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Abstract: The Coefficient Diagram Method (CDM) is a parametric approach to design
a controller based on coefficient shaping. It involves two steps; first, characterization
of the desired time response in terms of the two specific parameters denoted by
(αi, τ), in this paper, that are functions of a characteristic polynomial. Once such a
target characteristic polynomial is obtained, the controller parameters are determined
accordingly. During the process of the design, both stability and performance of
the closed loop system can be considered together. This paper first summarizes the
recent results on basic properties of the parameter set (αi, τ) and shows a scheme to
construct a target characteristic polynomial that meets a desired transient response
characteristic. Finally, we show how to achieve a fixed order controller.
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1. INTRODUCTION

The performance of most control systems is typ-
ically judged by its time domain responses char-
acterized by overshoot, settling time, speed of re-
sponse, etc. Yet, there are few direct design meth-
ods available for this purpose. Moreover, if addi-
tional constraints such as fixed order, minimum-
phase, bandwidth, or maximum magnitude of con-
trol input are imposed to a controller, the problem
becomes even more difficult. A possible solution
to this problem is based on model matching. In
this framework, the design problem is reduced to
the problem of determining either a proper target
transfer function or a target characteristic poly-
nomial that meets the given specifications (Keel
and Bhattacharyya, 1999). However, it is difficult
to determine a target characteristic polynomial
(or target transfer function) if the design require-

ments are described by time response specifica-
tions. This is primarily due to a lack of knowledge
of how the transient response is related to the
coefficient of a fixed order model. In fact, it has
been a long-standing question.

In the 1960s, Naslin (1965) extensively studied
this problem in the context of so-called Charac-
teristic Ratio (CR) and Characteristic Pulsatance
that are certain ratios of coefficients of a charac-
teristic polynomial. He empirically observed that
this set of parameters was strongly connected to
the damping of a system. However, Naslin’s find-
ing has largely been ignored due to the lack of the-
oretical justification and stability considerations.
Recently, Manabe (1997) proposed Coefficient Di-
agram Method (CDM) that utilizes Naslin’s find-
ings in conjunction with the stability criterion
given by Lipatov and Sokolov (1979). The method
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is insightful because damping, stability, and para-
metric sensitivity can be observed from a sin-
gle Coefficient Diagram (CD) and demonstrated
through several examples (Manabe, 1997; Kim
et al., 2000). Despite its usefulness, the method
still lacks theoretical justification. An in-depth of
study of the relationships between some charac-
teristic parameters and the transient response for
the case of an all pole system is given by (Kim et
al., 2002).

The purpose of the present paper is to summarize
the recent development in CDM results including
some basic properties of the parameter set (αi, τ)
and to show a design method based on target poly-
nomial selection. From a theoretical viewpoints,
the research in this area is only a beginning and
much more work is needed to answer a number of
critical issues.

2. OVERVIEW OF CDM
The CDM is a parametric method applied to a
controller for a given LTI system. This section
gives a brief introduction of the method.

2.1 Two-Parameter Configuration
In CDM design, two-parameter configuration is
typically used to implement an overall transfer
function as shown in Figure 1 where Ap(s)m Bp(s)
are denominator and numerator polynomials of
the plant, respectively. Ac(s), Bc(s), Ba(s) are all
polynomials that represent a controller.
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Fig. 1. Two-parameter configuration.

The characteristic polynomial becomes

P (s) := Ac(s)Ap(s) + Bc(s)Bp(s)

:= ansn + · · · + a1s + a0

=
n∑

i=0

ais
i, ai > 0. (1)

As shown in (Kim et al., 2000; Kim et al.,
2002; Manabe, 1997; Naslin, 1965), we define the
characteristic ratio (CR) or called by the stability
index in (Manabe, 1997), the generalized time
constant, and stability limit as follows.

αi :=
a2

i

ai+1ai−1
, i = 1, 2, · · · , n (2)

τ :=
a1

a0
, (3)

α∗
i :=

1
αi+1

+
1

αi−1
,

i = 1, 2, · · · , n − 1;
α0 = αn = ∞.

(4)

Also, define the characteristic pulsatance

βi :=
ai

ai+1
, i = 0, 1, · · · , n − 1. (5)

Then the following relations hold.

αi =
βi

βi−1
, i = 1, 2, · · · , n − 1 (6)

ai =
a0τ

i

αi−1α2
i−2 · · ·αi−2

2 αi−1
1

. (7)

Thus, the characteristic polynomial can be written
as:

P (s) = a0

[(
n∑

i=2

(
Πi−1

j=1

1
αj

i−j

)
(τs)i

)
+ τs + 1

]
.

Hereafter, we refer the set (αi, τ) to characteristic
parameters (CP). The CR and the characteristic
pulsatance were originally introduced by Naslin
(1965). It is noted that we call the first charac-
teristic pulsatance the generalized time constant
which we elaborate its significance in Section 3.

2.2 Basic Feature of CDM
The closed-loop transfer function of Figure 1 is

G(s) =
y

r
=

Ba(s)Bp(s)
P (s)

(8)

and its corresponding Diophantine equation is

Ac(s)Ap(s) + Bc(s)Bp(s) = P ∗(s) (9)

where P ∗(s) is the target characteristic polyno-
mial. The CDM based design is similar to the
model matching method. Once the Ac(s) and
Bc(s) for a given P ∗(s) are achieved, then the
feedforward part Ba(s) is designed to compensate
for the effect of plant zeros and the steady state
error. A novelty of the method lies in finding a
target characteristic polynomial P ∗(s) from the
given time domain specifications. As shown above
that selection of P ∗(s) is equivalent to that of the
CP, the task of selecting P ∗(s) is accomplished
by determining appropriate CP such that the
given time domain specifications are met. The
relationships between CP and time domain spec-
ifications will be addressed in Section 3. In the
case of n−1th order controllers, it is indeed trivial
to construct a controller for a target polynomial
(i.e., pole placement problem). However, if a lower
and fixed order controller is used, the problem
of achieving the target polynomial through con-
troller parameters is no longer possible by a pole
placement technique. In this case, the coefficient



diagram gives a special advantage through coeffi-
cient shaping which we will illustrate by examples
in Section 2.4.

2.3 Role of a Lipatov-Sokolov Stability Condition
In 1979, Lipatov and Sokolov reported a series of
sufficient conditions for Hurwitz stability (Lipatov
and Sokolov, 1979). It is an interesting coinci-
dent that these conditions are functions of CR
introduced by Naslin. The following theorems are
found in (Lipatov and Sokolov, 1979).

Theorem 1. P (s) is Hurwitz stable if
√

αiαi+1 > 1.4656 for i = 1, 2, · · · , n − 2.

Theorem 2. P (s) is Hurwitz stable if

αi ≥ 1.12374α∗
i for i = 2, 3, · · · , n − 2.

Theorem 3. P (s) is unstable if

αiαi+1 ≤ 1 for some i = 1, 2, · · · , n − 2.

Note that the condition in Theorem 2 is a function
of every five consecutive coefficients while the
condition in Theorem 1 is a function of every four
consecutive coefficients. Hence Theorem 2 gives a
tighter condition than that of Theorem 1. It is also
sufficient for Theorem 1 that αi > 1.4656 for all
i.

2.4 Coefficient Diagram (CD)
The CD is a semi-log diagram of the coefficients of
polynomials in logarithmic scale versus the degree
of s in linear scale. Information regarding stability
and response can be observed from the relative
slopes between each pair of coefficients in CD
Here We take a simple example to illustrate this
diagram. Consider a fourth-order plant with PID
controller as follows.

Ap(s) = 0.25s4 + s3 + 2s2 + 1.5s,

Bp(s) = 1,

Ac(s) = l1s,

Bc(s) = k2s
2 + k1s + k0,

where l1 = 1, k2 = 0.5, k1 = 1, k0 = 0.2. The
Characteristic polynomial is

P (s) = 0.25s5 + s4 + 2s3 + 2s2 + s + 0.2.

We now compute the corresponding CP.

{ai}= [a4 · · · a1 a0] = [0.25 1 2 2 1 0.2],

{αi}= [α4 · · · α2 α1] = [2 2 2 2.5],

τ = 5.

{α∗
i }= [α∗

4 · · · α∗
2 α∗

1] = [0.5 1 0.9 0.5].

The corresponding CD is shown in Figure 2.
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Fig. 2. A coefficient diagram.

As shown in Figure 2, a coefficient diagram con-
tains four curves of ai, αi, α∗

i , and τ . Coefficients
ai are read on the left side scale and characteristic
ratio αi, generalized time constant τ , and stability
limit α∗

i are all read on the right side scale. The τ
is expressed by a line connecting 1 to τ .

To proceed, let us consider the following.

log αi = 2 log ai − log ai+1 − log ai−1. (10)

Clearly, for a larger value of ai and smaller values
of (ai−1, ai+1), we obtain a larger value of αi in
logarithmic scale. If it happens for all ai, the cur-
vature of the top plot in Figure 2 will be greater.
In other words, larger αis lead greater curvature
of the ai plot in the coefficient diagram. In the
next section, we will elaborate on the relationship
between (αi, τ) and the transient response.

Recall Theorem 1 and eq. (2), we have
√

ai+1ai > 1.4656
√

ai+2ai−1 (11)

or

1
2

(log ai+1 + log ai)

> log 1.4656 +
1
2

(log ai+2 + log ai−1) .

It shows that the stability is guaranteed if the
mid-point of the segment (ai+1, ai) is greater
in log 1.4656 than that of (ai+2, ai−1). Similarly,
Theorem 2 can also be used visually to determine
stability.

A parametric sensitivity may also be observed
from the coefficient diagram. Note that

P (s) = Ap(s)Ac(s) + Bp(s)Bc(s).

The complementary sensitivity function is

Bp(s)Bc(s)
P (s)

.



In Figure 2, the coefficients of Ap(s)Ac(s) are
shown as “o” and the coefficients of BP (s)Bc(s)
are shown as “�” with dashed lines. From this, a
designer can visually assess the deformation of the
coefficient diagram due to the parameter change
of k2, k1 and k0. This allows a designer to estimate
the shape of the curvature P (s).

3. CHARACTERIZATION OF TRANSIENT
RESPONSE BY CHARACTERISTIC

PARAMETER
3.1 Basic Properties of Characteristic Parameters
In this section, we discuss the relationship be-
tween the CP (αi, τ) and the transient response.

Consider a real polynomial

P (s) = ansn + an−1s
n−1 + · · · + a1s + a0 (12)

= an (s − s1) (s − s2) · · · (s − sn) , ai > 0,

where si, i = 1, 2, · · · , n are roots of P (s). From
the definitions given in Section 2, we have

a1 = a0τ (13)

ak =
a0τ

k

αk−1α2
k−2 · · ·αk−2

2 αk−1
1

, k ≥ 2. (14)

Then the following is true.
Proposition

τ =
a1

a0
= −

n∑
i=1

1
si

. (15)

The following theorem states the relationship be-
tween the generalized time constant τ and the
speed of response with respect to an arbitrary
input.

Theorem 4. (Kim et al., 2002) Let two all pole
transfer functions G1(s) and G2(s) of the same
order be

G1(s) =
Y1(s)
R(s)

=
a0

ansn + an−1sn−1 + · · · + a0

G2(s) =
Y1(s)
R(s)

=
b0

bnsn + bn−1sn−1 + · · · + b0

with

τ1 :=
a1

a0
and τ2 :=

b1

b0
.

Let yi(t) be the response of the system Gi(s).
Then

y1(t) = y2

(
τ1

τ2
· t

)

if and only if the denominators of G1(s) and G2(s)
have the same characteristic ratios.

It is interesting to note the following. Let si and ŝi

be poles of G1(s) and G2(s), respectively. Ri is the
ray drawn from the origin extended to ∞ passing
through a pole si. Then ŝi is also found on the
ray Ri under the condition given in Theorem 4.
This indicates that τ only changes the speed of
the response while it preserves the amount of
damping.

We now consider the property of characteristic
ratios (CR). We begin with examining the square
of the magnitude function below.

|G(jω)|2 =
a2
0

P (jω)P (−jω)
=

1
Q̄2(ω)

(16)

where P (s) follows the notation in eq. (12). Define

∆j
i :=

{
Πj

k=i,i<jαk, if i < j

αi, if i = j.
(17)

Using eqs. (13), (14), and (17),

Q̄2(ω) = 1 + η1τ
2ω2 +

η2τ
4

(∆1
1)

2 ω4 +
η3τ

6

(∆1
1∆

2
1)

2 ω6 +

· · · + ηnτ2n(
∆1

1∆
2
1∆

3
1 · · ·∆n−1

1

)2 ω2n (18)

where

ηk := 1 − 2
αk

+
2

αk∆k+1
k−1

− 2
αk∆k+1

k−1∆
k+2
k−2

+ · · ·

· · · + (−1)k 2

αkΠk−1
j=1∆k+j

k−j

. (19)

The objective of this discussion is to determine αis
such that |G(jω)| has no peaks anywhere except
ω = 0 and is a monotonically decreasing func-
tion over ω. Despite lack of mathematical proof,
it is a common belief that such a function has
a smaller overshoot when the step input is ap-
plied (Chestnut and Mayer, 1959). The following
theorem classifies a set of such functions.

Theorem 5. (Kim et al., 2002) The frequency
magnitude, |G(jω)|, of an all pole transfer func-
tion G(s) is monotonically decreasing over ω with
|G(j0)| = 1 if

(i) α1 > 2, for all i;

(ii) αk =
sin( kπ

n )+sin(π
n )

2 sin( kπ
n ) · α1, k > 2.

The following corollary gives a simpler condition
while it is more restrictive than the conditions in
Theorem 5.

Corollary 6. |G(jω)| is a monotonically decreas-
ing function over ω with |G(j0)| = 1 if αi > 2 for
all i.



Some results that relate the specific values of
characteristic ratios αi and sectors on which the
poles of the system lie are also available and they
are summarized below.

Theorem 7. Let D be the left half plane region
bounded by the damping sector of 0.707 and si

be the poles of the all pole transfer function. Then
α1, αn−1 > 2 if si ∈ D for all i.

Theorem 8. (Lipatov and Sokolov, 1979) All roots
of P (s) lie on the negative real axis of the complex
plane if αi > 4 for all i.

Based on examination, it appears that no all αi

are important. In other words, smaller changes
in some αi lead to greater changes in overshoot.
We observe this phenomena as follows. Consider
eqs. (16) and (18). The straight-line approxima-
tion of the magnitude plot is shown in Figure 3.
Suppose that ηi > 0 for all i. Define the inter-
section of every adjacent pair of straight-lines in
Figure 3 as

ωi :=
√

ηi

ηi+1
· ∆i

1

τ
, i = 0, 1, · · · , n − 1 (20)

where η0 = 1 and ∆0
1 = 1. Let

di := log ωi − log ωi−1,

then we write

d0 =−
(

log τ +
1
2

log η1

)
(21)

di = log ηi − 1
2

(log ηi−1 + log ηi+1) + log αi,

i = 1, 2, · · · , n − 1. (22)

1

τ

d0 d1 d2 d3
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Fig. 3. Pseudo-asymptotic diagram of |G(jω)|.

From eq. (19), we see that ηi becomes smaller
for larger values of αi. Thus, di ≈ αi for larger
values of αi. Moreover ωi < ωi+1 for all i. If
such a relation holds, it is clear that αi with
lower indices i has much greater influence that
those with higher indices i. In fact, α1 and α2 are

the most dominant factors to dictate overshoot in
many cases. On the other hand, it is intuitive from
Figure 3 that τ dictates the bandwidth.

3.2 Composition of a Target Polynomial
Since CDM is a type of model matching design, it
begins with selecting a desired characteristic poly-
nomial which is often called a target polynomial
that meets the given time response specifications
such as overshoot and settling time. When the
plant has no zeros or its zeros are located rela-
tively far from the origin, the target model can
be chosen as an all pole transfer function. In this
section, we give the steps of selecting a target
polynomial by using the properties of characteris-
tic parameters discussed in the previous sections.
Step 1: Set τ = 1 and choose a set of αi based on
Theorem 5 or Corollary 6.
Step 2: Calculate the coefficients of P (s) by sub-
stituting (αi, τ) into eq. (7) and a0 > 0 can be
chosen arbitrary. Obtain the step response of the
first target model G1(s) and find the settling time
ts1.
Step 3: Determine the value of τ by using Theo-
rem 4 so that the desired settling time is satisfied.
Step 4: If overshoot is not satisfactory, adjust αi

until satisfactory overshoot is achieved. In many
cases, an appropriate set of αi may be obtained
by adjusting lower indices αi.
Example: Using the above procedure, we found
a 8th order all pole target transfer function that
gives its step response with overshoot being less
than 1% and the settling time being approxi-
mately 5 sec.

[α1 · · ·α7] = [2.2 1.695 1.555 1.521 1.555 1.695 2.2]

G(s) =
1

0.006s8 + 0.011s7 + 0.089s6 + 0.432s5

+1.348s4 + 2.763s3 + 3.64s2 + 2.83s + 1

.

The step response and pole locations of this target
transfer function are shown in Figures 4 and 5.
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Fig. 4. Step response.
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4. DISCUSSION AND FUTURE RESEARCH
Controller design based on coefficients of a char-
acteristic polynomial has always been an attrac-
tive solution. For example, the pole placement
problem also solves a set of linear equations con-
structed from the coefficients of a target poly-
nomial. This is due to the fact that controller
transfer function coefficients enter linearly into
coefficients of the characteristic polynomial. On
the other hand, study on the time response char-
acteristics has mainly been centered around poles
and zeros of a transfer function. For this rea-
son, designing a controller that meets the given
time domain requirements is usually ad-hoc and
difficult. The uniqueness of the CDM is that it
employs time domain information characterized
by coefficients of a polynomial rather than its
roots. It turns out that the method is intuitive and
easy to use for designing a controller. However,
much of the relationships between coefficients and
the time domain property are based on empirical
observations. The results shown in this paper are
only the beginning for providing theoretical jus-
tification to the method. Here we discuss some
of the problems that need to be investigated to
fertilize the method.
(a) A limited aspect of αi with regard to “over-
shoot of the step response” has been discussed in
this paper. It is still unknown how these αi are
exactly related to the overshoot.
(b) How to shape a coefficient diagram for the case
of a lower order controller? For a given plant, there
are no systematic steps to determine a lowest
order of controller to satisfy the given specifica-
tions or to check whether such a controller of
the specified order exists or not. Presently, the
method relies upon trial and error.
(c) Although the method has successfully been
used to design controllers for general systems,
available theoretical foundation is restricted to
the case of an all pole system and two-parameter
configuration. Some theoretical studies are needed
to incorporate more general cases of systems.
(d) We have shown that larger αis lead to greater

curvature of the coefficient diagram. We believe
that issues on robust stability and/or parameter
sensitivity may be studied in this context.
(e) Presently, the proof of stability solely relies
upon Lipatov-Sokolov conditions which are known
to be conservative. It is not clear whether this
stability region contains “good controllers” or not.
If not, less conservative stability conditions may
have to be employed.
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