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Abstract: This paper studies the problem of controller synthesis for systems subject
to amplitude and rate saturation constraints in the actuators. The main approach
assumes that each actuator has a dynamic model of order at least one. The controllers
presented here are only state feedback, though extension to the output feedback is also
possible. The solvability conditions for the problem are expressed as finite-dimensional
linear matrix inequalities. In addition to stabilization, disturbance attenuation in
terms of the L2 gain from the disturbance to output is considered.
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1. INTRODUCTION

Actuator saturation has been an important topic
of research for decades. Recent progress in several
areas (e.g., numerical linear algebra, robust and
LPV control) however, has led to a great deal of
interest in a variety of issues related to systems
with bounded actuators. A comprehensive review
is not feasible here and interested readers can
consult Bernstein and Michel (1995) or Stoorvogel
and Saberi (1999) for recent surveys. For a repre-
sentative sample of work in anti-windup area, one
can consult Campo et al (1990), De Dona and
Goodwin (2000), Kappor et al (1998), Kothare et
al (1994), Teel (1999), Barbu et al (2000), Mulder
et al 2001, while a variety of results based on
taking into account the saturation bounds explic-
itly can be found in Lin and Saberi (1995), Lin
(1998a), Kapila et al (1999) among of the available
references).

The bounds on the rate of the actuator force
(torque, thrust, etc.) have also been identified as a
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source of severe performance degradation or insta-
bility in aerospace applications - as well as many
other instances where power limitations pose a
critical limitation (see Hess and Snell (1997) or
Snell and Hess (1998) for example). This has led
to much interest in actuator rate bounds. In some
cases, the actuator rate is modeled as an abstract
operation (Stoorvogel and Saberi (1999)). In other
instances it is modeled through use of a first order
model representing the actuator dynamics, which
was suggested in Berg et al (1996) (see e.g., Lin
(1998a), Chellaboina, et al (2000), Nguyen and
Jabbari (2000), Tyan and Bernstein (1995)).

In this paper, we present synthesis results for
systems with bounded actuator amplitudes and
rates. The actuator models used are generaliza-
tions of the typical first order models; i.e., the
rate is incorporated through actuator dynamics
of order at least one and can have a general LTI
form (indeed, extension to an LPV model for
the actuator dynamics to account for common
nonlinearities is relatively straightforward). Our
results concern disturbance attenuation (in the
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sense of a small L2 gain from disturbance to
the controlled output), though other performance
measures (e.g., peak-to-peak gain estimates or
energy to peak gains) are also possible. For dis-
turbance attenuation, the L2-gain from the distur-
bance to the controlled output is minimized, while
an estimate of the reachable set is established
simultaneously. The resulting problem relies on
an LMI-based multi-objective control approach,
which searches for a common Lyapunov matrix
for both problems (L2 gain and reachable set).

In Kose and Jabbari (2001), the potential con-
servatism associated with a single LTI controller
was discussed. In such techniques, the controllers
are often designed for the worst case disturbance.
This leads to conservatism for controllers that
are designed to avoid actuator limits (i.e., low
gain controllers). At times, through use of over-
saturation and similar techniques, the gain of the
controller is increased - see Lin and Saberi (1995),
Nguyen and Jabbari (1999) and De Dona et al
(2000) as examples). These high gain controllers
however do not provide better guaranteed per-
formance generally (see e.g., Kiyama and Iwasaki
(2001)), though they show better performance in
simulations. Here, to provide better guaranteed
performance, we present a scheduling approach.
The concept of scheduling controllers to avoid
actuator saturation goes back at least to the
early work of Gutman and Hadanger (1985) or
Megretski (1996) and has been receiving increased
attention recently (e.g., Lin (1998b), Teel (1995),
Wu, et al (2000), Henrion et al (1998), Shewchun
and Feron (1998) among others).

The technique used here is similar to that in Sri-
vastava and Jabbari (2000), where the controller
is dependent on the system response (e.g., the
state), by using state dependent ellipsoids. These
in turn are used to obtain a scheduling param-
eter for adjusting (scheduling) the controller. In
smaller ellipsoids, larger gains are possible, which
can result in better performance (and lead to pa-
rameter dependent performance measures). If the
state vector moves further from the origin (e.g.,
due to disturbance), smaller gains are used. As
in Srivastava and Jabbari (2000), the controller is
thus a function of the system response and not any
a priori estimate of the worst cases disturbance.

While the results here are state feedback, gener-
alization to output feedback is possible (though
not trivial). Also, for brevity, only the single in-
put case is presented. As explained in the results
section, the extension for the multi-input case is
immediate. The main results are stated first in a
from that enforces the magnitude bounds directly.
As explained below, this is not particularly useful
for scheduling of the controller and an alternative

approach, that exploits the structure (and dynam-
ics) of the actuator will be used.

We use the following notation: For a vector x ∈
IRn, the Euclidean norm is defined as ‖x‖E

4
=√

xTx. We denote by EP the ellipsoid {x ∈ IRn :
xTPx ≤ 1} for a given P = P T > 0 in IRn×n.
For a signal x ∈ Ln2 [0,∞), the L2-norm of x is

‖x‖2
4
=

(∫∞

0
x(t)Tx(t) dt

)1/2
. In matrices defined

through subblocks, the symbol “ ? ” at the (i, j)
block stands for the transpose of block (j, i).

2. PRELIMINARIES

In this paper, we consider systems of the form

ẋ = Ax+B1w +B2u (1a)

z = C1x+D11w +D12u, (1b)

where w(t) ∈ IRm1 is the external disturbance on
the system, u(t) ∈ IR is the single control input to
the system and z(t) ∈ IRp1 denotes the controlled
output of the system. The actuator dynamics are
given by

ẋv = Avxv +Bvv (2a)

u = Cvxv +Dvv (2b)

where v(t) ∈ IR denotes the control command,
xv(t) ∈ IRnv , nv ≥ 1. Throughout the paper, we
assume that the actuator is strictly proper, i.e.,
Dv = 0. Note that this description is a simple
generalization of the typical first order models
used in many papers and can be used to bound
other actuator-related entities.

Combining plant and actuator dynamics, we ob-
tain

˙̃x =

[
A B2Cv

0 Av

]

︸ ︷︷ ︸

Ã

x̃+

[
B1

0

]

︸ ︷︷ ︸

B̃1

w +

[
0
Bv

]

︸ ︷︷ ︸

B̃2

v (3a)

z =
[
C1 D12Cv

]

︸ ︷︷ ︸

C̃1

x̃+D11w (3b)

We also assume that the magnitude and rate
saturation bounds are given for u,

|u(t)| ≤ r and |u̇(t)| ≤ d ∀t ≥ 0. (4)

Our overall goal is to design controllers such
that the conditions above are not violated while
maintaining a good disturbance attenuation from
w to z.

Finally, we assume that the peak value of the
disturbance can be estimated (possibly conserva-
tively) through

max
t
‖w(t)‖E ≤ wmax.

As shown below, conservatism associated with
this bound is not critical since the scheduled



controllers are not designed for the worst case,
but are chosen based on the actual response of
the system. Throughout this paper we refer to
ellipsoids with the following form

E(P, c) 4
= {x ∈ IRn : xTPx ≤ c} .

3. MAIN RESULT

We start with the following theorem that estab-
lishes the structure and the main properties of the
proposed controllers.

Theorem 1. Suppose there exist a function ρ :
IR+ → [ρmin, ρmax] with ρmin = 1/w2

max, a scalar
α > 0, parameter-dependent matrices X(ρ), F (ρ)
and a function γ(ρ) (with appropriate levels of
continuity) such that dX/dρ ≤ 0 and

[
M(ρmin) + αX(ρmin) ?

B̃T
1 −αI

]

< 0 (5)

and for all ρ ∈ [ρmin, ρmax],




M(ρ)− Ẋ(ρ) ? ?

B̃T
1 −γ(ρ)I ?

C̃1X(ρ) D̃11 −γ(ρ)I



 < 0 (6)

where

M(ρ)
4
= ÃX(ρ) +X(ρ)ÃT + B̃2F (ρ) + F (ρ)T B̃T

2 ,

−ρ u2
satI +

[
0 Cv

]
X(ρ)

[
0 Cv

]T
< 0 (7)

and
[

−X(ρ) ?
[
0 CvAv

]
X(ρ) + CvBvF (ρ) −ρ d2

satI

]

≤ 0.

(8)
Then, if ρ(t) is chosen such that

x(t)TX(ρ)−1x(t) ≤ 1

ρ
(9)

the control law

u = F (ρ)X(ρ)−1x (10)

satisfies the following:

(i) For the closed-loop state vector, the set
E
(
X(ρmin)

−1, 1/ρmin

)
is invariant. That is,

for a disturbance with w(t)Tw(t) ≤ w2
max and

any x(0) ∈ E
(
X(ρmin)

−1, 1/ρmin

)
, we have

x(t) ∈ E
(
X(ρmin)

−1, 1/ρmin

)
for all t ≥ 0.

(ii) The closed-loop system is internally stable
with

∫ ∞

0

γ
(
ρ(t)

)−1
z(t)T z(t) dt

<

∫ ∞

0

γ
(
ρ(t)

)
w(t)Tw(t) dt. (11)

(iii) The control input satisfies (4). ¥

Remarks:

(i) In the theorem above, condition (5) leads to
(i) and (6) to (ii). Statement (iii) follows from
conditions (5), (7) and (8) jointly.

(ii) We stress that the plant itself is LTI, whereas
the control law (10) is parameter varying. So
far, the only rule for choosing the parameter
ρ is that it satisfy (9). It will soon become
clear that ρ is in fact a measure of the
proximity of x to the origin and the controller
is scheduled accordingly.

(iii) The theorem above establishes the controller
as the solution of a parameter-varying prob-
lem. As in Srivastava and Jabbari (2000), we
use spline functions as approximations for
γ(ρ) and F (ρ) and a smooth version of a
spline function for X(ρ), as the following.
Consider a collection of points 0 < η1 <
· · · < ηnη , and a corresponding collections of
matrices Mk. Then, a linear spline function
based on ηk’s and Mk’s is defined by

MS(ρ)
4
= Mk+

ρ− ηk
ηk+1 − ηk

(Mk+1−Mk) (12)

for ρ ∈ [ηk, ηk+1].

As the theorem below indicates, this permits find-
ing the appropriate variables through a finite
number of linear matrix inequalities and an ap-
propriately defined parameter ρ(t).

Lemma 2. Let 1/w2
max = η1 < · · · < ηnη . Suppose

there exist matrices Xk and Fk and scalars α and
γk such that

[
M1 + αX1 ?

B̃T
1 −αI

]

< 0 (13)

and for all k = 1 : nη, and m = k − 1, k




Mk + dmax∆Xm ? ?

B̃T
1 −γkI ?

C̃1Xk D̃11 −γkI



 < 0, (14)

where Mk
4
= ÃXk +XkÃ

T + B̃2Fk + FT
k B̃T

2 ,

Xk+1 ≤ Xk, (15)

−ηk u2
satI +

[
0 Cv

]
Xk

[
0 Cv

]T
< 0 (16)

and
[

−Xk ?
[
0 CvAv

]
Xk + CvBvFk −ηk d2

satI

]

≤ 0.

(17)
Then, the parameter ρ(t) and functions X

(
ρ(t)

)
,

F
(
ρ(t)

)
, and γ

(
ρ(t)

)
defined as below satisfy the

conditions (5)-(8) in Theorem 1:

ρ(t): Given x(t), determine k
4
= max j such that

x(t)TX−1
j x(t) ≤ 1/ηj, and let

ρ′(t)
4
=







1

x(t)TXS(r)−1x(t)
if k < nη

ηnη if k = nη



with XS defined as in (12). Then, for a T > 0
small enough,

ρ(t)
4
=

1

T

∫ t

t−T

ρ′(s) ds. (18)

X(ρ): Given ρ, for a L > 0 small enough,

X(ρ)
4
=

1

L

∫ ρ+L/2

ρ−L/2

X ′(s) ds (19)

where

X ′(s)
4
=







X1 if η1 − L/2 ≤ s ≤ η1

XS(s) if ηk ≤ s ≤ ηk+1, 1 ≤ k < nη

Xnη if ηnη ≤ s ≤ ηnη + L/2

(20)
and F (ρ) and γ(ρ) are defined similar to X ′(ρ).
¥

Remarks:

(i) In the formulation above, the values of ηk’s,
dmax and βk’s are design variables. Although
we skip much detail due to space limitations,
it is worth noting that a major role is played
by the largest value of ηk’s. Beyond a certain
value, increasing ηnη has only little effect.
The number of ηk’s determines how sharply
γk’s drop with ηk’s.

(ii) The variables T and L that are used in the
construction of ρ(t) and X(ρ) do not affect
the solvability conditions, but their existence
is guaranteed. In numerical simulations, we
simply use ρ′(t) and X ′(ρ).

(iii) Inequality (16) does not involve F . As such,
it does not benefit fully from scheduling. To
maximize the effects of scheduling, we can
modify this inequality and place a bound not
on u, but on the command v. To do this,
we use the peak-to-peak gain (Abedor, et al.,
1996) of the actuator dynamics. Suppose this
gain is found to be δ. Then, the requirement
|u(t)| ≤ usat is satisfied if |v(t)| ≤ δ−1usat.
In this case, (16) can be replaced by





−Xk FT
k

Fk −ηk
usat2

δ2



 < 0. (21)

Due to explicit appearance of Fk in the
inequality above, better use can be made of
parametric dependence. This is what we do
in the following example.

4. NUMERICAL EXAMPLE

Consider the linearized model of an inverted pen-
dulum with damping:

ẋ =

[
0 1
1 −1

]

x+

[
0
10

]

w +

[
0
5

]

u

z =
[
1 0

]
x.

Suppose the actuator dynamics is given by the
transfer function

U(s) =
10

s+ 10
V (s).

We assume saturation bounds for the magnitude
and the rate of the control input are given by
usat = 10 and dsat = 100, respectively.

We apply Lemma 2 to the system and set nη = 20
and let ηk’s be 20 linearly spaced points between
1 and 1000. We solve inequalities (13)-(17) (with
(21) instead of (16)) while minimizing

∑nη
k=1 γk.

The resulting values for γk and the norms of con-
troller gains at these nodes, ‖Kk‖ are given in fig-
ures Figure 1 and Figure 2. Clearly, much higher
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Fig. 2. Norm of controller gains versus ηk

controller gains are allowed when the state vector
moves closer to the origin, yielding much bet-
ter disturbance attenuation. In implementation,
we use the disturbance signal given in Figure 3.
Implementation of the scheduled controller to the
system results in Figure 4 for the control input,
Figure 5 for the control input rate and Figure 6
for the controlled output.
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