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Abstract: In this work, a nonlinearity measure is used to examine the relative
severity of various classes of inherently nonlinear behavior. Using the Optimal Control
Structure, the analysis includes a study of how the classes and their properties
affect systems’ control-relevant nonlinearity. Two chemical reactor systems that
demonstrate a wide range of nonlinear behaviors are examined. The results indicate
that the nonlinearity measure is able to distinguish between the different categories
of nonlinear behavior. The control-relevant analysis indicates that the open-loop
behavior may or may not necessarily transfer to the control-relevant setting.
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1. INTRODUCTION

Nonlinear systems are able to display a wide
range of substantially different behaviors. General
categories of these nonlinear behaviors have been
developed along with a qualitative understanding
of their relative severity (Pearson, 1999).

A significant amount of effort has been expended
of late into developing numerical measures for the
degree of nonlinearity of a system. One of the early
references to a nonlinearity measure is found in
(Desoer and Wang, 1980). The first set of prac-
tical, on-line characterization techniques were re-
ported in (Haber, 1985). Since then, several other
measures of nonlinearity have been proposed in
(Ogunnaike et al., 1993), (Guay, 1996), (Nikolaou
and Hanagandi, 1998), and (Allgöwer, 1995), the
last of which is employed in the current work. This
work was focused on establishing links between
the output of the nonlinearity measure and the
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classification of the types of nonlinearity that the
systems exhibit.

With the purpose of controller design for a system,
it is the control-relevant nonlinearity that needs to
be characterized. It is the severity of this effect
that dictates the need for nonlinear control in
order to obtain optimal closed-loop performance.
In (Stack and Doyle III, 1997), the problem is
addressed using the Optimal Control Structure
(OCS). The OCS is a system that provides the
dynamics of an optimal controller for a partic-
ular open-loop system model and performance
objective. In the current work, the nonlinearity
of the OCS is analyzed in the same means as
an open-loop plant and comparisons between the
open-loop nonlinearity (character and severity)
and control-relevant nonlinearity made.

2. CATEGORIES OF NONLINEAR
BEHAVIOR

Many of the commonly-observed nonlinear behav-
iors of general dynamic systems can be classified
using six categories (Pearson, 1999):
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(1) Harmonic generation
(2) Subharmonic generation
(3) Chaos
(4) Input-dependent stability
(5) Asymmetric response
(6) Steady-state multiplicity

(a) Input multiplicity
(b) Output multiplicity

Harmonic generation refers to the ability of a
nonlinear system to generate harmonics of higher
frequency than that of a single-frequency input.
Conversely, subharmonic generation refers to the
ability of a nonlinear system to generate harmon-
ics of frequency lower than that of the input.
Chaos describes a nonperiodic response to a peri-
odic input.

A system displaying input-dependent stability
may display both stable and unstable responses
depending on the magnitude or character of the
system input. This term can also refer to a change
in the nature of a stable response. For example,
certain inputs may result in asymptotically stable
responses while others result in responses that
are only stable in a bounded sense. Similarly,
asymmetric response refers to a process respond-
ing differently to symmetric positive and negative
inputs, but is usually reserved for the description
of stable responses.

Steady-state multiplicity behavior can be divided
into two sub-categories. Input multiplicity refers
to multiple steady-state input values yielding the
same steady-state output. Output multiplicity
refers to a single input value yielding multiple
possible steady-state outputs.

In terms of severity of nonlinearity, note that
item 1 is exhibited by almost all nonlinear sys-
tems (see (Doyle III et al., 2001) for one of the
rare examples of a nonlinear system that does
not generate harmonics) and item 5 is exhib-
ited by all nonlinear systems except for certain
structures based on nonlinear functions exhibiting
odd symmetry. Similarly, item 6a is characteristic
of any system that exhibits an optimum steady-
state input level and is also quite common among
nonlinear systems. Consequently, items 1, 5, and
6a may be viewed as mild forms of nonlinear-
ity. In contrast, items 2, 3, and 6b impose much
stronger restrictions on the structure of the non-
linear system; for example, it is a standard result
that continuous-time models must have at least a
three-dimensional state space if they are to exhibit
chaotic responses to simple inputs (Guckenheimer
and Holmes, 1983). Similarly, it can be shown
that discrete-time dynamic models exhibiting any
one of these three forms of behavior must include
nonlinear feedback terms (Pearson, 1999). Con-
sequently, these phenomena may be regarded as
strongly nonlinear behavior. Item 4 represents an

intermediate form of behavior because, although
it is not possible in systems exhibiting feedforward
block-oriented structures or, more generally, fad-
ing memory behavior (Boyd and Chua, 1985), it
is possible in important model classes like bilinear
models (Svoronos et al., 1981) which cannot ex-
hibit the strongly nonlinear behavior defined by
items 2, 3, and 6b.

Note that the OCS concept used in this work can
be interpretted as a relaxed inverse of the original
system. From inverse system theory, it is known
that some of the nonlinear behaviors present in
the original system will appear “reversed” in an
inverse system. For example, input multiplicity
will become output multiplicity in the system
inverse.

3. NONLINEARITY MEASURE

To perform the numerical nonlinearity charac-
terization in this work, the nonlinearity measure
proposed originally in (Allgöwer, 1995) and elab-
orated upon in (Helbig et al., 2000) was used:

φUN = inf
G∈G

sup
u∈U

‖G [u]−N [u]‖PY
‖N [u]‖PY

(1)

where N : U 7→ Y is the actual system operator
and G : U 7→ Y is a linear approximation to N . U
is the space of admissible input signals, Y is the
space of admissible output signals, and G is the
space of linear operators. φUN is a number between
zero and one where a value of zero indicates the
existence of a linear approximation to the system
whose output matches the output of the original
system over the set of inputs being considered. A
value of one indicates a highly nonlinear system.

A computationally efficient lower bound (LB) on
(1) can be obtained by limiting the space of ad-
missible inputs to sinusoids of varying amplitude
and frequency. Provided that the nonlinear system
preserves periodicity, the output can be repre-
sented by a Fourier series:

yss = Ao +
∞∑
k=1

Ak · sin(kωt+ φk) (2)

By choosing an appropriate norm for the system,
it can be shown that (1) becomes (Helbig et
al., 2000):

χUsN = sup
a∈A,ω∈Ω√

1− A2
1(ω, a)

2A2
o(ω, a) +

∑∞
k=1 A

2
k(ω, a)

(3)

where A,Ω are the sets of input signal ampli-
tudes and frequencies being considered. The cal-
culation problem is thus reduced to determining



the Fourier series coefficients for a set of periodic
response sequences and then calculating the value
of χUsN .

4. OPTIMAL CONTROL STRUCTURE

The OCS is an operator that describes the dynam-
ics of the optimal controller for a given open-loop
system and performance objective. By character-
izing the nonlinearity of the OCS, the open-loop
system’s degree of control-relevant nonlinearity is
obtained (Stack and Doyle III, 1997).

Beginning with an open-loop plant model and
performance objective:

ẋ= f (x, u) (4)

I [u (t)] =G (x (tf )) +

tf∫
0

F (x, u) dt (5)

the system’s Hamiltonian, H , is given as:

H = F (x, u) + λT f (x, u) (6)

From the Hamiltonian, the OCS is given as:

∂H

∂u
= 0,

∂H

∂x
= −λ̇T (7)

The nonlinearity of the OCS can be characterized
by simply treating (7) as a separate dynamic
system and applying an open-loop nonlinearity
measure.

Note that Equations (7) are equal to the necessary
conditions for an extremum trajectory obtained
when solving an optimal control problem using
Lagrangian optimization. Because the intent is to
characterize the nonlinearity of the OCS over a
broad domain, Equations (7) are used without
solving the two-point boundary value problem
that typically results.

5. SYSTEM ANALYSIS

5.1 Chemical Reactor with Tunable Nonlinearities

The first system considered is a two-phase isother-
mal continuous stirred tank reactor (CSTR) for
the reaction of a liquid feed of pure component
A to component B. A relative volatility model is
utilized to represent the components’ vapor-liquid
equilibrium (VLE) relationship:

yA =
xA

α+ (1− α) xA
(8)

where xA and yA are the mole fractions of compo-
nent A in the liquid and vapor phases, respectively
(xA, yA ∈ [0, 1]) and α ∈ [1.5, 100] is the relative

volatility of component B relative to component
A.

Assuming that the fraction of the feed stream that
flashes to vapor is constant, the material balance
for component A in terms of its liquid-phase mole
fraction is given as:

ẋA = −50xγA +

u (1− (1− β)xA − βyA) (9)

where yA is given by (8). β ∈ [0, 1] is the fraction
of the inlet molar flow rate that exits in the vapor
stream and γ ∈ [1/4, 3] is the reaction order.
By varying α, β, and γ, the nature of the system
dynamics can be varied corresponding to different
physical characteristics of the system. Implicit in
this simplified model is an instantaneous energy
balance that yields the amount of heat required
to be added to or removed from the system
to provide the liquid-vapor split set by β while
maintaining isothermal conditions.

Across the space of parameter values investigated,
the most dominant classes of nonlinear behavior
demonstrated by (9) are asymmetric response and
harmonic generation. The effects of varying γ on
the severity of the system’s asymmetric response
with β = 0 can be viewed by studying the steady-
state loci shown in Figure 1. In the neighborhood
of an operating point of uss = 50 there is an
apparent increase in the degree of curvature of the
locus as γ is increased leading to greater steady-
state asymmetry. About a lower operating point,
such as uss = 30, an inflection point exists in the
loci for low γ thus causing greater asymmetry in
the responses from that point.
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Fig. 1. Steady-state loci for the tunable CSTR as
a function of γ for β = 0

Although Figure 1 was obtained at the particular
condition of β = 0, note that it represents a
typical family of steady-state loci for (9) in that
no steady-state multiplicity is evident. The infea-
sibility of input multiplicity can be easily noted
by considering the steady-state form of (9):



uss =
kxγA,ss

xAf − (1− β)xA,ss − βyA,ss
(10)

It follows from (10) that any value of xA,ss defines
one and only one value of uss, implying that input
multiplicity is not possible. While it is not clear
whether more than one physically meaningful
xA,ss is possible corresponding to a single value
of uss, this behavior was not demonstrated in any
of the conditions examined in this work.

The nonlinearity measure (3) was applied to the
open-loop system with β = 0 and various γ values
to investigate its sensitivity to the asymmetric
responses discussed above. Figure 2 displays the
results at an operating point of uss = 30 and
Figure 3 displays the results at an operating point
of uss = 50 using input sinusoid amplitudes ≤ 15.
The results indicate a trend of increasing nonlin-
earity with increasing γ except at γ = 1/4 and
uss = 30 where the effect of the inflection point is
seen. Note that all of the results indicate very low
nonlinearity (less than 0.25 in all cases). This is
consistent with the interpretation that an asym-
metric response is considered a mild nonlinearity.
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Fig. 2. Results of nonlinearity analysis for the
tunable CSTR and its OCS with β = 0 at
an operating point of uss = 30

To imply an easy separation of the product from
the reactant under VLE conditions, α is taken to
be 100 in the following (component B 100 times
more volatile than component A). The effect of
varying β on the value of the nonlinearity measure
for several γ values is shown in Figure 4. Note
the general trend of increasing nonlinearity with
increasing β, with the highest observed value of
the nonlinearity measure for the system occurring
at the extreme value of β = 1. Physically, the
system with β = 1 can be thought of as a reaction
taking place in an evaporator (no exiting liquid
phase). The step responses for this arrangement
with γ = 2, shown in Figure 5, indicate that the
system is operating near the physical constraint
of xA = 1 leading to highly asymmetric step
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Fig. 3. Results of nonlinearity analysis for the
tunable CSTR and its OCS with β = 0 at
an operating point of uss = 50
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Fig. 4. Effect of varying β on the tunable CSTR’s
open-loop nonlinearity at various γ, α = 100
and uss = 50
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Fig. 5. Step responses of the tunable CSTR with
α = 100, β = 1, and γ = 2 at uss = 50

responses thus increasing the value of the measure
at these conditions.

The system’s OCS is considered next. Note that
(9) is of the form ẋ = f(x) + g(x)u. If a standard
quadratic performance objective is assumed:

I =
1
2

tf∫
0

[
(x− xss)2 + η (u− uss)2

]
dt (11)
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Fig. 6. Effect of move suppression parameter η on
OCS nonlinearity for γ = 2, α = 5, and two
β values

where η is the move suppression parameter, the
OCS can be shown to be of the form:

u̇ =
1
η
g(x)(x− xss) +

(u − uss)
[
f(x)
g(x)

dg

dx
− df

dx

]
(12)

To remove the effects of η on the nonlinearity
characterization results, the amplitudes chosen for
the input sinusoids to the OCS were taken to
equal the lesser of the two steady-state open-
loop output deviations when the reactor input was
set to uss ± 15. Given this amplitude space, the
trends in OCS nonlinearity as a function of the
system parameters qualitatively matched those of
the open-loop analysis, but were typically higher.
For example, Figures 2 and 3 also indicate the
results of the OCS analysis given the conditions
of the open-loop analysis.

It was reported in (Stack and Doyle III, 1997) that
the proper way to observe the effect of η on the
OCS nonlinearity is to select an OCS input region
for characterization that drives the OCS output
to the constraints on the input to the open-loop
system. Figure 6 displays results of this type of
analysis at uss = 50, γ = 2, α = 5 and two values
of β. Note that the plateaus at higher η values
correspond to conditions where the OCS output
could not be forced to either ±15 while keeping
the input within its constrained values. The re-
sults indicate a trend of increasing nonlinearity
with increased η. In other words, as the penalty on
controller moves is increased, the system’s control-
relevant nonlinearity also increases.

The results in Figure 6 can be construed as
counter-intuitive as one normally considers the
act of increasing move suppression with detuning
of a controller. As shown in (Stack and Doyle
III, 1999) with examples of internal model con-
trol, detuning of a nonlinear controller leads to a
decrease in its measured nonlinearity. The effect in

this case is attributable to the role of η in the OCS.
A linearization of (12) indicates that η affects
only the gain on the OCS. As η is increased, the
effective controller gain decreases thus mandating
a larger OCS input to drive the output to the con-
straints. A larger input region allows the measure
a greater domain to analyze thus increasing the
resulting value of the measure.

5.2 Nonisothermal CSTR

The second system investigated is a nonisothermal
CSTR found in (Seborg and Henson, 1997):

ĊA =
q

V
(CAf − CA)− k0 exp

(
− E

RT

)
CA

Ṫ =
q

V
(Tf − T ) +

(−∆H)
ρCp

k0 exp
(
− E

RT

)
CA

+
UA

V ρCp
(Tc − T ) (13)

In this example, the input is taken to be the
coolant temperature, Tc, and the output is the
reactor temperature, T . The steady-state locus for
this system has the classical S-shape expected of a
nonisothermal CSTR thus leading to the presence
of output multiplicity. A peculiar feature of this
particular choice of parameters is that both of the
top two branches of the steady-state locus are
unstable and that there is limit cycle behavior
in the approximate range 303.25 ≤ Tc ≤ 305,
just beyond the multiplicity region. This type
of behavior has been demonstrated previously in
(Uppal et al., 1974).

By considering the step responses in Figure 7,
it is obvious that the reactor exhibits strongly
asymmetric response, but note that there is also
evidence of input-dependent stability. For the +5
step, limit cycle behavior results implying only
bounded-input, bounded-output stability for this
input. For all other step responses shown, the
reactor displays asymptotic stability. In summary,
the nonisothermal CSTR exhibits behavior rep-
resentative of each of the three levels of severity
discussed in Section 2.

Although the value of (3) is only a single number
obtained after the maximization is performed, it
is informative for this example to study the ampli-
tude dependence of the function at low frequency.
Figure 8 shows that as the input amplitude be-
comes large enough to drive the system off of the
lower branch of the steady-state locus and into
the limit cycle region the function value jumps
sharply. Note that the maximum value of the
measure is 0.783 - indicating severe nonlinearity
thus corresponding to the relative severity of the
classes of nonlinear behavior displayed by the re-
actor.
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Fig. 8. Open-loop nonlinearity results as a func-
tion of input sinusoid amplitude at a fre-
quency of 0.5 rad/s

Assuming a quadratic performance objective, this
system’s OCS maintains the stability properties of
the multiple open-loop steady-states investigated.
For the stable operating point, the OCS nonlin-
earity obtained by choosing the OCS input range
to equal the minimum constrained values of the
open-loop output is 0.751. The OCS nonlinearity
at the stable operating point increased monotoni-
cally for increasing amplitude suggesting that the
limit cycle region does not transfer to the OCS.

6. CONCLUSION

Through the study of two chemical reactor sys-
tems, comparisons were made between the non-
linear characteristics of the open-loop systems
and the results of analysis of both open-loop and
control-relevant systems using a lower bound on
a nonlinearity measure. The results indicate that
existing understanding of the relative severity of
the behavior categorizations transfers well to the
numerical results of the measure. Analysis of the
control-relevant nonlinearity of the systems show
that open-loop nonlinear behavior may or may not
appear in the control-relevant analysis.
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