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Abstract: An algorithm is presented for tracking of Autonomous Underwater Vehicles
(AUVs) from acoustic time-of-flight measurements received by a field of surface floating
buoys. The algorithm assumes that measurements and AUV dynamics uncertainties are
unknown but bounded, with known bounds, and produces as output the set of admissible
AUV positions. The algorithm has been validated by simulation in which uncertainty
models have been obtained from field data at sea.  Copyright © 2002 IFAC
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1. INTRODUCTION

Recent years have witnessed an impressive growth
in the technology of robotics for undersea
exploration. Remotely Operated Vehicles (ROVs)
linked with a thether cable to the mother ship are
today a well-established technology routinely used
in the off-shore industry. Autonomous Underwater
Vehicles (AUVs) are still more research topics than
commercial products; however, they held the
promise of being the next significative step in
ocean exploration and exploitation, cutting costs
and allowing operations that are presently not
possible from surface ships or by ROVs. One of the
problems that prevents commercial applications of
AUVs, or at least reduce their efficiency, is vehicle
localization. The availability of (Differential) GPS
systems on board of surface platforms has
increased the demands on AUVs navigation
accuracy. Inertial Navigation Systems (INS) cannot
maintain the requested accuracy over the interval of
operation of the system, and are highly expensive.
It has to be remarked that the general problem of
localization of autonomous vehicles has received
much attention in the robotic literature (to name a
few, Levitt and Lawton, 90; Leonard and Durrant-
Whyte, 91; Sutherland and Thompson, 94;

Borenstein et al., 95; Garulli and Vicino, 2001);
however, the peculiarities and constraints of the
underwater environment and of usual AUV
missions prevent the simple transposition of
available techniques for land or aerial vehicles, and
require careful study of the implications of each
chosen methodology for the underwater system
performance (Tuhoy et al., 96; Caiti, 98). There are
several navigation systems currently employed by
AUVs researchers. The main non-acoustic
approach consist in installing on the AUV a GPS
receiver and an INS; the vehicle navigates with the
INS, but periodically comes to surface to receive
the GPS signal and to recalibrate the INS (Yun et
al., 99). The acoustic approaches can be subdivided
in the so-called Long Base-Line (LBL) and Short
Base-Line (SBL) systems.  In both cases the
vehicle's position is determined on the basis of the
acoustic returns detected by a set of receivers. In
the LBL case, a set of acoustic transponders is
deployed on the seafloor around the perimeter of
the area of operation. The vehicle is able to locate
itself with respect to the transponders with the
required accuracy (Collin et al., 2000). In SBL
systems, a ship follows the AUV at short range
with a high-frequency directional emitter able to
accurately determine the AUV position with
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respect to the mother ship; the same system allows
for bidirectional communication among the AUV
and the ship, so that the AUV navigation system is
aware of its current absolute position (Størkersen et
al., 98). All these methods have their merits and
drawbacks. Augmented INS requires the use of
sophisticated inertial sensors, and are vehicle-
specific (i.e., the same system cannot be employed
on more than one vehicle). LBL systems requires
long time (with associated costs) for deployement
and calibration. SBL systems need a ship to follow
the vehicle, greatly reducing the cost-effectiveness
of an AUV systems. A simpler alternative to LBL
systems has been recently proposed. It consists in
installing acoustic receivers/emitters on surface
freely floating buoys having on board GPS
receivers and radio interconnection. The vehicle is
located through time-of-flight measurements of
acoustic signals ("pings") from each buoy. The
system has the ambition of becoming a true
underwater GPS system, affordable, easy to deploy
and recover, and autonomous during its time of
operation. Localization and tracking performances
have been recently investigated by several authors
(Collin et al., 2000; Bechaz and Thomas, 2000;
Mozzone et al. 2000); in all these cases, the
algorithms analyzed have considered measurements
affected by Gaussian-distributed noise, and have
determined the resulting uncertainties through
Monte Carlo analysis. In this paper, a different
approach is proposed, based on the assumption that
measurements and modeling errors are unknown
but bounded, with known bounds. Tools from set-
membership estimation theory (Milanese and
Vicino, 91) are then employed to determine the
admissible region in space where the vehicle is
located. In particular, in this paper the performance
of a set-membership based tracking algorithm is
investigated, and compared with that of the
Extended Kalman Filter (EKF). The tracking
algorithm relies on a set-membership localization
algorithm to obtain set-valued estimated positions,
and on a simple and general vehicle kinematic
model. The details of the localization algorithm are
given in (Caiti et al., 2001). The performance of the
tracking algorithm has been tested through
simulations, considering buoys dislocation similar
to those employed in (Collin et al., 2000; Mozzone
et al., 2000), and error measurement characteristics
taken from field experiments at sea (Mozzone et
al., 2000). The results obtained show that when
realistic disturbances are considered, as currents of
unknown but bounded magnitude, the proposed
algorithm has perfomance and robustness clearly
superior to those of the EKF. The paper is
organized as follows: in the next section the
problem is formally stated, and the methodological
set-membership approach is introduced; in section
3 the tracking algorithm is described; in section 4
simulation results are presented; finally conclusions
are given.

2. PROBLEM STATEMENT

Let us consider the situation in which n buoys are
placed in arbitrary positions on the sea surface over
an area of interest. An absolute earth reference
system ),,( zyx is assumed, with z=0 on the water

surface, and the z-axis pointing upward from the
sea surface. Each buoy position )0),(),(( tytx ii  is

assumed known. In practice, any buoy position will
be known at D-GPS accuracy; however, the
uncertainty in the position can be treated as an
additional uncertainty in the measurement. The
buoys are allowed to move freely; however, since
their movement will be due to waves and current,
with a time scale much larger than that of the
travelling acoustic signals, it is assumed that the
buoys do not change position between transmission
and reception of each ping. Without loss of
generality, it is assumed that each buoy transmits at
regular pre-specified time intervals an acoustic
signal encoding its current GPS position.
Symmetric situations, in which the AUV acts as
acoustic source, or in which the acoustic signal are
reflected from the AUV and received at the buoys,
can be dealt in a similar fashion. The low-level
signal processing needed to discriminate among the
various buoys is not considered here. It is assumed
that the received signals are suitably processed so
that the AUV has available from the i-th buoy, at
time kt , the measurement )( ki ts of the travel time

of the emitted ping to the AUV. Each measurement
is affected by an unknown but bounded uncertainty

)( ki te , i.e.:
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being is~  the measurement when no uncertainties

are present, and iE  known bounds on the error, in

which all the uncertainties can be concentrated. The
sound speed ),,( zyxc in the area of interest is

assumed known. Acoustic propagation is modeled
with ray path theory, including multipath effects,
and considering lossless reflection at the water
surface and seafloor boundaries. At each time kt ,

the measurement from the i-th buoy, once
converted from time to distance taking into account
the sound speed profile, and considering the worst
case uncertainty (equation (1)), defines a region

)( ki tS , of the admissible space 0B , for the vehicle

position. The space 0B  is bounded by the sea

surface and sea bottom, and by the defined
extension of the area of interest; the buoys are
located inside 0B . Merging the information from

all the available buoys, the region )( ktV  in space

which bounds the true vehicle position is given by:
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The region )( ktV  may have a complex geometrical

shape, making it unfeasible its exact computation.
The localization algorithm described in (Caiti et al.,



2001) determines an approximation of )( ktV in

terms of the orthotope (a parallelepiped with
orthogonal edges) )()( kk tVtB ⊇  of minimal

volume. The tracking algorithm relies on these
orthotope approximations as output measurements,
and on a dynamic model of the AUV. Referring to
Figure (1), the following simple uncertain
kinematic model has been considered:
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Fig. 1: coordinate system for AUV kinematic
model

In equation (3), vu, and r are the surge, sway and
yaw velocities of the AUV, that will be considered
as known input. The terms hw  are the model

uncertainties (including input uncertainties). The
model is planar, since AUV depth is easily and
most efficiently measured by pressure gauges on
board the vehicle. The set-membership tracking
algorithm will rely on a discretization in time of the
system in equation (3). The general approach is
here briefly described. Let )(kx  be the state of the

dynamic system of interest, and )(ky  the vector of

available measurements. Let the dynamic equations
be expressed in compact form as:
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where the uncertainty vectors w and m are
unknown but bounded, with worst case bounds
known, i.e. mw EE ≤≤ ∞∞ mw , ; the admissible

set to which the vector x belongs is indicated in the
following as X. Let the initial conditions be
specified as: )0/1()1( X∈x , being )0/1(X  a

known set. The objective of the tracking algorithm
is to recursively compute the set of states )/( kkX

(state estimate) and )/1( kkX +  (state prediction)

compatible with the information available at time k .
Let )(kC∞  the set of system states compatible with

the measurement at time k :
{ }mkkkkC Ε≤−= ∞∞ )),(()(:)( xhyx (5)

The sets )/( kkX  and )/1( kkX +  are then

determined by the following recursive relations:
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where ∞B  is the unit box. Since the geometrical

shape of the sets )/( kkX  and )/1( kkX +  may be

fairly complex, they will be approximated by
bounding orthotopes of minimial volume )/( kkB ,

)/1( kkB +  such that:
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3. THE TRACKING ALGORITHM

The set-membership tracking algorithm for the
AUV kinematic model of equation (3) is now
described. The system state is composed by the
variables yx, and ϕ , i.e. planar dynamics are

considered, with no AUV movement along the
depth axis z. It is assumed that the system inputs

,u v and r  are exactly known; the model and input

uncertainties ϕwww yx ,,  are unknown but with

known bounds ϕWWW yx ,, . Available

measurements are the ),( yx  position of the AUV,

in terms of a bounding orthotope )()( kk tVtB ⊇ ,

and the measurement of ϕ , obtained from gyro on

board the AUV, affected by an unknown but

bounded uncertainty ϕε , ϕϕε E≤ . Let us set t∆

as sampling interval for the acquisition of new
measurements. As described through equations (4-
7), the set-membership tracking algorithm is based
on the intersection of the sets generated by the
system predictions and by the available
measurements; the sets are computed on the basis
of the worst case modeling and measurement
errors. In order to compute predictions for the
system described in equation (3), let us consider
first the dynamic equation of the state variable ϕ ,

which is independent from the other states. Let us
suppose that at the )1( −k -th sampling interval it is

available the information on the compact set
),( 1,21,1 −− ΦΦ kkI to which )1( −kϕ  must belong:

1,21,1 )1( −− Φ≤−≤Φ kk kϕ . Then the state )(kϕ
must belong to the set:
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and, at any time tkttkt ∆<≤∆− )1(, , )(tϕ  must

belong to the set:
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Equation (9) is needed because the goal of the
analysis is now to bound the admissible evolution
of the states x and y within the sampling interval. In
order to reach the goal, a bound on the maximum
and minimum time derivative of the states must be
determined. Consider the following quantities
related to the variable x :
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which are the derivatives of x computed at the
boundaries of the admissible interval of ϕ , and at

the value of ϕ that maximizes the x derivative, i.e.,

such that 0)cos()(/ =−−=∂∂ ϕϕϕ vusinx& . At any

t the maximum derivative of x is given by:
))(),(),(max()( 321max tdtdtdtx =& (11)

subject to the constraint:
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 Expressions similar to those of equations (10-12)
can be derived for the minimum time derivative of
x, and for the state y. Consider now the compact set

),( 1,21,1 −− kk XXI to which )1( −kx  must belong,

1,21,1 )1( −− ≤−≤ kk XkxX , and similarly for

)1( −ky . Then )(kx  and )(ky  will be bounded by

the following expressions:
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Equations (8), (13) and (14) allows to iteratively
generate predictions of the admissible region of the
state space. Since the orientation is independent
from the ),( yx  position, let us consider the set

)1/( −kkB  as the predicted orthotope in the ),( yx

space bounding the admissibile system positions.
Let )(kB  be the bounding orthotope on the system

position obtained from the acoustic measurements
at time k  with the localization algorithm. The
estimated system state will be bounded by the
orthotope )/( kkB  of minimal volume such that:

)1/()()/( −∩⊇ kkBkBkkB (15)
 A similar set-membership estimate can be easily
derived for ϕ , taking into account that in this case

the orthotopes are segments of minimal length. The
computation of minimal volume bounding
orthotopes has been implemented with linear
programming methods, since all the constraints can
be directly described as intersections of planes.

4. PERFORMANCE ANALYSIS

The set-membership tracking algorithm described
in the previous section has been compared with the
classic Extended Kalman Filter (EKF) tracking.
Two cases are presented in the following, all of
them assuming constant sound speed in water
("winter conditions"). In the first case, the process
errors and the measurement errors (i.e., the
uncertainties in the measured ranges from each
buoy and the uncertainty in the gyro reading of ϕ )

are generated by uniform distributions with zero
mean. The set-membership algorithm has
knowledge of the bounds on the distribution
intervals, and the EKF has been initialized with a
diagonal covariance matrix, where the elements of
the diagonal have been taken so that the resulting
ellipsoid covers the 95% of the volume of the
uncertainty orthotopes. The second case is similar
to the first, but for the presence of a constant bias in
some of the process uncertainties, constant bias
which is unknown to both the set-membership and
the EKF algorithms. An admissible region of

3030 × Km in the ),( yx  plane is considered, with

water depth of 150 m. Three buoys are considered,
placed as vertex of an equilateral triangle of 16 Km
side. The  process errors have the following
bounds: 2.0== yx WW m/s, 02.0=ϕW  rad/s. The

acoustic range measurements are independent and
identically distributed (i.i.d.) with measurement
errors 100≤iF m for every buoy i and at any

sample instant (as taken from Mozzone et al.,
2000). The gyro measurement errors are i.i.d., with
uniform probability distribution and error bound

0175.0≤ϕE rad. The sampling interval t∆ has

been taken as 10 s. Vehicle depth has been held
constant at 75 m. In the simulations to be presented
in the following, the complete system dynamics
have been taken into account, in particular the
following planar dynamic model has been
implemented (Indiveri 98):
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In Figure 2 the AUV true path is illustrated. Figure
3 reports the errors between the estimated positions
and the true ones along the path, for both the EKF
and the set-membership algorithm. The orthotope



center has been taken as estimated position of the
set-membership algorithm. Figure 4 reports the
99% confidence interval of the EKF and the worst
case bounds from the set-membership algorithm.
From the figures, it is evident that the EKF tracking
algorithm has a better performance with respect to
the the set-membership tracking algorithm;
moreover, even in this case in which statistical
assumption are closer to the set-membership
approach, not only the EKF has a good
performance, but its estimation of the error (Figure
4) is consistent with the effective error, so that the
EKF covariance matrix can be employed as a check
of the tracking accuracy. The worst case error
bounds as estimated by the set-membership
tracking algorithm are also consistent  with the
effective errors.

Fig. 2: the AUV simulated path with respect to the
buoy configuration (black dots). Both axis
in Km. The blue dot is the path starting
point, the red dot is the path end point

The second case is similar to the first, but for the
uncertainties yx ww , , which are generated

independently from a uniform probability
distribution with interval [ ]2.0,12.0− m/s. The
average model uncertainties mimic the presence of
a very modest constant current of 0.06 m/s over the
area of operation. The set-membership algorithm
still has the a priori knowledge of a worst case error
of magnitude 0.2 m/s, and the EKF covariance
matrix is initialized as in the previous case from the
knowledge of the worst case bounds on the errors.
In Figure 5 the tracking errors are reported for this
case; in Figure 6 the 99% confidence interval of the
EKF tracking and the worst case bounds on the set-
membership tracking error are reported. It is well
known that, in presence of unmodelled biases, the
Kalman Filter performs poorly, and this case is no
exception, as it can be seen in Figure 5. However,
the important point here is that, as shown in Figure
6, the EKF has no knowledge of its poor
performance: the estimated confidence intervals
from the covariance matrix are very small,
indicating a very precise tracking estimate (which
is obviously not the case). The set-membership
tracking algorithm, on the contrary, has by
construction always control on the worst case error.

Fig. 3: Error as a function of sampling instant along
the path. X-scale is in sampling intervals, Y-
scale is in meters. The blue line is the error
of the set-membership tracking algorithm,
the red line is the error of the EKF tracking

Fig. 4: worst case error bounds for the set-
membership tracking (x-black; y-violet)
and 99% confidence intervals estimated by
the EKF through the covariance matrix (x-
green; y-red - almost undistinguishable).
X-axis in the figure is in sampling
intervals, Y-axis is in meters

As a last consideration, it is worth to remark that
constant bias of unknown magnitude can be
included in the EKF setting, improving the tracking
performance. On the other hand, time-varying non-
zero mean disturbances will always give origin to
EKF tracking errors as those reported here.  Ocean
currents and tides are both space and time varying,
so the EKF is bound to see its performance
severely degraded in realistic oceanic conditions.
The example has been kept very simple, with
constant current, in order to better focus on the
algorithm.

5. CONCLUSIONS

A tracking algorithm for AUV with measurements
from a sparse field of acoustic buoys has been



presented. The algorithm is based on set-
membership estimation theory, and produces as
output the region in space to which the AUV must
belong, on the basis of the worst case bounds on
the measurement and process errors. No statistical
assumptions on the disturbances are made. The set-
membership tracking performance has been
compared with that of the EKF. As long as no bias
are present in the process or measurement
uncertainties, the EKF tracking gives more accurate
results, and is able to correctly estimate also its
own cinfidence interval. However, when realistic
oceanic conditions are considered, in particular the
presence of space and time varying currents and
tides, not only the EKF performance degrades, but
also its confidence interval estimation falls apart.
On the contrary, the proposed algorithm has no
difference in performance from the no-bias case to
the one in which biases are included, and it is
always able, by construction, to indicate its range
of accuracy. Based on the above consideration, it is
believed that the algorithm proposed may represent
a significative in-the-field alternative to the ones
based on statistical error characterization, for those
situations in which the disturbances cannot be well
characterized or anticipated, and its imperative to
exactly bound the region where the vehicle is
located.
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