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Abstract: This paper provides a new method for analyzing floating point roundoff
error for digital filters by using FSN (Finite Signal Noise) models whose noise sources
have variances proportional to the the variance of the corrupted signals. With this
model, the output error covariance of floating point arithmetic is derived and it is
shown that optimal state space realization can be different from the optimal structure
of the fixed point case. Copyright c©2002 IFAC

Keywords: Covariance, digital filter structures, roundoff noises, multiplicative noise,
white noise

1. INTRODUCTION

From the 1970’s, many researchers have conducted
studies to minimize the errors in digital signal
processing computations caused by finite word
length effects. The finite wordlength effect may be
divided into two categories (Mullis and Roberts,
1976) of Coefficient error and Roundoff error.
Here, only the effect of roundoff errors will be
considered.

The roundoff errors due to fixed point arithmetic
are modelled by additive white noise sequences
independent of the signal and with fixed variance.
Mullis and Roberts (1976) and Hwang (1977)
independently developed results on the properties
of the output errors of the digital filters and
determined the optimal fixed point state space
realization.

Since the roundoff errors in floating point
arithmetic are correlated with the signal that is
quantized into finite precision number, the errors
cannot be modelled by the standard white noise
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and the expression and the analysis of the errors
is more complex compared to that of fixed point
arithmetic. With this inherent complexity, the
optimal state space realization in floating point
arithmetic is known only for special cases. In
case of double precision accumulation, it may
be shown (Rao, 1992) that the optimal state
space realization is similar in nature to that
of fixed point arithmetic, and for the case of
extended precision accumulation (a few additional
mantissa bits, but not double length) Bomar et al.
(1997) found that the floating point roundoff
noise gain is identical in form to the fixed point
gain. The previous work to optimize fixed point
realization is directly applicable to the floating
point realizations. In both papers, the state error
covariance equation is expressed by a function
of the state covariance in infinite precision, so
their equations are not recursive and thereby the
stability issues of the covariance equation could
not be addressed.

Skelton (1994) introduced a new noise model for
linear systems, so called “Finite-Signal-to-Noise
Model”, or simply the FSN model. Since this
model assumes that the variance of the noise
corrupting a signal is proportional to the variance
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of the signal, it is well suited to analyzing floating
point roundoff error. Recently de Oliveira and
Skelton (2001) provided necessary and sufficient
conditions for mean square state feedback
stabilization of linear systems with FSN model.

The FSN model reduces to the same mathematical
problems as for the multiplicative noises. Existence
conditions of state feedback stabilizability for
linear systems with state and control dependent
noise in continuous time were derived (Willems
and Willems, 1976). More recently, a parametriza-
tion method was suggested for calculating exact
stability bounds for systems with multiplicative
noise (Sasagawa and Willems, 1996).

The problem of floating point arithmetic is
analyzed in a different way using FSN model
in the case of extended precision accumulation.
The expression of the output error covariance
is derived which is different from the previous
floating point analysis. It is concluded that the
optimal state space realization of floating point
arithmetic can be significantly different from the
fixed point case.

The outline of this paper is as follows. In
Section 2, the definition and some stability results
of linear systems with FSN models are discussed.
Section 3 describes the effect of floating point
roundoff errors on digital filters and formulates
the filter output error covariance. Section 4
summarizes this paper. In this paper, matrices
will be denoted by upper case boldface (e.g.,
A), column matrices (vectors) will be denoted
by lower case boldface (e.g.,x), and scalar will be
denoted by lower case (e.g., y) or upper case (e.g.,
Y ). For a matrix A, AT denotes its transpose. For
a symmetric matrices P > 0 denotes the fact that
P is positive definite.

2. FINITE SIGNAL TO NOISE MODEL

The formal definition of FSN model and stability
results are described in (Skelton, 1994) and (Shi
and Skelton, 1995). In this part only the result of
the previous works will be presented.

The linear systems with “Finite Signal to Noise”
Model are described by the state space equations

xk+1 = Axk + Buk (1 + nk) + wk

yk = Cxk

uk = Kxk

(1)

where, nk and wk are zero mean independent
white noise sources, and all matrices and vectors
are assumed to have appropriate dimensions. The
closed loop state equation will be

xk+1 = (A + BK)xk + BKxknk + wk. (2)

The state covariance equation is

Xk+1 = (A + BK)Xk (A + BK)T

+σ2BKXkKT BT + W
(3)

where, Xk , E
{
xkxT

k

}
, W , E

{
wkwT

k

}
,

σ2 , E
{
n2

k

}
and E(·) represents the expectation

operator.

Since the effect of noise on the states increases
as the input signal uk increases, the systems
with FSN model and stable A + BK can be
destabilized in mean square due to noises, whereas
the traditional white noise model cannot be
destabilized by noise alone. This new model
describes many physical systems more realistically
than the traditional white noise model.

Following is the formal definition and condition
for mean square stability of systems with FSN
model.

Definition 1 (Mean Square Stability) (Shi
and Skelton, 1995) The FSN closed loop system
(1-3) is mean square stable if its steady state
covariance X exists and is positive definite.

Theorem 1 (de Oliveira and Skelton, 2001) There
exists a controller gain K such that the closed loop
FSN system (1-3) with noise power σ2 is mean
square stable only if the pair (A,B) is stabilizable
and

(
σ/
√

1 + σ2
)
A is stable.

Remark 1 Mean square stability of the closed
loop FSN system is equivalent to the existence of a
matrix P > 0 satisfying the LMI (Linear Matrix
Inequality)

(A + BK)P(A + BK)T −P

+ σ2BKPKT BT < 0. (4)

The two conditions of Theorem 1 can be expressed
also by following two LMI conditions, respectively.

B⊥
(
APAT −P

)
B⊥

T
< 0

σ2

1 + σ2
APAT −P < 0

(5)

A sufficient conditon for mean square stabilizability
of the FSN system is that the two LMI conditions
(5) should be satisfied by the same positive definite
matrix P. The importance of the above LMI
formulation of the stabilizability conditions lies in
the availability associated computational tools to
test for existence of and to compute the solution
matrix P.

Example
Consider the following unstable discrete system.

A =
[
2 1
0 0.5

]
, B =

[
0
1

]



Since the matrix pair (A,B) is controllable,
this system can be stabilized for any values of
noise variance in a traditional additive white
noise model. However, following Theorem 1, this
system cannot be stabilized if the noise variance
σ2 > 1/

√
3 in the FSN model, since the matrix(

σ/
√

1 + σ2
)
A becomes unstable.

3. FLOATING POINT ARITHMETIC

3.1 Floating Point Arithmetic Noise

The floating point binary representation of a
number is given by

x = xm2xe (6)

where xm is a fractional part called the mantissa,
and xe is called the exponent (Gevers and Li,
1993). Typically, the mantissa is normalized such
that 0.5 < |xm| < 1. Since the number is
represented by a multiplication of the mantissa
and the exponent, the resolution between two
successive floating point numbers depends on the
magnitude of these numbers, with the quantization
error being proportional to this magnitude of
both of these numbers. It is suggested that the
noise due to floating point computation is largely
due to the mantissa truncation and is therefore
proportional to the signal amplitude. Hence, the
quantization error in floating point arithmetic
cannot be modelled by traditional additive white
noise.

Floating point multiplication and addition roundoff
errors can be described by (Bomar et al., 1997)

FL(x1x2) = x1x2(1 + ε)
FL(x1 + x2) = (x1 + x2)(1 + δ)

, (7)

where FL(·) denotes “floating point quantization”
and ε and δ are white noises with zero mean value
and the variances of, approximately

σ2
ε ' σ2

δ ' (0.18)2−2B (8)

where B is the number of mantissa bits.

The floating point digital signal processors in
use today are all classified as single-precision
devices, but internally perform register-to-register
calculations with additional mantissa bits (Bomar
et al., 1997). For example, the Texas Instruments
TMS320C30/C40 family of processors, the Analog
Devices ADSP21020 family, and the AT&T DSP32
family all use a 32-bit mantissa for register-to-
register operations, while the Motorola DSP96002
uses a 31-bit mantissa. Only the final result of a
sum of products calculation is quantized back to
the 24-bit-mantissa single-precision format. The
mean and the variance of this final quantization

are respectively zero and

σ2
η ' (0.167)2−2B

′

(9)

where, B′ represents final mantissa bit(=24).
Therefore we can consider only the final roundoff
error, since B > B

′
and σ2

η � σ2
ε , σ2

δ .

3.2 Effects of Floating Point Errors on Digital
Filters

Digital filters are represented by the state equations

xk+1 = Axk + Buk

yk = Cxk + Duk
(10)

where, uk is the scalar input, yk is the scalar
output, and xk is the n-length state vector. A, B,
C, D are n×n, n×1, 1×n, and 1×1 real constant
matrices, respectively. Due to the floating point
quantization, the actual filter is implemented as

x̂k+1 = Ãkx̂k + B̃kûk

ŷk = C̃kx̂k + D̃kûk
(11)

where, x̂k, ŷk, and ûk is the actual state, the
actual output, and the actual input, respectively.
And, the other matrices are defined as follows
(Williamson, 1991):

Ãk = [αij(k)] , B̃k = [βi(k)] , C̃k = [c̄j(k)] ,

D̃k = D̃k.
(12)

Here

αij(k) =



aij(1 + εij)
n∏

p=1

(1 + δip)(1 + ηi),

(for j = 1, 2)

aij(1 + εij)
n∏

p=j−1

(1 + δip)(1 + ηi),

(for j = 3, . . . , n)

βi(k) = bi(1 + εi,n+1)(1 + δi,n)(1 + ηi)

c̄j(k) =



cj(1 + εn+1,j)
n∏

p=1

(1 + δn+1,p)(1 + ηn+1),

(for j = 1, 2)

cj(1 + εn+1,j)
n∏

p=j−1

(1 + δn+1,p)(1 + ηn+1),

(for j = 3, . . . , n)

D̃(k) = D(1 + εn+1,n+1)(1 + δn+1,n)(1 + ηn+1)
(13)

where, εij = εij(k), δij = δij(k) are multiplication
and addition errors and ηi = ηi(k) are final
quantization errors, all of which are zero mean
independent white noises.



If the products of very small error terms are
neglected in (13), then (11) is reduced to (14).

x̂k+1 = (A + ∆Ak)x̂k + (B + ∆Bk)ûk

ŷk = (C + ∆Ck)x̂k + (D + ∆Dk)ûk
(14)

where,

∆Ak =

a11m11(k) . . . a1nm1n(k)
...

. . .
...

an1mn1(k) . . . annmnn(k)


∆Bk =

b1m1,n+1(k)
...

bnmn,n+1(k)


∆Ck =

[
c1mn+1,1(k) . . . cnmn+1,n(k)

]
∆Dk = Dmn+1,n+1(k).

(15)

And,

mij(k) =



εij +
n∑

p=1

δip + ηi,

(for j = 1, 2)

εij +
n∑

p=j−1

δip + ηi,

(for j = 3, . . . , n)

mi,n+1(k) = εi,n+1 + δi,n + ηi

mn+1,j(k) =



εn+1,j +
n∑

p=1

δn+1,p + ηn+1,

(for j = 1, 2)

εn+1,j +
n∑

p=j−1

δn+1,p + ηn+1,

(for j = 3, . . . , n)

mn+1,n+1(k) = εn+1,n+1 + δn+1,n + ηn+1.
(16)

As discussed in Section 3.1, since the error of final
quantization into 24-bit mantissa is much bigger
than the other errors caused by intermediate
register-to-register arithmetic, we can consider
only the final roundoff errors ηi(k). Then, the
matrices in (15) can be reduced to the matrices
in (17).

∆Ak =

a11η1 . . . a1nη1

...
. . .

...
an1ηn . . . annηn


= diag { η1, η2, . . . , ηn }A

=

{
n∑

i=1

ηiEi

}
A

∆Bk =

b1η1

...
bnηn

 = diag { η1, . . . , ηn }B

=

{
n∑

i=1

ηiEi

}
B

∆Ck =
[
c1ηn+1 . . . cnηn+1

]
= ηn+1C

∆Dk = ηn+1D

(17)

where, Ei is the elementary matrix that has “1” in
the i−i element and zero elsewhere. Therefore, we
can express the actual state and output equation
by (18).

x̂k+1 =

(
I +

n∑
i=1

ηiEi

)
Ax̂k +

(
I +

n∑
i=1

ηiEi

)
Bûk

ŷk = (1 + ηn+1)Cx̂k + (1 + ηn+1) Dûk

(18)

When the input is a white noise with variance of
σ2

u, the state covariance equation of (18) will be

X̂k+1 = AX̂kAT + σ2
η

n∑
i=1

EiAX̂kAT Ei

+ σ2
uBBT + σ2

uσ2
η

n∑
i=1

EiBBT Ei (19)

where, X̂k , E{x̂kx̂T
k }.

The second and fourth terms of the right hand side
of (19) are caused by the floating point roundoff
error. Similarly to systems with FSN models, the
above recursion can be destabilized by the second
term when the variance of floating point error
is relatively greater than the stability margin of
the matrix A. Hence, the floating point errors
can cause stability problems for systems like very
narrow band filters where poles are very near to
the unit circle.

3.3 Calculation of Floating Point Output Error
Covariance

To find the expression of output error covariance
we define the state error ek and the output error
∆yk as in (20). Here it is assumed that ûk = uk.
This is often the case in practice when the input
itself has been generated by a finite wordlength
device, and hence is known exactly.

ek+1 , xk+1 − x̂k+1

= Aek −
n∑

i=1

ηiEiAx̂k −
n∑

i=1

ηiEiBuk

∆yk , yk − ŷk

= Cek − ηn+1Cx̂k − ηn+1Duk

(20)

zk+1 = Āzk + Ī
n∑

i=1

ηiEiA
[
0 I
]
zk

+ Ī
n∑

i=1

ηiEiBuk

∆yk =
[
C − ηn+1C

]
zk − ηn+1Duk

(21)



where,

zk ,

[
ek

x̂k

]
, Ā ,

[
A 0
0 A

]
, Ī ,

[
−I
I

]
. (22)

Then, the state covariance equation of zk and the
output error covariance equation will be given by
(23), when the input signal uk is chosen as a white
noise test signal with zero mean and variance of
σ2

u.

Mk+1 = ĀMkĀT + σ2
uσ2

η Ī
n∑

i=1

EiBBT EiĪT

+ σ2
η Ī

n∑
i=1

EiA
[
0 I
]
Mk

[
0
I

]
AT EiĪT

∆Yk , E
{
∆y2

k

}
= CĒkCT + σ2

ηCX̄kCT + σ2
uσ2

ηD2

(23)
where,

Mk , E
{
zkzT

k

}
,

[
Ēk Zk

ZT
k X̄k

]
,

σ2
η , E{η2

i }.
(24)

The above state covariance equation (23) can be
divided into the following three coupled matrix
equations.

Ēk+1 = AĒkAT + σ2
η

n∑
i=1

EiAX̄kAT Ei

+ σ2
uσ2

η

n∑
i=1

EiBBT Ei

X̄k+1 = AX̄kAT + σ2
η

n∑
i=1

EiAX̄kAT Ei

+ σ2
uσ2

η

n∑
i=1

EiBBT Ei

Zk+1 = AZkAT − σ2
η

n∑
i=1

EiAX̄kAT Ei

− σ2
uσ2

η

n∑
i=1

EiBBT Ei

(25)

In (25), the stability depends only on X̄k. That
is, if X̄ , limk→∞ X̄k exists, then M∞ ,
limk→∞Mk exists. It can be shown that this
existence condition is equivalent to the existence
of a matrix P > 0 satisfying the LMI

APAT −P + σ2
η

n∑
i=1

EiAPAT Ei

+ σ2
uσ2

η

n∑
i=1

EiBBT Ei < 0. (26)

This LMI condition (26) can be used to determine
the number of final mantissa bits that is required
for stable realization of filters which have poles

very near to the unit circle. If (26) is satisfied,
then

X̄ = AX̄AT + σ2
η

n∑
i=1

EiAX̄AT Ei + Q1 (27)

where, Q1 , σ2
uσ2

η

∑n
i=1 EiBBT Ei.

For σ2
η � 1, (27) can be approximately written

as

X̄ = ApX̄AT
p + Q1 =

∞∑
i=0

Ai
pQ1

(
AT

p

)i
, (28)

where,

Ap ,
√

1 + σ2
η A. (29)

Substituting (28) into the steady state version of
(25) yields

Ē =
∞∑

i=0

Ai
pQ
(
AT

p

)i
(30)

where,

Q , σ2
η

n∑
j=1

EjA

{ ∞∑
l=0

Al
pQ1

(
AT

p

)l}
AT Ej + Q1

= σ4
ησ2

u

n∑
j=1

EjA

{ ∞∑
l=0

Al
pV
(
AT

p

)l}
AT Ej

+ σ2
ησ2

u

n∑
i=1

EiBBT Ei

(31)
where,

V =
n∑

i=1

EiBBT Ei. (32)

Therefore, the steady state covariance of output
error is expressed by (33).

∆Y , lim
k→∞

E
{
∆y2(k)

}
= CĒCT + σ2

ηCX̄CT + σ2
uσ2

ηD2

= σ4
ησ2

uC
∞∑

s=0

As
n∑

j=1

EjA

{ ∞∑
l=0

Al
pV

(
AT

p

)l}
AT Ej

(
AT
)s

CT

+ σ2
ησ2

uC
∞∑

s=0

AsV
(
AT
)s

CT

+ σ4
ησ2

uC
∞∑

s=0

AsV
(
AT
)s

CT

+ σ2
uσ2

ηD2

(33)

Since usually σ4
η � σ2

η, σ4
η-terms in (33) can be

neglected. Then, the output error covariance will
be (34).



∆Y = σ2
ησ2

u

[
C

∞∑
s=0

AsV
(
AT
)s

CT + D2

]
(34)

Or,
∆Y = σ2

ησ2
u

[
tr {VW}+ D2

]
= σ2

ησ2
u

[
n∑

i=1

Wiib
2
i + D2

]
(35)

where,

W =
∞∑

i=0

(
AT
)i

CT CAi, (36)

and Wii is the i− ith element of W and bi is the
i-th element of B. This result (35) can be formally
stated as following Theorem 2.

Theorem 2 For a given infinite precision digital
filter represented by

xk+1 = Axk + Buk

yk = Cxk + Duk,
(37)

the steady state covariance of output error,∆Y , is
given by

∆Y = σ2
ησ2

u

[
n∑

i=1

Wiib
2
i + D2

]
(38)

for a white noise input signal of variance σ2
u when

the filter (37) is implemented in digital signal
processor utilizing extended precision arithmetic
for internal register-to-register, where Wii is the
i− ith element of the observability Gramian W of
matrix pair (A,C) , bi is the i-th element of B,
and σ2

η is the variance of the final quantization
error given by (9).

The expression of output error covariance (35) is
different from that of Bomar et al.(1997),

∆Y = σ2
ησ2

u

[
CKCT + D2 +

n∑
i=1

KiiWii

]
(39)

where, K is the controllability Gramian of matrix
pair (A,B). In (39), because only the third term
in the bracket depends on the realization and is
the fixed point roundoff noise gain, Bomar et al.
(1997) concluded that the optimal state space
digital filters realized on floating point digital
signal processors are the same as that of fixed
point case. Hence, this difference between (38)
and (39) points to the fact that the optimal
state space realization of floating point arithmetic
can be different from the structure of fixed
point arithmetic. Finding optimal realizations in
floating point arithmetic requires more study.

4. CONCLUSION

The floating point roundoff errors coming from
implementing digital filters and controllers appear

in the form of multiplicative noises, so the
traditional method of using additive white noise
cannot be applied to analyze the effect of the
errors. In this paper, the floating point error
effect on digital filters was analyzed by using the
newly introduced FSN models which have noise
sources whose variances are linearly proportional
to the variances of the corrupted signal. With
this new model, a new expression for the output
error covariance of digital filters was derived
when implemented in floating point digital signal
processor using extended precision and it was
concluded that the optimal state space digital
filter realization of floating point arithmetic can
be different from that of fixed point arithmetic.
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