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Abstract: The probably approximately correct (PAC) learning theory was originally intro-
duced to address static models where the input data were assumed to be i.i.d. In many real
applications; however, datasets and systems to be modeled are often dynamic. This encour-
ages the efforts to extend the conventional PAC learning theory to address typical dynamic
models such as finite impulse response (FIR) and auto regressive exogenous (ARX) models.
This paper presents such extensions for the PAC learning theory and uses the resulting theory
to evaluate the learning properties of some families of FIR and ARX neural networks. For
ARX models, besides the learning properties of the neural models, stochastic stability of the
models are also evaluated.
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1. INTRODUCTION

In a modeling procedure an unknown function “ f ” is
to be estimated to the pre-specified values of accuracy
“ε” and statistical confidence “�1� δ�”. In order to
perform the estimation, based on a set of input-output
training data, an approximator function “h” is used to
model f . The identification of an unknown system f
with a feedforward neural network h can be consid-
ered as a typical example of this procedure. The Prob-
ably Approximately Correct (PAC) learning theory,
proposed in ( L.G. Valiant, 1984), deals with the accu-
racy and confidence of the above-mentioned modeling
task. PAC learning and other similar learning schemes
allow quantitative evaluation of the learning proper-
ties of static modeling procedures in which the data
are independently and identically distributed (i.i.d.)
in accordance to a probability measure P. However,
in many real modeling procedures, the assumption
of data being i.i.d. is clearly violated. As indicated
in (M.C. Campi and P.R. Kumar, 1996), two impor-
tant groups of applications to which the results of

applicable are “Nonlinear Finite Impulse Response”
(NFIR) and ”Nonlinear Auto Regressive eXogenous
(NARX)” models, where the output depends on the
present and the past inputs (as well as the past outputs
in the case of NARX). As a result, in such dynamic
models, the inouts (as well as outputs) at times “t” and
“t �1” are correlated and dependent. The importance
of FIR and ARX models comes from the fact that
in many practical systems, dynamic systems can be
efficiently approximated by appropriate FIR or ARX
models. The problem of distribution-free learning of
linear FIR models trained with the least square algo-
rithm has been addressed by Weyer et al. (E. Weyer,
R.C. Williamson and I.M.Y. Mareels, 1996). They
use the notion of Vapnik-Chervonenkis dimension to
bound the sample complexity of a linear FIR model.
One objective of the present paper is to describe the
extensions of the convnetional PAC learning theory
that allow the assessment of the learning properties
of dynamic models. Another objective of the paper is
to specify the learning results for general families of
neural networks.
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The paper is organized as follows: Section 2 describes
the basic definitions of the PAC learning theory. The
idea of PAC learning with i.i.d. data is extended to
PAC learning with m-dependent data in Section 3.
The same section gives the learning results of FIR
modeling using a general family of neural networks,
performed over uniformly distributed input data. In
Section 4, the learning theory is extended to learning
with α -dependent data that includes learning of ARX
neural models. Then the learning results for two fam-
ilies of sigmoid neural networks are given. These re-
sults include sufficient conditions for stocahstic stabil-
ity of neural ARX models. Section 5 gives a detailed
discussion of the results of Sections 3 and 4, and is
followed by the Conclusions.

2. BASIC DEFINITIONS

In this section, some of the basic concepts of stochas-
tic learning theory, including m-dependency, PAC
learning with i.i.d. data, and empirical risk minimiza-
tion algorithm are reviewed. Suppose X is an arbitrary
set. Also suppose that � and P denote a σ-algebra
of subsets of X and a probability measure on �X �� �,
respectively. A function set � is defined as a set of
measurable functions f : X � ��γ�γ�. In FIR portion
of the paper, we assume that γ � 1�2. There is noth-
ing special about the interval [-1/2,1/2] and it can be
replaced throughout by any bounded interval. Now,
consider a modeling task in which the unknown func-
tion f �� is to be estimated. In order to perform the
estimation, a set of training data has to be generated
as: zn �

�
�xi� f �xi��

�n
i�1. Also, assume that each xi

is independently and identically distributed according
to the probability measure P. An algorithm A, based
on the training data zn, generates a function h � �
as an approximator of f . At this point, we can define
the concept of PAC learning as follows: Suppose that
based on zn, where �x1� � � � �xn� are i.i.d. according
to the probability P, an approximation task is to be
performed as described above. Then a function set �
is said to be PAC learnable iff an algorithm A can be
found based on which for any ε and δ, there exists “n”
such that:

supf��Pr�dP� f �h�� ε� � �1�δ� (1)

where dP� f �h� is a distance between f and h defined
in terms of the probability P. In this paper and from
this point on, we assume that d p� f �h� � EP�� f �x��
h�x���. Another useful concept in function learning is
an ε-cover of a function set which is defined as a set
of functions �gi�q

i�1
in � such that for any function

f �� , there is a g j where: dP� f �g j�� ε. The useful
concept to be defined is a specific type of learning
algorithm, which is known as the ” empirical risk
minimization algorithm”. Let ε � 0 be specified, and

of � with respect to dP where dP is defined above.
Then the empirical risk minimization algorithm is as
follows: Draw an set of i.i.d samples �x1� � � � �xn� �
Xn, distributed in accordance with P. Define the cost
functions: Ĵi �

1
n ∑n

j�1 � f �x j�� gi�x j�� � i � 1� � � � �q.
Now the output of the algorithm is a function h � g l
such that: Ĵl � min1�i�qĴi.

The last two concepts we define here are m-dependency
and α -dependency. A sequence of r.v.s

�
Yi

�n
i�1 is said

to be m-dependent iff for all j and k, r.v.s Y j and Yk
are independent if � j � k� � m. In other words, in a
sequence of m-dependent r.v.s, the radius of depen-
dency is limited to the integer m. Next, the notion of
“α -mixing“ (also known as strong mixing), is defined
that describes a type of stationary random process with
exponentially weakening dependency. Let � and �
be two sub σ-algebras of some σ-algebra� . Then α
measure of dependency is defined as:

α �� �� � �
supU�� � V�� ��Pr�U�Pr�V ��Pr�U 	V ���

(2)

Now, if� �
�∞

i��∞�i� � ��t0
� � � �t0�t , and as-

suming that�t is a stationary process, then α ��t0
��t0�t�

does not depend on t0 and can be denoted as: αY �t�. If
αY �t� approaches zero as t � 0, the process Y is called
α -mixing. A more specific case of α -mixing process
is geometric α -mixing r.v.s in which αY �t� approaches
zero geometrically fast, i.e., if there exist:

k1� k2� k3 � 0

such that:

αy�t� � k1e�k3tk2 (3)

then, the process is called geometrically α -mixing.

3. EXTENSION OF PAC LEARNING TO
M-DEPENDENT CASES

A fixed-distribution extension of the PAC learning the-
ory to included FIR models was given in (K. Najarian,
Guy A. Dumont, and Michael S. Davies, 2001). The
general results of this extension were summarized in a
thorem that is briefly described here (for more details
see: (K. Najarian, Guy A. Dumont, and Michael S.
Davies, 2001) ):

Theroem 3.1
Assume that there exists a set

�
gi

�q
i�1 which forms an

ε�2-cover of � . Also, assume that the input training
data is a sequence of m-dependent r.v.s marginally dis-
tributed according to the uniform distribution. Then,
the empirical risk minimization algorithm results in
PAC learning of � with m-dependent training data



sup
f��

Pr�dP� f �h�� ε� � �1�δ� (4)

whenever:

n � 8�m�1�
ε2 ln

q�m�1�
δ

(5)

Notice that similar results can be obtained for other
definitions of dP� f �h� such as the popular EP� f ����g����2.
Also, notice that the value q in Theorem 3 is an indi-
cation of the complexity of the function set. Although
the empirical risk minimization algorithm used in this
theorm is ε-dependent and proves PAC learnability to
the accuracy of ε, the results can be easily extended to
a version of the algorithm which is PAC learnable to
any accuracy as mentioned in ( M. Vidyasagar, 1997)
for i.i.d. cases. Moreover, the parameter q in Inequal-
ity (5), plays a vital role in estimation of the overall
sample complexity and must be further investigated in
the case of modeling with a certain family of neural
networks. The key parameter in the calculation of q
for a function set is the Lipschitz constant. We now
present specialized learning results reported for some
families of neural networks.

Suppose that a set of RBFN’s � has members ex-
pressed as:

f �x� � ∑l
i�1 aiφi�ri�

where: φi���’s are the radial basis functions, l indi-
cates the number of neurons (basis functions), a �
�a1� � � � �al� forms the weight vector of the network
with �ai��∞ for all i, ri � 
x�ci
, where ci represents
the center of the ith basis function. Define:

ηi � sup
x��α �β �d

� dφi�ri�
dri

�
and form vector η � �η1� � � � �ηl�. Further assume that:

sup1�i�l ηi � ∞ �

and:

A � sup�a�η ∑l
i�1 �ai�ηi � ∞

Then, the empirical risk minimization algorithm per-
formed over a minimal ε�2-cover results in the PAC
learning with m-dependency and the sample complex-
ity of the algorithm can be further specified as ((K.
Najarian, Guy A. Dumont, and Michael S. Davies,
2001)):

n � 8�m�1�
ε2

��
2Ad�β �α �

ε

�d

ln2� ln
�m�1�

δ

�

(6)

or equivalently:

d

The above results has been even further specialized
for the exact forms of basis functions sets. For ex-
ample, for the families of Gaussian (i.e. φi�ri� �
exp��bir

2
i �� exp��bi
ci
2�) and Reciprocal Multi-

quadratic (RMQ) (i.e. φi�ri� �
1�

1�bir
2
i

� 1�
1�bi�ci�

2
),

the above inequality can be further specified as ((K.
Najarian, Guy A. Dumont, and Michael S. Davies,
2001)):

n� 8�m�1�
ε2 �	


�
�

2
�

2Arb f nd�β �α �

ε
�

e

d

ln2� ln
�m�1�

δ

��
�

(8)

and:

n� 8�m�1�
ε2 �	


�
�

4Arb f nd�β �α �

3
�

3 ε

d

ln2� ln
�m�1�

δ

��
�

(9)

respectively.

The m-dependent PAC learning has also been ap-
plied to FIR sigmpid neural networks in (K. Najar-
ian, 2001c). A brief discription of these results are
given here. Consider a set of feedforward neural net-
works � whose members are expressed as ((K. Na-
jarian, 2001c)):

f �x� � ∑l
i�1 aiσ�bix�

where: 0 � σ��� � 1 is a smooth sigmoid activation
function, l indicates the number of neurons, a i’s are the
weights of the output layer and the vector bi defined
as: bi � �bi1� � � � �bid� represents the weights of the first
layer. Further assume that:

∑l
i�1 �ai� � ∞ � supi� j �bi j�� ∞

and:

η � supu�� � dσ�u�
du �� ∞ �

Define:

Asnn � sup
�

∑d
k�1

�
∑l

i�1 �ai��bik�
�2

where the above “sup” is taken over the entire parame-
ter space. Then, the empirical risk minimization algo-
rithm performed over a minimal ε�2-cover results in
the PAC learning with m-dependency and the sample
complexity of the algorithm is given by:

8�m�1�



�
	

�
�

2ηAsnn
�

d�β �α �

ε

d

ln2� ln
�m�1�

δ

��
�

(10)

or equivalently:

δ � 2

�
2ηAsnn

�
d�β�α �

ε

�d

�m�1�exp
��nε2�8�m�1�

�
(11)

These results have been even further specified for
particular choices of sigmoid functions. For neural
networks that apply tan�1��� or “atan” (or "tansig")
sigmoid functions, the inequality can be written as
((K. Najarian, 2001c)):

n� 8�m�1�
ε2

�
	

�
�

4Asnn
�

d�β �α �

πε

d

ln2� ln
�m�1�

δ

��
�

(12)

For neural networks that apply bipolar exponential

sigmoid functions of form 1�e����

1�e���� , the inequality can
be written as ((K. Najarian, 2001c)):

n� 8�m�1�
ε2

�
	

�
�

Asnn
�

d�β �α �

ε

d

ln2� ln
�m�1�

δ

��
�

(13)

The above results are for the input data that are
marginally distributed according to a uniform distribu-
tion. The new results in the field ((K. Najarian, 2001a)
and (K. Najarian, 2001a)) provide the learning prop-
erties of the same families of neural networks assum-
ing an arbitrary distribution. These results are more
general and remove the need for the assumption of
uniform distribution.

4. EXTENSION OF PAC LEARNING TO
α -MIXING CASES

In a dynamic model with feedback from the output
together with uncorrelated additive noise, the output
of a system is expressed in terms of a function of the

the case of a nonlinear ARX (also known as NARX),
assuming that ut�q�1� ut�q�2� � � � ut�d describe the
history of the input variable and yt�k� yt�k�1� � � � yt�1
that of the output, then the inpu-output relationship
can be described as:

yt � f �yt�k� yt�k�1� � � � yt�1�

ut�q�1� ut�q�2� � � � ut�d�� ζt

where d� q � d � 1� k and ζ t represent the degree
of the input, the delay from the input to the output,
the degree of the output and the additive noise on
the system, respectively. Although one can consider
multi-dimensional models, here the focus is given to
the single-input/single-output (SISO) case. It is also
assumed that ut and ζt are uncorrelated sequences of
independently and identically distributed (i.i.d.) ran-
dom variables. The Markov process formed above in-
cludes a wide range of dynamic models used in engi-
neering applications such as dynamic neural networks.
As a result, all properties of NARX models can be
further specified in the case of a particular dynamic
neural model. One of the most important properties of
a NARX model to be investigated is the stochastic sta-
bility of the model introduced in (H.J. Kushner, 1972).
The concept of stochastic stability acts as the main key
to other issues such as the type of dependency among
the data as well as learnability.

The following theorem (in (K. Najarian, 2000)) presents
a set of sufficient conditions for stochastic stability
and geometric ergodicity of the families of sigmoid
neural network discussed above. These conditions are
set on the known parameters of the network, and as
a result can be easily tested during a practical mod-
eling task. A family of atan sigmoid networks is first
considered((K. Najarian, 2000)):

Thereom 4.1
Let:

Xt �
�yt�k� yt�k�1� � � � yt�1� ut�q�1� ut�q�2� � � � ut�d ��

Take yt � ζt and ut as defined in (14). Also assume that
f is a sigmoid neural network with l neurons of the
following general form:

fl�x� �
2
π ∑l

i�1 ai tan�1�bix�

Also assume: x � Xt where: p � q� d � k. Further
assume that E��ζt ��� Mζ and E��ut ��� Mu. Define:

ωj �
l

∑
i�1

2
π
�ai��bi j� (14)

where j � 1� � � � �k. Suppose: Mω � max j ω. Also de-
fine the following characteristic polynomial: P�z� �
zk ω1zk�1 ω . Then the sequence Xt is geo-



of P�z� is smaller than one. Also, if Xt is stationary
then ’y’ is geometrically α -mixing.

Having dealt with the conditions for stochastic sta-
bility and α -mixing of SNN’s, one can move on to
the next step which is applying the PAC learning
scheme to a task of neural ARX modeling ((K. Na-
jarian, 2000)).

Therem 4.2
Consider a sigmoid neural network as defined above.

Let �l be a set of sigmod neural networks with l
neurons. Also, define:

n̄ � n��8n�k3

�1��k2�1���1� (15)

For a vector w � �w1� w2� � � � wd�, use the notation
�w�1 as:

�w�1 � ∑d
j�1 �wj�

Assume that: �bi�1 � τi and ∑l
i�1 �ai� �C.

Then, the empirical risk minimization algorithm pro-
vides PAC learning with geometrically α -mixing of
�l , i.e. for any ε and δ there exist n such that:

sup
f��l

Pr�dP� f �h�� ε� � 1� �2e�4C� ε��ε�l �
�

l

∏
k�1

�2e�6τkC� ε��ε�d


�

�1�4e�2k1��

exp

� �ε2n̄
64�2� ε

12 �

�

or equivalently:

δ � �2e�4C� ε��ε�l

�
l

∏
k�1

�2e�6τkC� ε��ε�d


�

�1�4e�2k1�exp

� �ε2n̄
64�2� ε

12 �

�

(16)

In (K. Najarian, 2000), similar results are provided for
ARX models in which exponential sigmoid functions
are used (as opposed to tan1��� functions). A brief
glance at the results of the above theorem reveals
that the introduced bounds are highly conservative,
which is the main drawback of many results in the
PAC learning scheme. Also, in many real applications,
the actual values of k1, k2 and k3 may not be known,
and therefore should be estimated using a correlation
analysis on the data. As a result, the direct use of
the above bounds may fit applications where huge
training data sets, along with some information on the

5. DISCUSSION

Now, considering the results of the previous section,
the followings remarks can be made:

(1) The presented bounds on sample complexity are
sufficient bounds and not necessary ones, i.e.
learning might be achievable with fewer number
of training points. Therefore, the performance of
different models cannot be compared with each
other directly from the corresponding bounds on
the sample complexities. Nevertheless, the pre-
sented bounds on the sample complexities pro-
vide us with the order of dependencies between
the parameters of the models and their overall
learning performance. Moreover, since in order
to search for a more complex function, more
sample points of the function are needed, the
sample complexity can be considered as a mea-
sure of structural complexity of the model used
for approximation.

(2) The bounds given in the above inequalities in-
dicate that the sample complexity depends not
only on the number of neurons and the dimen-
sion of the input, but also on the size of the pa-
rameter space. This means, even without adding
new neurons to the model, and only by increas-
ing the size of the parameter space, one can
achieve a more complex neural model. This is
the main point a group of researchers includ-
ing (P. Bartlett, 1996) have been making since
early 1990’s. They believe that the common trend
of adding new neurons to enhance the compu-
tational capabilities of neural networks without
paying attention to the size of the parameter
space may not be the best approach in neural
modeling. They recommend that the computa-
tional performance of a neural network can be
enhanced more systematically (from the point of
view of learning theory) by keeping the number
of the neurons the same and allowing the param-
eter space to grow larger.

(3) The direct application of the presented results in
a typical task of modeling with a small training
data set may not be easy. One approach in using
typical results of the learning theory to obtain
more reliable models is presented in (K. Najar-
ian, G.A. Dumont and M.S. Davies, 1999), (K.
Najarian, 2001b). In these papers the learning re-
sults obtained for different neural networks have
been used to define cost functions that include
not only the empirical error but a learning-based
complexity term. The existence of the complex-
ity term in the cost function penalizes the learn-
ing complexity of the neural model and avoids
overfitting the problem when only a small set of
data is available. The results of such learning-



complex biomedical system is given in (K. Na-
jarian, G.A. Dumont, and M.S. Davis, 2001).

6. CONCLUSIONS

The learning properties of modeling a dynamic system
using an NFIR model are addressed in the case of m-
dependent input sequences. Also, the learning theory
is extended to another learning theory that addresses
ARX modelin with α -mixing data. The sample com-
plexity and other learning results of such modeling
procedures for different families of nerual networks
(inclusing radial basis function networks and multi-
layer sigmoid neural networks) have been evaluated.
In the case of an FIR model with RBFN’s that utilizes
a general set of basis functions, the sample complexity
is evaluated, and then the results are specialized to-
wards two specific cases, i.e. “Gaussian” and “Recip-
rocal Multiquadratic” radial basis function networks.
In the case of sigmoid neural networks, the learning
properties of both FIR and ARX models were evalu-
ated. Moreover, the stochastic stability of such models
have been addressed and a set of sufficient conditions
for stochastic stability of sigmoid neural networks
were given.
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