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Abstract: Model-reference adaptive control with neurofuzzy methodology is derived in
this paper. Associate memory network(AMN) is investigated in detail to be the possible
implementation as the direct self-tuning nonlinear controller. The essence of the
neurofuzzy controller has been discussed and the local stability of the system is reached.
The performance of the model-reference adaptive neurofuzzy controller is illustrated by
examples involving both linear and nonlinear systems. Copyright2002IFAC
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1. INTRODUCTION

Model-reference adaptive control(MRAC) has
been an important research branch in self-tuning
control area (Ioannou, and Sun, 1996). MRAC uses
the error between the reference model output and the
real plant output to adjust the control gain in order to
force the plant to follow the desired response of the
reference model. The control value u(t) could be
linear combination of the states of the system(Fig.1).
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Fig.1 Model reference adaptive control system
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The parameter Tθ  could be  changed in the
direction of the negative gradient of J, i.e.
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0>g is called the self-tuning factor
determining the rate of decrease. 

        MRAC has so far been proved to be an effective
method over linear plant and thus found applications
in many aspects of process control. Comparing with
conventional fixed parameter PID controller, it can
better adaptive to the parameter change of the plant
and thus has drawn much attention in the field of
control engineering. For nonlinear system, linear
MRAC works on the linearised model about a local
operating point. The working effect depends heavily
on the nonlinearity of the plant. 

        Neural networks have been used in the adaptive
control of nonlinear systems(Narendra, and
Parthasarathy, 1990). Indirect adaptive control using
neural networks is presented by Bittanti and Piroddi
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(1994). Direct MLP model reference adaptive control
comparing with Lyapunov method has been
presented by Lightbody and Irwin (1995). Also fuzzy
theory have been combined with adaptive
control(Takagi, and Sugeno, 1985) which  is aimed at
solving the problem of uncertainty and thus introduce
nonlinearity. The combination of neural network and
fuzzy control constitutes the neurofuzzy networks
(Brown, and Harris, 1994), in which fuzzy rules
could easily express the expert knowledge in
linguistic form while neural networks posses the
learning ability which could approximate nonlinear
functions with arbitrary accuracy. Previous work
include fuzzy neural networks for nonlinear systems
modelling (Zhang, and Morris, 1995), GMV
controller based on the neurofuzzy networks with a
simplified recursive least squares method (Chan, et
al., 2000). Among the several neurofuzzy network
structure, AMN(associate memory network) provides
a direct link between artificial neural networks and
the fuzzy systems. B-spline network could be one
form of lattice AMN whose univariate basis
functions represent fuzzy linguistic statements. These
networks therefore embody both a qualitative and a
quantitative approach, enabling heuristic information
to be incorporated and inferred from neural nets, and
allowing fuzzy learning rules to be derived. 

The purpose of this paper is to analyze a kind of
direct model reference adaptive control using
neurofuzzy networks. As nonlinear controller, the
structure of  AMN is analyzed. The essence of the
neurofuzzy controller and the local stability are
discussed. Two case studies involving linear steam-
boiler system and nonlinear system respectively are
presented to illustrate the implementation and the
performance of the MRAC neurofuzzy controllers.

2.  NEUROFUZZY NETWORK
IMPLEMENTATION OF MRAC 

For the following input-output model of the
nonlinear plant (Bittanti, and Piroddi, 1994):
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u(t), y(t) are the control and the output of the system.
Variable m, n are respectively the orders of control
and output of the system, which are assumed known,
and e(t) is a sequence of independent random
variables with common variance 2σ . Assuming that
f[.] is a smooth nonlinear function such that a Taylor
series expansion exists. And:
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to ensure that the plant Jacobian exist. 

By choosing the state variables as 
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the state-space equation of the nonlinear system is: 
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where  nT
n RxxxX ∈= ]  [ 21 L   is the state

vector.

2.1 AMN based model reference adaptive controller

        The constitution of neurofuzzy MRAC system
share the common architecture, just that the
controller is composed of a the B-spline AMN
(Fig.2). The state variables

)]1()(),1()([)( +−+−= ry ntrtrntytytx LL are the
inputs of the neurofuzzy network. The B-spline
network is initially designed to specify the
shape(order) of each of the univariate basis functions,
and this implicitly determines the number of basis
functions mapped to for a particular network input.
There exist recurrence relationship for evaluating the
membership of a univariate B-spline basis function of
order k with r inner knots(Brown, and Harris,
1994)and they have several desirable properties:
1. The basis functions are defined on a bounded
support and the output of the basis function is
positive on its support , i.e. ],[  ,0)( jkj

j
k xx λλµ −∉=

and  ),(  ,0)( jkj
j
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2. The basis functions form a partition of unity. For
any network input, the sum of the outputs of the
basis functions is always one, i.e
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Fig. 2: B-spline neurofuzzy network controller

    It is obviously that the univariate B-spline basis
function can be used to represent the fuzzy



membership functions which implement the fuzzy
linguistic terms. The product operator combining the
univariate basis functions represents a fuzzy
conjunction. Therefore the neurofuzzy network
shown in figure 2 could be expressed as a set of
fuzzy production rules :

          
Fig.3  Multivariate basis function 

Rp: IF )(ty is negative large   and )1(, +− yntyL is
negative medium and     )(tr is positive medium  and

)1(, +− rntrL  is positive medium
THEN   )(u t  is positive medium

    The total number of rules is given by
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    The multivariate basis function is the tensor
products of the outputs of the univariate B-spline
basis functions, i.e.
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where pi ,,2,1 L= and ry nnn +=  is the dimension
of the input vector x(t). Thus the desirable properties
of the univariate B-spline basis functions are all
extended in a natural way to the multivariate basis
functions. They are defined on hyperrectangles of
size )( 21 nkkk ××× L  and therefore possess a
bounded support. The output is positive inside this
domain and zero outside. Fig.3 shows the
multivariate basis function formed from two ,order 2,
univariate basis function. 

The MRAC control law can be expressed by:
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where ][ 21 pθθθθ L=  is the weight vector and x(t)
is the input vector .

 2.2 Local change property  
     

 In the neurofuzzy controller, the input space is
separated into q regions given by
                     ry n

r
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    Only one region is activated each time by the
input, whilst elements in the other regions are zero.
The number of non-zero elements is given by
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         In figure 4, the language variable of two inputs
to the network are “positive large”, “positive
medium”, “positive small”, “zero”, “negative small”,
“negative medium”, “negative large” for 1x ;  and
“positive large”, “positive medium”, “positive
small”, “negative small”, “negative medium”,
“negative large” for 2x .  In this case,  k1 = k2 = 2, R1

= 5 and R2 = 4, the number of regions q is 30. The
total memory storage p is 42. Each time there are
four fuzzy rules activated. The antecedent of this four
rules could be expressed as: if 1x is “negative small”
and 2x is “negative small”; if 1x is “negative small”
and 2x is “positive small” ; if 1x is “zero”  and 2x is
“negative small” ; if 1x is “zero”   and 2x is “positive
small”. Fig. 5 shows the membership function of the
operator regions. 
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Fig. 4:Local change property of neurofuzzy networks

Fig.5 Membership function of the operator regions

3. ESSENCE OF THE NEUROFUZZY
CONTROLLER  AND ITS STABILITY 

    The proposed neurofuzzy controller could be
decomposed into two part: a static, nonlinear,
topology conserving map and an adaptive linear
mapping so that it is in fact a fuzzy controller with its
output weights learned by neural network. Originally,
fuzzy controller refers to the two-dimensional
controller with error (between the setpoint and the
output ) and change of error as its inputs. This idea is
from the human experience in real-time control
representing the following step-respond characteristic
“if the plant output is far from the setpoint and it is
moving away from the setpoint, then increase the
control value to force the output back”.
Fundamentally, a two-dimensional fuzzy controller
with linear control rules is equivalent to the sum of a
global two-dimensional multilevel relay and local
nonlinear PI controller (Ying, 1993). A three-
dimensional fuzzy controller with linear control rules



is the sum of a global three-dimensional multilevel
relay and local nonlinear PID controller(Liu, et al.,
1997). Functionally, neurofuzzy controller could be
nonlinear self-tuning regulator. Ching et al.
(1995)shows that the output of fuzzy controller with
multiple inputs can be represented by a linear
parametric function of the inputs. 

        While fuzzy controller is combined with neural
network, the constituted neurofuzzy network is an
adaptive fuzzy controller. The state-space equation
(7) could be express as:
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where the left superscripts )1(,),1( −−− mL  of
weights iθ represent the corresponding values at
previous updating steps. Let the setpoint 0=r , and

0=X to be the equilibrium point of the system.
Choose the Lyapunov candidate V{X(k)} on the
compact set S as:
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For 0        , ≥∀≤ ddiθ , the derivative in Lyapunov
function could be expressed as follows: 

         

i
i i

i
i i

ku
ku

kyky

kXVkXV

θ
θ

θ
θ

∆
∂
∂

∂
+

+=

∆
∂

+∂
≅+

∑

∑
)(

)(
)1()1(

)}1({)}1({&

          (17)

Sicne                 
i

i
egek
θ

θ
∂
∂

−=∆ )(                     (18) 

)}1({ +kXV&

ii i

ku
ku

kyku
ku

kykyg
θθ ∂

∂
∂

+∂
∂
∂

∂
+

+−≅ ∑ )(
)(

)1()(
)(
)1()1()( 2

22
2 )(

)(
)1()1()( ∑ 








∂
∂









∂

+
+−=

i i

ku
ku

kykyg
θ

( ) 0))((
)(
)1()1()(

22
2 ≤








∂

+
+−= ∑

i
i txa

ku
kykyg   (19)

where )()()1( tuftuky ∂∂=∂+∂  is the plant
Jacobian which has been supposed in the nonlinear
model (4) to be exist. In such a way, the state will
converge to the equilibrium point and the local

stability of the system around the equilibrium point is
reached. 

4. CASE STUDIES

Example 1-Local linear steam-boiler system:

       In general industry process, there exist almost no
purely linear model. But under certain fixed working
condition, linear model could be acquired within
certain local operation region. Fuel combustion
system is the main part of a boil-steam generation
which produce high pressure steam to drive generator
making power. For a typical load disturbance, while
the coal fuel is constant, the control valve Tµ  is
opened as quickly as possible to yield an increase of
output power (Fig.6). The steam flow increases and
steam pressure bP decreases with no time delay.
Finally, steam pressure stay in a relatively lower level
(fig.7).

Fig.6 Steam  pressure plant

Fig.7  Fitting curve of steam pressure

      Considering the output “steam pressure bP ” with
the control input Tµ , the dynamic of the disturbance
process could be considered to be a second order
linear model transfer function.                                                      
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The dynamic process posses different time constant
under different load condition(Liu,1999). Under
250MW load condition, the identification parameter
could be: sTsT 100    120 21 == . K could be decided
by the static parameter: %/01.0 skgPK Tb == ∆∆ µ

      In order to get the second-order close-loop
system, the conventional model reference adaptive
controller should be chosen as:   
                       yyru &321 θθθ −−=                        (21)

       The reference model could be chosen a typical
second order transfer function form
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         Let 2   7.0 == nωξ , the parameters updating
equation could be depicted as:
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      The control valve Tµ  is changed in square wave
mode, and initial condition of the controller is

1.0302010 === θθθ , 1=g . The closed-loop
response curve of the output steam pressure is shown
by the dashed line in Fig.8. With continuously
updating the parameters, the transient process reaches
a good tracking result. In practical situation, it could
satisfy the demand of the real steam-boiler process. 

         The MRAC neurofuzzy controller is
implemented with the same input as that in
traditional MRAC. Each input is fuzzified by two
triangular basis functions, representing the language
variable “small” and “large”. In this case

2=== ryy kkk & , and 0=== ryy RRR & . The number
of weights of the neurofuzzy network p is: 23=8. The
range of y(t) )(ty& and r(t) is chosen to be between –1

and 3. The weights )0(θ̂  are set the same as that of
the MRAC controller. In Fig.8 the dotted line shows
the tracking of the set-point of the MRAC
neurofuzzy controller. Also the controller forces the
output steam pressure to follow the desired reference
model, but the initial overshort is high and the
parameter updating process takes longer time. In
usual situation, the tranditional linear MRAC
controller performs better on linear model than that
of  neufuzzy controller. This is because nonlinear
controller is more complicated and there are more
parameters to be updated. Nevertheless, nonlinear
control has the potential to outperform linear
methods. Similar control effect to that of linear
controller with neurofuzzy controller could be
acquired by optimization its membership function. 

Fig8: Response of linear system 

Example 2 Nonlinear model:

Consider the following nonlinear model (Bittanti and
Piroddi, 1994 ):

)()]([)2(6.0)1(3.0)( 3/1 tektutytyty +−+−+−=     (24)
 where e(t)~N(0,0.1). 

Choose variable )](),2(),1(),([)( trtytytytx −−=  to
be the input of the MRAC, and reference signal to be
the square wave, the parameters updating equation
could be depicted as:
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      The initial condition is chosen as
1.040302010 ==== θθθθ , 2.0=g . The closed-loop

response curve is shown in fig.9 which exhibits large
peaks and oscillations. It reaches convergence just
because the plant nonlinear is accounted for by
adaptation of the parameters of a linear controller. 

Fig.9: nonlinear system with linear MRAC

Fig.10 Nonlinear system with neurofuzzy controller

       The MRAC neurofuzzy controller is
implemented with the same input as that in MRAC.
Each input is fuzzified by two triangular basis
functions, representing “small” and “large”. In this
case 221 ==== −− ryyy kkkk , and

021 ==== −− ryyy RRRR . The number of weights
of the neurofuzzy network p is: 24=16. The range of
y(t) , )1( −ty  , )2( −ty and r(t) is chosen to be

between 0 and 12. The weights )0(θ̂  are initially set
the same as that of the MRAC controller. The
parameters updating equation could be depicted as:
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      Where 16,,2,1 L=i .  Fig.10 shows the good
tracking of the set-point with the MRAC neurofuzzy
controller. In this case it no longer exhibits large
peaks but shows small oscillations in stable state. To
make the improvement, the local region division is
changed, with each input fuzzified by five triangular
basis functions, representing the language variable:
“positive large”, “positive medium”, “zero”,
“negative medium” and “negative large”. With
typical B-spline network, this would require 54=625
storage locations and each input would activate
24=16 basis functions. To solve this problem, the
controller is additively decomposed, such that it is a
linear combination of two two-dimensional
subnetworks(Fig.11): 
        )](),2([)]1(),([)( 21 trtystytystu −+−=      (27)

         In such a way, the memory requirements reduce
to 50 and 8 basis functions are activated for each
input. Fig.12 shows the improved tracking of the set-
point with the MRAC neurofuzzy controller. In
stable state the oscillations almost disapeare.

      
Fig.11 : Lower-dimension neurofuzzy network

controller

   
Fig.12: Neurofuzzy controller by improved result

5. CONCLUSION

A MRAC neurofuzzy controller is derived in
this paper. AMN is chosen to introduce the
nonlinearity and act as nonlinear direct adaptive
controller. The effectiveness of the AMN exist in that
the fuzzy control is realized by neural network. The
essence of the neurofuzzy controller has been
discussed and the local stability of the system has
been achieved. From the two examples, the
performance of the MRAC neurofuzzy controller for
the linear system could be no better than that of the
traditional MRAC controller, but is superior to
traditional MRAC controller for the nonlinear
system. While the trait of the neurofuzzy controller is

further improved by choosing more univariate basis
functions, the computational burden is increased
exponentially. Decomposing way is introduced to
solve the problem of “curse of dimensionality”  to
some extent. 
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