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Abstract: We use Stochastic Fluid Models (SFM) for control and optimization (rather
than performance analysis) of communication networks, focusing on problems of
admission control. We consider a SFM with an uncontrolled traffic class and a con-
trolled traffic class subject to threshold-based admission control. We derive gradient
estimators for packet loss and workload related performance metrics with respect
to threshold parameters. These estimators are shown to be unbiased and directly
observable from a sample path without any knowledge of underlying stochastic
characteristics. This renders them computable in on-line environments and easily
implementable for network management and control. We further demonstrate their
use in admission control problems where our SFM-based estimators are evaluated
based on data from an actual system.
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1. INTRODUCTION

A natural modeling framework for communica-
tion networks is provided through queueing sys-
tems, which capture the discrete event nature of
packet-based operations. However, the huge traf-
fic volume that networks are supporting today
makes such models highly impractical. Moreover,
incorporating sophisticated stochastic processes
and modeling buffer overflow phenomena typically
defy tractable analytical derivations. This has mo-
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tivated an alternative modeling paradigm based
on Stochastic Fluid Models (SFM). SFMs have
recently been shown to be especially useful for
simulating various kinds of high-speed networks
(Kesidis et al., 1996), (Kumaran and Mitra, 1998),
(Miyoshi, 1998), (Liu et al., 1999), (Yan and
Gong, 1999), (Wardi and Melamed, 2000).

For the purpose of performance analysis with
Quality of Service (QoS) requirements, the accu-
racy of SFMs depends on traffic conditions, the
structure of the underlying system, and the nature
of the performance metrics of interest. For the
purpose of control and optimization, on the other
hand, as long as a SFM captures the salient fea-
tures of the underlying “real” system it is possible
to obtain accurate solutions to problems even if we
cannot estimate the corresponding performance
with accuracy. In short, an SFM may be too
“crude” for some performance analysis purposes,
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but able to accurately capture sensitivity informa-
tion. This point of view is taken in (Cassandras
et al., 2001), where a SFM is adopted for a net-
work node in which threshold-based admission
control is exercised. For the problem of determin-
ing a threshold (measured in packets or bytes)
that minimizes a weighted sum of loss volume
and buffer content, it is shown that a solution
based on a SFM recovers or gives close approxi-
mations to the solution of the associated queueing
model. Since solving such problems usually relies
on gradient information, estimating the gradient
of a given cost function with respect to key pa-
rameters, such as the aforementioned threshold,
becomes an essential task. Perturbation Analysis
(PA) methods (Ho and Cao, 1991), (Cassandras
and Lafortune, 1999) are therefore suitable, if
appropriately adapted to a SFM viewed as a
discrete-event system. This approach has been
used in (Liu and Gong, 1999), where incoming
traffic rates were the parameters of interest, and
(Cassandras et al., 2001), where threshold pa-
rameters are optimized to solve admission control
problems. In (Cassandras et al., 2001), in partic-
ular, it was shown that Infinitesimal Perturbation
Analysis (IPA) yields remarkably simple nonpara-
metric sensitivity estimators for packet loss and
workload metrics with respect to threshold or
buffer size parameters in a single-node SFM with
a single incoming traffic stream. In addition, the
estimators obtained are unbiased under very weak
structural assumptions on the defining traffic pro-
cesses.

In this paper, we consider a single node SFM with
two traffic streams; one traffic stream is uncon-
trolled and the other is subject to threshold-based
admission control (see Fig. 1). Thus, we model a
typical network node where the controlled stream
represents a source of new traffic into the network
at that node and the uncontrolled stream repre-
sents “interfering traffic”, i.e., traffic from other
nodes on its way to various destinations. Interest-
ingly, this model also captures the operation of
the Differentiated Services (DS) protocol that has
been proposed for supporting QoS requirements
(Blake et al., 1998). We derive IPA gradient es-
timators for performance metrics related to loss
and workload levels with respect to the threshold
parameter in our model. These estimators can be
evaluated based on data observed on a sample path
of the actual (discrete-event) system. Thus, we
may use the SFM only to obtain a gradient esti-
mator form; the associated value at any operating
point is obtained on line from real system data
and no simulation is necessary. The estimators
derived are also shown to be unbiased. Finally,
we use these estimators to illustrate how to solve
admission control problems.

2. A MULTICLASS STOCHASTIC FLUID
MODEL (SFM)

The SFM studied in this paper is based on
the model described in (Cassandras et al., 2001)
where a single node and single traffic stream was
considered. In our case, as shown in Fig. 1, there
are two “classes” of traffic: controlled (class 1) and
uncontrolled (class 2). Uncontrolled traffic has an
arrival rate α2(t). A threshold θ is associated with
class 1 traffic, which has an arrival rate α1(t).
An admission control policy is exercised so that
when the total buffer content reaches a threshold
θ, class 1 traffic is rejected, while class 2 traffic
is not affected. The two traffic streams share a
common FIFO buffer assumed of infinite size. The
service rate is denoted by β (t). In addition, let
γ(θ; t) denote the loss rate when the buffer content
exceeds the designated threshold level θ, and let
x(θ; t) denote the buffer content at time t. The
notational dependence on θ indicates that we will
analyze performance metrics as functions of the
given θ.

θ 

x(t)

α2(t)

γ(t)
β(t)α1(t)

Fig. 1. Stochastic fluid model (SFM) with two
traffic classes

We are interested in studying sample paths of
the SFM over a time interval [0, T ] for a given
fixed 0 < T < ∞. We assume that the processes
{α1(t)}, {α2(t)}, and {β(t)} are independent of
θ and they are piecewise continuously differen-
tiable w.p.1. Note that a typical sample path
can be decomposed into two kinds of alternating
intervals: empty periods and busy periods. Empty
Periods (EP) are maximal intervals during which
the buffer is empty, while Busy Periods (BP)
are supremal intervals during which the buffer is
nonempty. Observe that during an EP the system
is not necessarily idle since the server may be
active, processing traffic supplied to it at a rate
that does not exceed β (t), i.e., α1(t) + α2(t) −
β(t) ≤ 0.

Viewed as a discrete-event system, an event in
a sample path of the above SFM may be either
exogenous or endogenous. An exogenous event is
a jump in α1(t), α2(t), or β(t) (if any exist) and
any point where the difference function {α1(t) +
α2(t) − β(t)} or {α2(t) − β(t)} changes sign. An
endogenous event is defined to occur whenever
the buffer (i) ceases to be empty, (ii) becomes
empty, (iii) reaches the value x(θ; t) = θ and then
maintains it for some finite length of time, (iv)



leaves the value x(θ; t) = θ after it has maintained
it for some finite length of time, and (v) crosses
the value x(θ; t) = θ from either below or above.

We will assume that the real-valued parameter θ
is confined to a closed and bounded (compact)
interval Θ. Let L(θ) : Θ → R be a random func-
tion defined over the underlying probability space
(Ω,F , P ). Strictly speaking, we write L(θ, ω) to
indicate that this sample function depends on the
sample point ω ∈ Ω, but will suppress ω unless
it is necessary to stress this fact. In what follows,
we will consider two performance metrics, the Loss
Volume LT (θ) and the Cumulative Workload (or
just Work) QT (θ), both defined on the interval
[0, T ] as follows:

LT (θ) =
∫ T

0

γ(θ; t)dt, (1)

QT (θ) =
∫ T

0

x(θ; t)dt, (2)

where, for simplicity, we assume that x(θ; 0) = 0.
Observe that 1

T E [LT (θ)] is the Expected Loss
Rate over the interval [0, T ], a common perfor-
mance metric of interest (from which related met-
rics such as Loss Probability can also be derived).
Similarly, 1

T E [QT (θ)] is the Expected Buffer Con-
tent over [0, T ]. We may then formulate optimiza-
tion problems such as the determination of θ∗ that
minimizes a cost function of the form

J(θ) =
1
T

E [QT (θ)] +
R

T
E [LT (θ)] (3)

where R represents a rejection cost due to class 1
loss. In order to accomplish this task, we rely on
estimates of dE [LT (θ)] /dθ and dE [QT (θ)] /dθ,
which we will pursue through Infinitesimal Per-
turbation Analysis (IPA) techniques (Ho and
Cao, 1991), (Cassandras and Lafortune, 1999)).
Henceforth we shall use the “prime” notation to
denote derivatives with respect to θ. Thus, the
sample derivatives dLT (θ)/dθ and dQT (θ)/dθ are
denoted by L

′
T (θ) and Q

′
T (θ), respectively.

3. IPA FOR LOSS VOLUME WITH RESPECT
TO THRESHOLD

We proceed by studying a sample path of the
SFM over [0, T ]. For a fixed θ ∈ Θ, the interval
[0, T ] is divided into alternating EPs and BPs.
Suppose that a sample path consists of K busy
periods denoted by Bk, k = 1, . . . , K, in increasing
order. Thus, given a BP Bk, its starting point
is one where the buffer ceases to be empty, i.e.,
there is a change in sign of the difference function
{α1(t)+α2(t)−β(t)} from non-positive (hence, the
buffer was empty) to positive. Since this function
is independent of θ, the starting point of Bk is
locally independent of θ. The ending point of Bk

generally depends on θ. Denoting these points by
ξk and ηk(θ) respectively, we express Bk as

Bk = [ξk, ηk(θ)), k = 1, . . . , K

for some random integer K. Then, by (1), we may
write LT (θ) and its derivative (assuming it exists)
as

LT (θ) =
K∑

k=1

∫ ηk(θ)

ξk

γ(θ; t)dt (4)

L
′
T (θ) =

K∑
k=1

d

dθ

∫ ηk(θ)

ξk

γ(θ; t)dt (5)

where K is locally independent of θ. Let us now
focus on a typical Bk and drop the index k in order
to simplify notation. Thus, the BP in question is
denoted by B = [ξ, η(θ)). Define the function λ(θ)
as

λ(θ) =
∫ η(θ)

ξ

γ(θ; t)dt. (6)

and we shall concentrate on evaluating λ
′
(θ). Let

vi, i = 0, ..., S, be all endogenous event times in
the BP (as previously defined). Note that v0 = ξ
and vS = η(θ). Figure 2 shows a typical BP
in a sample path of our SFM. According to the
different levels of buffer content, we can divide
the BP into intervals [vi−1(θ), vi(θ)), i = 1, ..., S
so that each belongs to one of the following three
sets:

1. Partial Loss Period Set U(θ). During such
periods, the buffer content is x(t; θ) = θ and class
1 traffic experiences partial loss. In particular,

dx(t)
dt+

= 0 (7)

α1(t) + α2(t) − β(t) > 0 (8)

α2(t) − β(t) < 0 (9)

γ(θ; t) = α1(t) + α2(t) − β(t) (10)

Formally, we define U(θ) as follows:

U(θ) := {[vi−1(θ), vi) : x(t) = θ, t ∈ [vi−1(θ), vi)}
(11)

where vi above is locally independent of θ, since
the time when the buffer content leaves θ depends
only on a change in sign of the difference function
{α1(t)+α2(t)−β(t)} or {α2(t)−β(t)}, as seen in
(8)-(9). In Fig. 2, [v3, v4) and [v5, v6) are examples
of partial loss periods within a BP.

2. Full Loss Period Set V (θ). In a Full Loss
period the buffer content is x(t; θ) > θ (excluding
the starting point vi−1(θ)) and all class 1 traffic
is lost:

V (θ) := {[vi−1(θ), vi(θ)) : x(vi−1(θ)) = θ and
x(t) > θ, t ∈ (vi−1(θ), vi(θ))} (12)

and we have
dx(t)
dt+

= α2(t) − β(t) (13)



γ(θ; t) = α1(t) (14)

Examples of Full Loss periods are [v1, v2) and
[v6, v7) in Fig. 2.

3. No Loss Period Set W (θ). During such
periods the buffer content is x(t; θ) < θ (excluding
the starting point vi−1(θ)) and no loss occurs:

W (θ) :={[vi−1(θ), vi(θ)) : x(ξ) = 0 or
x(vi−1(θ)) = θ, i > 1 and
x(t) < θ, t ∈ (vi−1(θ), vi(θ))} (15)

and we have

dx(t)
dt+

= α1(t) + α2(t) − β(t) (16)

γ(θ; t) = 0 (17)

Examples of such periods are [ξ, v1), [v2, v3)[v4, v5)
and [v7, η) in Fig. 2.

θ 

v1 v2 v3 v4 v5 v6 v7ξ η 

Fig. 2. A typical busy period (BP)

Recalling (6), we can now write λ′(θ) as

λ′(θ) =
S−1∑
i=1

(
d

dθ

∫ vi(θ)

vi−1(θ)

γ(θ; t)dt·

1 [[vi−1(θ), vi(θ)) ∈ U(θ) ∪ V (θ)]) (18)

where S is also locally independent of θ. Since we
are concerned with the sample derivative L

′
T (θ)

we have to identify conditions under which it
exists (and, therefore, λ

′
(θ) also exists). Observe

that any endogenous event time (as defined above)
is generally a function of θ (with the exceptions of
local independence noted above). The derivative
v′

i(θ) exists as long as vi(θ) is not a jump point
of the difference function {α1(t) + α2(t) − β(t)}
or {α2(t) − β(t)}. Excluding the possibility of
the simultaneous occurrence of two (exogenous or
endogenous) events, the only situation prevent-
ing the existence of the sample derivative L

′
T (θ)

involves some t such that α(t) − β(t) = 0 or
α1(t) + α2(t) − β(t) = 0. In such cases, the one-
sided derivative of LT (θ) exists and can be ob-
tained through a finite difference analysis as in
(Cassandras et al., 2001). However, to keep the
analysis simple, we focus only on the differentiable
case by proceeding under the following technical
conditions:

Assumption 1.
a. W.p.1, α2(t) − β(t) �= 0 and α1(t) + α2(t) −
β(t) �= 0, for all t ∈ [0, T ].
b. For every θ ∈ Θ, w.p.1, no two events may occur
at the same time.

In order to proceed with the detailed derivation
of λ

′
(θ), we begin by simplifying notation through

the introduction of the following two operators for
i = 1, ..., S:

Ai ≡ α1(vi(θ)) + α2(vi(θ)) − β(vi(θ)) (19)
Bi ≡ α2(vi(θ)) − β(vi(θ)) (20)

By convention, we shall set A0 ≡ 1. The following
lemma shows that all event time derivatives of
interest, v′

i(θ), are expressed in terms of these op-
erators. Moreover, we establish the fact that after
a Partial Loss period occurs (if any is present), all
ensuing event time derivatives are v′

i(θ) = 0 (all
proofs are omitted due to space limitations).

Lemma 1. Suppose that [vm(θ), vm+1), 1 ≤ m <
S is the first Partial Loss period in a BP. Then:

(1) For vi ≤ vm:

v
′
1(θ) =

A0

A1
(21)

v
′
2n(θ) =

∏
i=2,...,2n

Bi−1

Bi
· Ai−2

Ai−1
(22)

where 1 ≤ n ≤ m
2 if m is even, and 2 ≤ n ≤

m−1
2 if m is odd, and m > 1.

v
′
2n+1(θ) =

A2n

A2n+1
·



∏
i=2,...,2n

Bi−1

Bi
· Ai−2

Ai−1




(23)
where 1 ≤ n ≤ m−2

2 if m is even, and
1 ≤ n ≤ m−1

2 if m is odd, and m > 2.
(2) For all vi ≥ vm+1: v

′
i(θ) = 0

The next lemma provides an expression for the
derivative λ

′
(θ) in (18).

Lemma 2. For any BP [ξ, η(θ)), if at least one
Partial Loss period is present, then

λ
′
(θ) = −1. (24)

If no Partial Loss period is present, then

λ
′
(θ) = −1 +

∏
i=2,4,...,S−1

Ai

Bi
· Bi−1

Ai−1
(25)

and
−1 < λ

′
(θ) ≤ 0. (26)

Motivated by our analysis thus far, let Uk(θ),
Vk(θ), and Wk(θ) be the Partial Loss, Full Loss,
and No Loss period sets respectively in the kth
BP, k = 1, . . . , K. Similarly, let vk,i(θ) denote the
ith event time in the kth BP, i = 0, . . . , Sk. Then,
define

Φ(θ) = {k ∈ {1, . . . , K} : Uk(θ) �= ∅} (27)

to be the set of BPs containing at least one Partial
Loss period, and set

λ
′
k(θ) = −1 +

∏
i=2,4,...,Sk−1

Ak,i

Bk,i)
· Bk,i−1

Ak,i−1
(28)



Theorem 1. The sample derivative L
′
T (θ) is given

by

L
′
T (θ) = −

K∑
k=1

1[k ∈ Φ(θ)] +
K∑

k=1

1[k /∈ Φ(θ)]λ
′
k(θ)

(29)
where K is the (random) number of busy periods
contained in [0, T ], including a possibly incom-
plete last busy period.

The expression in (29) provides the IPA estimator
for the loss metric defined in (1). Note that L

′
T (θ)

above does not depend on any distributional in-
formation regarding the traffic arrival and ser-
vice processes except for the rates at event times
vk,i(θ) which may be readily estimated. If BPs
include at least one Partial Loss period, then the
only implementation requirement is that such a
period be detected and the contribution of this
entire BP is simply −1.

4. IPA FOR WORK WITH RESPECT TO
THRESHOLD

In this section we derive the IPA estimator for the
Cumulative Workload (or simply Work) defined in
(2) by carrying out an analysis similar to that of
the previous section under Assumption 1. First,
note that we can write

QT (θ) =
K∑

k=1

∫ ηk(θ)

ξk

x(θ; t)dt (30)

Q
′
T (θ) =

K∑
k=1

d

dθ

∫ ηk(θ)

ξk

x(θ; t)dt. (31)

where, as before, we consider BPs Bk =
[ξk, ηk(θ)), k = 1, . . . , K. Then, focusing on a
particular Bk and dropping the index k, we define

q(θ) =
∫ η(θ)

ξ

x(θ; t)dt. (32)

Taking the derivative with respect to θ yields

q′(θ) =
∫ η(θ)

ξ

x′(θ; t)dt + x(θ; η(θ))η′(θ) (33)

=
∫ η(θ)

ξ

x′(θ; t)dt

since the BP ends at η(θ), hence x(θ; η(θ)) = 0.
We can evaluate x′(θ; t) by considering all possible
cases regarding the location of t in the BP B =
[ξ, η(θ)). The following lemma provides an explicit
expression for q′(θ).

Lemma 3. Suppose that [vm(θ), vm+1), 1 ≤ m <
S, is the first Partial Loss period in a BP. Then,

q
′
(θ) =

m−1∑
i=1

(vi+1 − vi)φi + (vS − vm) (34)

where

φi =

{
1 − Biv

′
i, i odd

1 − Aiv
′
i, i even

(35)

B1v
′
1(θ) =

B1

A1
(36)

A2nv
′
2n(θ) =

∏
i=2,..,2n

Ai

Bi
· Bi−1

Ai−1
, n > 0 (37)

B2n+1v
′
2n+1(θ) =

B2n+1

A2n+1




∏
i=2,..,2n

Ai

Bi
· Bi−1

Ai−1


 , n > 0

(38)

It should be clear that if the BP does not contain
a Partial Loss period, then q

′
(θ) is given by the

sum in (34) evaluated over all i = 1, . . . , S − 1.
Next, letting vk,i(θ) denote the ith event time in
the kth BP, i = 0, . . . , Sk, and defining q

′
k(θ) as

the obvious extension to q
′
(θ), similar to (28), we

get the following.

Theorem 2. The sample derivative Q
′
T (θ) is given

by

Q
′
T (θ) =

K∑
k=1

q
′
k(θ) (39)

where K is the (random) number of busy periods
contained in [0, T ], including a possibly incom-
plete last busy period.

The expression in (29) provides the IPA estimator
for the work metric defined in (2). Its implemen-
tation requires the same information as that for
loss metric with the addition of timers to measure
the duration of periods [vk,i, vk,i+1) within each
BP observed in [0, T ], as well as (vk,Sk

− vk,mk
)

if one or more Partial Loss periods are included,
with the first one starting at vk,mk

.

5. IPA UNBIASEDNESS

In general, the unbiasedness of an IPA deriva-
tive L′(θ) has been shown to be ensured by the
following two conditions (see (Rubinstein and
Shapiro, 1993), Lemma A2, p.70):

Condition 1. For every θ ∈ Θ, the sample
derivative L′(θ) exists w.p.1.

Condition 2. W.p.1, the random function L(θ)
is Lipschitz continuous throughout Θ, and the
(generally random) Lipschitz constant has a finite
first moment.

Consequently, establishing the unbiasedness of
L

′
T (θ) and Q

′
T (θ) as estimators of dE[LT (θ)]/dθ

and dE[QT (θ)]/dθ, respectively, reduces to verify-
ing the Lipschitz continuity of LT (θ) and QT (θ)



with appropriate Lipschitz constants. Due to
space limitations, we omit the proof of this fact
and only quote our final unbiasedness result.

Theorem 3. Let N(T ) be the number of exoge-
nous events in [0, T ] and assume E[N(T )] < ∞.
Then, the derived IPA estimates L

′
T (θ) and Q

′
T (θ)

of dE[LT (θ)]/dθ and dE[QT (θ)]/dθ, respectively,
are unbiased.

6. OPTIMAL ADMISSION CONTROL USING
SFM-BASED IPA ESTIMATORS

As already mentioned, the solution to an opti-
mization problem defined for an actual network
node (i.e., a node that operates as a queueing
system) may be accurately approximated by the
solution to the same problem based on a SFM of
the node. However, this may not be always the
case. On the other hand, the simple form of the
IPA estimators of the Expected Loss Rate and
Expected Buffer Content we have obtained allows
us to use data from the actual (real-world) system
in order to estimate sensitivities that, in turn,
may be used to solve an optimization problem
of interest. In other words, the form of the IPA
estimators is obtained by analyzing the system as
a SFM, but the associated values are based on
real data.

Let us return to the admission control problem
of (3) where we are trading off the expected loss
rate of class 1 with a rejection penalty R for the
expected queue length. For illustrative purposes,
we have applied this approach, using the IPA esti-
mators derived, to a system where α1(t) is piece-
wise constant with values uniformly distributed
over [0, 12], with each constant rate period ex-
ponentially distributed with parameter 0.5; α2(t)
is piecewise constant with values uniformly dis-
tributed over [0, 27], with each constant rate pe-
riod exponentially distributed with parameter 0.3.
The service rate is β = 20 and the rejection cost
is R = 25. We assume the traffic and service rates
are observable and use an estimation period T =
200K time units. The cost curve (labelled DES)
is shown in Fig. 3 (average over 30 sample paths).
The optimization algorithm applied is similar to
the one presented in (Cassandras et al., 2001) and
iterates on a discrete threshold parameter using
the SFM-based estimators but with all required
endogenous events being observed from an actual
discrete-event sample path.
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