controller
is a universal controller (Buckley, 1993). Tanaka and
Sugeno (1992) proposed sufficient condition for the
stability of global fuzzy system. These works formed
a framework for modeling, control design, and
stability analysis of T-S systems.

Stability analysis of a T-S fuzzy system is mostly
based on the result obtained by Tanaka and Sugeno
(1992), i.e., to find a common positive definite matrix
P for each subsystem A,. A series of research to
solve P have been developed, among which LMI
method is an effective one (Tanaka, ef al., 1996; Park,
et al., 2001). However, this stability condition is
sufficient and can only be used after system design. In
other words, a common matrix P can be found but
after controller design. If P exists, the stability of
global control system is guaranteed. However, few
literatures investigated the case that the sufficient
condition does not hold. At this rate, it is commonly

accepted that new controllers for subsystems should
be redesigned and P should be searched again. Since
the results of last design have few instructions for
redesign, design procedure seems non-systematic.

Narendra and Balakrishnan (1994) studied the
stability of linear time-invariant multi-model system
with pairwise commutative matrix 4,, and presented
an iterative method of finding a common matrix P.
Using this conclusion, Joh, et al. (1998) did research
on stability of T-S fuzzy systems, whose subsystems
were also under the pairwise commutative assumption.
The robustness issue on uncertainty in each subsystem
was also considered. Since it is difficult to satisfy the
above assumption, the discussion seems short of
pertinency. The design of control system was also not
discussed. T-S system with simplified linear rule
consequent (TSS) proposed by Ying (1998) is a
simplification of T-S systems. It decreases the number
of parameters to be identified but still ensures
universal approximation. In this paper, system
matrices A;’s of TSS are decomposed into
proportional parts and their residuum. Stability
conditions of a TSS control system are then
investigated based on conclusions presented by Joh, et
al. (1998). An iterative method of finding its common



matrix P, is also presented. Moreover, a simple and
systematic design method of TSS control system is
presented, which can guarantee system stability.

2. PROBLEM DESCRIPTION
2.1 T-S Fuzzy Model
A T-S fuzzy system with N rules can be written as,
R : if x (k) is L and x, (k) is L, and
~-and x, (k) is L,
then X'(k+1)=A4X (k)+BU (k)
i=1,2--- N
where L"j is the fuzzy set of premise variables, x; is
the jth state variable, X( ) ch( ),-‘ , X, (k)g,
and U (k)= B ().~
For current state X (k) and input U (k), the T-S
fuzzy model infers X (k + 1) as its output,

X (k+1) ZA
_ Wi(k) (k)= .

where A, (k)= , W L’]E

Z?I:l w; (k) l =1 []

)

U, (k)ﬁ~ is the input vector.

K)+BU(KE ()

For a free system (i.e. u(k) =0), (2) can be written

as,
X (k+1) ZA (k)4.x (k) 3)

Hence, the stability problem of (3) can be transferred
to be one with N simultaneous linear systems:
X(k+1)=4Xx(k), i=1,2,--,N 4)
Proposition 1 follows then,
Proposition 1 (Tanaka and Sugeno, 1992): The
equilibrium state of fuzzy system (3) (namely, X =0)
is globally asymptotically stable if there exists a
common positive definite matrix P such that,
A'PA-P<0, i=12,---,N 6)

2.2 State Space Description of TSS Model

Ying (1998) presented a T-S system with simplified
linear rule consequent (TSS). He also proved that the
general MISO fuzzy systems with the simplified linear
T-S rule consequent could uniformly approximate any
multivariate continuous function in closed domain to

any degree of accuracy. TSS system with N rules is,
R: if y(k) is M| and---and y(k—n +1) is M!
and u(k) is N| and---and u(k -m +1) is N

: i il |

then y'(k+1)=k, §aly(k —1+1) +y bu(k —j +1)0

=T = O

i=1,2--,N

(6)

where M, N
y(k—l +1),u(k -J +1) are model input and output,

are fuzzy sets of model inputs,

a;,b, are parameters to be identified. For different
rules a,,bj are constants. Clearly, the difference

between different rule consequents is just the
proportion coefficient k. Let

X (k+1) =5 (k),-y(k —n +1)E = (k)

The consequent of ith rule is,

n m O
X =k o (1) 5 b= ) )

=T = d
For simplicity, in this paper assume
b, =0,0)> 1(Zhao, et al., 1997). It may be shown

that this assumption would not essentially change the
main conclusions of this paper. Therefore (7) can be
written as,

b (k +l) =k @zlxl (k) +a,x, (k) +o..
()= (6

X, (k + 1) =X, (k)

x, (k)

+a,x, (k) +bu (k)3

. ()
ie.
By (k+10 ha ka, ka, 000, (k)0 OkbJ
O 0 o 00 (,\0 O O
O, (k+1)0_gt o 0 0 g (Ko, 00 (k)
g; BD DEEEDED
0, (k+10f B0 1 0 Bp.(Kg 8o
©)
Then the consequent of ith rule is,
X (k+1)=A4X (k)+Bu(k) (10)
tka, ka, - ka,O k6,0
O 0,0
1 0 0 0
[I I] -0 0
where A, = B, 0: o
50 1o E dog
For current state X (k) and input u(k) X (k +1)

of the TSS system is,
X (k+1) z A(

where A, (k)=

Zj/q w; (k) 1=1

3. STABILITY ANALYSIS OF TSS SYSTEM

Before discussing the stability of TSS system (10),
some important results in Joh, et al. (1998) will be
introduced at first.

Proposition 2 (Joh, ef al., 1998): Consider system (3).
Suppose that A, ’s are Schur and satisfy,

AA, =A A, i=12 N (12)

i+l



Consider the following N Lyapunov equations,

AlTP1A1 -B=-0

A2TP2A2_I)2 :_I)l (13)
AI{/PNAN —-P, =P,
where @>0 and P (i=12,---,N) is the unique
positive definite symmetric solution of each equation.
Then,

A'P,A-P, <0, i=12,--,N (14)

Proposition 3 (Joh, et al., 1998): A T-S fuzzy model
with uncertain items,

X, (k+1) =84 + 04, (BX, (k), i =12,

is quadratically stable if
max )\max gAz + AA:‘ )T
A

N (15)

P, (A4 +04)-P,H<0 (16)

where A;’s are Hurwitz and pairwise commutative
and P, is defined by (13), Q, is a known compact
set. A, [0 denotes the maximum eigenvalue of the
designated symmetric matrix, and it always appears at
the protruded pointin Q, .

Conclusion 1 (Joh, er al., 1998): Consider a T-S
fuzzy system (15), and A,’s are Schur and pairwise

commutative, MM, (k)@ 5

5 {0 E s |E

and convex hyperpolyhedron with fixed shape and
alterable size, E, is the protruded point of Q

fixed; m ﬁxed,} b gl/i)ced1 are CompaCt

fixed; *
Define the maximum possible bounds of AA, (k) as

N\, , which assure quadratically stability of (15),

{(6 )max lzf)ced1 Eﬁxed, m ﬁxed,} (17)
1 1
= max — (18a)
(61' )max E fixed; @ fixed 6l' (E fixed, )
1 :
o [ -\ = Amax = max Bl' (18b)
5[ (E fixed, ) J { j}
where i=1,2,-,N, B, can be solved by the
following general eigenvalue problem, ;=1,---,/,11is
the number of eigenvalues
oo E,. O ap;' a0
O E =B0 o0& 19
TEha 0 M RO

Now consider free sub-systems of the TSS model (11).

The ith subsystem

3lal kia2 kzan D

B _gro 03
(k+1)=AX (k)= a: - DX(k) (20)

50 1 o E

can be rewritten as,

X(k+1)=(4 +04) X () 1)
where
&ial kia2 o klan[l D 0 0 ([l
0

- Be o 0 I~k 0 ¢

_ok Opgq =00 %
A S ERE D’M"_D S o
W 0B Be ad

Different from the dynamical uncertainty item in
Conclusion 1, A4, can be regarded as constant
“uncertainty”. Therefore Theorem 1 follows,

Theorem 1: For a TSS free system with sub-system

(21), find a common positive definite matrix P, for
‘:li (l :1’2’...’
general eigenvalue problem (19) by Conclusion 1, if
k.’s make AA TN\, (see (17) for A,;), then TSS
fuzzy system is quadratically stable.

N) according to (13), and solve

Example 1: Consider a TSS system with three rules.
R: if y(k—l) is M,

, 2 o
then y'(k+1) =k, ?ajy(k =1 +1) +bu (k)
0
i=1,2,3
where @, =025, a,=01, b=02, k=1,
k, =1.25, k, =1.5. Therefore the consequent of TSS

system can be rewritten as (10),
where
[©.2500 0.10000 00.3125 0.12507
4 =7 0 4 =0 0
01 0 O 0O 1 0 O
[©.3750 0.15000
A= []- The membership functions
o1 0 O
are shown in Fig.1.
Iy
w(x,)
1
Ml MZ M3
-1 1 xj

Fig.1 Membership functions in Examplel

Consider the given TSS free system. Choose the
uncertainty compact set

_Jolplsog {alol=3 5

Q.. Therefore
“Holpl=d {alls0dd

its protruded points are E}Yxedi = @L?zs _;25§,

B = 05 2 0O -20
med = H o _0.5H Ej H—z 0.55"
. 05 20

. Usin, 21), rewrite A. as
0.5H g @D

i

Eﬁxedi = Hz



. 0 0
A=A +M . 5 om=2 %
%2 o 0 o

00 o0 [6.6157 0.70100]
=0 - Calculate P, = 0
Ho2 o H.7010 1.2183H

by (13). So APA -P, <0 (i=1,2,3). Solve the

coefficients (cS.)maX ’s of maximum uncertainty

bounds using Conclusion 1. The results obtained from
(19) are listed in Tablel, where A, is the maximum

eigenvalue.
Tablel A, of (19) for Each Rule — 4,

Al )\max A2 )\max A3 Amax
E,., 4225 E,, 418 E 4214
E;., 5942 E,, 048 g, 7359
E}., 4.437 E}.. 4.457 E}.. 4.568
E;.. 16592 E;., [1.583 E;, [.308

From  Tablel, the maximum  eigenvalues

corresponding to A Az, andA are 6.592, 7.583,
and 9.308, respectlvely. By (18a) and (18b), the
maximum uncertainty bound for each rule is the
reciprocal of maximum eigenvalue, i.e. 0.152, 0.132,
and 0.107. Therefore uncertainty sets of plant rules
are,

i gAa;||Aaf| <0.075¢ {adl|[ad)|<o0. 3034} 0

{
1_%Aa;||Aa;|so.3o3A} {na ||Aa4|<00759}E

) %Aaf”Aaﬂ <0.0659

_ {
aal|jaaz|<0.263¢  {oal]

{oa

{

VE [YHE 2636} O
||| < 0.0659 E’

) gAaf||Aaf|so.0537} 3] <0214g}D

) gaagnaag 02148 {aa|d] <0.0537 D'

0o 0|:| () OI:I
Clearly, = B) 5 OH = B) OH
oo oO

[N\ ;. Thus by Theorem 1, TSS free
*“Hoz o

system with the given A, ’s is quadratically stable.
This can also be checked since P, satisfies

Proposition 1 for A4,’s.

4. STABILITY ANALYSIS AND DESIGN OF
TSS CONTROL SYSTEM

Zhao, et al. (1997) considered two kinds of state
feedback controllers. One is non-fuzzy state feedback

controller, another is fuzzy one, i.c., u(k) = KX (k)

k)= Z}\u (k)= @uﬁx

and u( k). Here, the

stability of TSS control system (11) with the above
two type controllers will be analyzed.

4.1 Non-Fuzzy State Feedback Controller

Suppose that the non-fuzzy state feedback controller
is adopted, ie.,

u(k)= KX (k)=[K, K, K,] X (k), then (11)
can be rewritten as,

X (k+1) Z}\ (

+B,.KX(k))

N

A ()4 +BE)X (6)2 3 A, (6) 4% ()

A (K)(4 +04) X (k)

M= iM=

A

(22)

where 121,. and AA, are defined as 1:1,. and A4, in
(21). AA, can be regarded as “uncertainty” in free
system (22). Similar to free system (21), several
conclusions can be easily obtained as follows.

Theorem 2: For system (22), find a common positive
definite matrix P, for 121,. (i=1,2,---,N) by

Proposition 2, the TSS control system (22)
quadratically stable if

A+0a) P (4+04)-PH<0 (23)

max A,

Proof: From (22),

éi = Ai +BiK
ka, +kbK, ka, +kbK, - ka,+kbK,0
O O
_0 1 0 0 0
O ’ O
E 0 1 0 E
%, (a,+ bK,) k (a,+bK,) k,(a,+bK,)O
0k 0 0
- O i O
O : ) O
O O
g5 0 k, 0 g
oo o0 00
O
-k 0 - 0= .
+a : U2 4 +M
O: - o & %
E 0 1-k, OE
It can be easily proved that AA, =A4,4.

Therefore one can use Proposition 2 to find a common
positive definite matrix P, . If (23) is satisfied, it can

be concluded from Proposition 3 that TSS control
system (22) is quadratically stable. Cl

Corollary 1: For system (22), find a common positive
definite matrix P, for A (i=1,2,---,N) by (13),
and solve the general eigenvalue problem (19). If



A4, TN\, (see (17) for A,), the TSS control system
(22) is quadratlcally stable.

4.2 Fuzzy State Feedback Controller

Suppose that the controller is fuzzy state feedback

controller, i.e.,
Km] X(k) ,

u, (k)= KX (k) =[K,

B)=S A, () =S5 AKEX (k). (1 b

_; iU _i i fH . (11) can be
rewritten as,

N

X (k+1)= Z EAX )+B, EZAK%X
A( %A +B, ;A K, %X
K234 ()4 +

i=1

M= M-

A

A, (k)) X (k)

(24)
Here, A4, (k) can also be regarded as “uncertainty” in

A, (k)4 (k) X

free system (24).
Theorem 3: For TSS system (24), find a common

2,---,N) by
Proposition 2, and solve the general eigenvalue
problem (19). If Aél,. N\, (see (17) for A,), the TSS

control system (24) is quadratically stable.
Proof: From (24),

positive definite matrix P, for 121,. (i=1,

tk,a, ka, - ka0

O
N k. 0 - 0
AizAi-'-Bi&)\iKiDT =|:|.l . O
- =T H o i

]
o>
M=

i i
i=

AK, kibliAiKiz o kb Yy AK,
i=1

—_
|
=~

=+

0 0

[ |

11>

Iw OOOO0O0O

+
B s
=
N

(25)
It can be easily proved that éliélm = élmél,.. In fact,

N
at each instant k, the value of ZAI'K;; (j=1--,n)
i=1

are exact, which forms A4, (k) . Define Aéli as,

og 6 - 6.0

Y _dk 0 eg (26)
AN O
0
g0 1-k O

where

N
i d .
szrn)\a’lxﬁcibIZ/\iKin, j=1,2-,n. If
Aéi,. [N\ ,, Theorem 3 immediately follows. O

Of course, the stability condition in Theorem 3 is

conservative, since it can not be guaranteed that all of
N
AK p reach their maximum at each instant.

i=1

Remark 1: The stability results presented in this
section is for TSS control systems. They can also be
used to evaluate the stability of general T-S fuzzy
control systems, provided that given systems satisfy
the conditions required in Proposition 2.

4.3 Systematic Design for Fuzzy Control System
with Stability Guarantee

Usually, the approach to stability analysis for T-S
fuzzy control systems is to find a common positive
definite matrix P for all subsystems. It is only a
sufficient condition to assure stability of global
system. When users design T-S fuzzy control system,
they usually design controllers for each subsystem by
PDC method at first, without taking stability of the
global system into account. Then they try to find the
satisfactory matrix P . If they can, the system is
stable; otherwise they should redesign sub-controllers.
However, the results of last design have few
instructions for redesign and users should repeat the
“design-evaluate” procedure, which makes the design
process blind and rather complicated.

In this section, an easier and more systematic method
to design TSS fuzzy control system will be presented,
which assures system stability.

Consider a TSS control system (24). Clearly Ii,’s
satisfy AA. = A,

—i=i+l

A Hence a common positive

N) can be

Zitl =

definite matrix P, for 1;11 (i=12,-,

designed by Proposition 2, which satisfy
A'P A -P, <0 (i=12,---,N)

Design state feedback controllers of subsystems using

P, as follows,

=K, X =-RB'P X 27
where R is a weighting positive definite symmetric
matrix given by users. Substitute K, into (25). If
Aéi,. L\ ,, where Aél.
controller design. The obtained state feedback matrix
may guarantee the stability of TSS control system.
Otherwise just qualitatively decrease weight matrix
R in certain range and compute new state feedback
matrix by (27). Usually Theorem 3 can be satisfied. If
not, search a new common matrix P, using its

is designed by (26), stop

systematic design method as (13).



Remark 2: To evaluate the stability of a fuzzy control
system, the users usually design sub-controllers at
first, then search common matrix P and check it using
Proposition 1. Whereas the design method of TSS
control system given here first searches common
matrix P for all nominal sub-systems, then uses P to
design sub-controllers. Generally speaking, only the
matrix R should be adjusted and the whole search
procedure for P would not be repeated.

Example 2: Consider the TSS system given in
Example 1, where the input matrix B,’s are

B =[02 0], B, =125B,=[025 0],
B, =1.5B, =[0.3 O]T. Here suppose that the
premise variable is x, only. First rewrite the system

as (24). Compute state feedback matrix K,’s by

. [6.5157 0.70100
systematic method, where P, = s
H.7010 12183

R =1. The satisfactory results can be found until
R=0.09 with K, =[-0.1173 -0.0126],
K, =[-0.1466 -0.0158], K,=[-0.1759 -0.0189].By

~ 400352 —0.00380

26), MM, = ,
(26) S7H o2 o H
. [30.0440 -0.00480 . _[30.0528 —0.00570)
A, = 0 M= O-
o o 0 O 0 —0.2 0 O

Clearly, Aél,. [\ ,, where A,’s are the same ones in

Example 1. Therefore the designed state feedback
matrix K, ’s can guarantee global system stability.

Remark 3: In fact, the stability results presented in
this section can also be used to evaluate the stability
of T-S fuzzy control system, provided that state
matrix A,’ssatisfy 4.A4,,, = A4,,A4,.

i€+l

5. CONCLUSION

Stability and design problem of a TSS system were
investigated. Considering the special characteristics of
TSS, this paper presented a systematic approach to
find the common matrix P. System matrix 4, was
and the

remainder A4, first. And a common matrix P for

decomposed into proportional part A,

A.’s could be found by an iterative approach. Then
the global system stability was guaranteed with P if

AA, was in a certain range. Stability results for both

free and control systems were obtained, based on
which systematic controller design methods for TSS
were also investigated.
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