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Abstract: In this paper time series identification problem amounts to estimating the
unknown parameters of an ARMA model, which is transformed to an infinite AR model
and the least-squares method is proposed for its identification. The convergence analysis
of the LS estimates almost surely is carried out for an infinite case. Moreover, it is
established the result on the estimate of the degree of convergence of the LS estimates for
infinite AR model. Such an approach has been studied before for the ”long” AR models
but an overall convergence analysis has been lacking. In addition, a complimentary result
on the convergence of semi-martingales is presented here, which is a corner-stone for
proof of all theorems here, but is of interest by itself.
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1. INTRODUCTION

One of the most used linear models of stochastic time
series is a regressive equation, i.e. an ARMA model.
The problem of estimating unknown parameters of
a regressive equation is a corner-stone of mathemat-
ical statistics, and an extensive literature is devoted
to this question. A special modification of the least-
squares method (LSM), known as the extended least-
squares method (ELSM), was introduced and justified
under the positive realness condition on the transfer
function of a filter. The estimates provided by ELSM
are unbiased and strongly consistent, e.g. converge
almost surely to the unknown parameters of an ARMA
model. However, the positive realness condition is
rather a severe restriction on a class of the considered
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time series. It is not surprising that the development
of new algorithms without the positive-realness condi-
tion is of constant interest to both theoreticians and en-
gineers, as reflected in the significant number of pub-
lications. Let us discuss briefly the results achieved.

An alternative approach to this identification problem
is to transform the ARMA model to an AR model of
infinite order. A historical overview of this approach
is given by Mari et al. (2000). According to Mari
et al. (2000) the idea of approximating an ARMA
process by AR processes of high order go back to
Wold (1938), Durbin (1959) and Whittle (1953). To
that list it may also be added the book of Marple-Jr.
(1987). Following such an approach, Mari and coau-
thors suggested an identification algorithm for ARMA
models based on a three-step procedure: 1) empirical
estimation of a partial covariance sequence; 2) co-
variance extension by the maximum-entropy method,
leading to a high order AR model with the transfer
functionŴυ(z) = zυ/φ̂υ(z), whereφ̂υ(z) is the nor-
malized Szego polynomial of degreeυ, which is com-
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puted from the estimated covariance data; 3) determi-
nation of a reduced-degree approximation̂Wυ(z) of
Ŵ (z) via stochastically balanced truncation. The pro-
posed algorithm shares certain features with the sub-
space method of identification. In particular, both of
them are based on partial stochastic realization theory.
However, in contrast to subspace methods the method
presented by Mari et al. (2000) guarantees the minimal
phase property. It is stipulated by using stochastically
balanced truncation by Mari et al. (2000). The authors
developed a simple computational procedure and pro-
vided theoretical analysis and a simulation example.
The idea of using model truncation for systems iden-
tification appears in the works of Wahlberg (1989),
Green (1995).

However, it should be emphasized that all above-
mentioned papers considered the approximation of the
ARMA model by ”long” AR models of finite order.
For the first time the problem of transforming an
ARMA model to an AR model of infinite order was
introduced by V.N. Fomin (Gel and Fomin (1998)). In
the paper of Gel and Fomin (1998) an identification
method for the stationary stochastic time series was
proposed. The method is based on the analysis of an
infinite AR equation, coefficients of which are esti-
mated by the Yule-Walker method, and on the subse-
quent reconstruction of the parameters of the ARMA
model by the Pad́e approximation. It should be men-
tioned that the Pad́e approximation needs to estimate
only a finite number of coefficients of the infinite
AR model to reconstruct coefficients of the ARMA
model. The proposed identification algorithm is easily
implemented as it involves only linear algebra oper-
ations and no nonconvex optimization computations
are required. The detailed investigation of connection
between the approximation by ”long” autoregressive
processes and the AIC and BIC criterions is carried
out in the book of Hannan and Diestler (1988).

Here the approach suggested by Gel and Fomin (1998,
2001) is developed further, and an AR model of infi-
nite order is considered. The least-squares method is
used to estimate unknown parameters of the infinite
AR model. In this paper presented the analysis of
consistency and the degree of convergence of the LS
estimates for an infinite case, which is by no means a
new result for systems identification.

2. THE PROBLEM STATEMENT

Time series identification problem studied here amounts
to estimating the unknown system parameters for the
ARMA model

a(∇)yt = σ2b(∇)vt (1)

from the data{yt}∞t=1, wherea(λ) andb(λ) are poly-
nomials (a(λ) = 1 + λa1 + · · · + λpap, b(λ) = 1 +
λb1 + · · · + λpbq); vt is the martingale difference

(E(vt|Ft−1) ≡ 0, E(v2
t |Ft−1) = 1 a.s.; hereFt−1

is theσ-algebra generated by the stochastic variables
v1, v2, . . . , vt−1), andsupt Ev4

t < ∞; ∇ is the shift-
back operator (∇yt = yt−1).

If system (1) is minimal phase (b(λ) 6= 0, |λ| ≤ 1), it
may be transformed to

ã(∇)yt = σ2vt, ã(λ) =
a(λ)
b(λ)

=
∞∑

k=0

λkãk. (2)

This linear system is called an AR model of infinite
order. Write it in the form of a linear observation
scheme

yt = Φ∗
t−1τ ∗ + σ2vt, (3)

whereΦt−1 = (yt−1, yt−2, . . . , y1, 0, . . .),
τ ∗ = −(ã1, ã2, . . .).

The vector of unknown parametersτ ∗ is estimated
using the recursive LS method

τ t+1 = τ t + γε
tΦt(yt+1 −Φ∗

t τ t) (4)

γε
t+1 = γε

t − γε
tΦt−1(1 + Φ∗

t γ
ε
tΦt)

−1Φ∗
t γ

ε
t . (5)

The matrixγε
t is inverse to the information matrix,

γε
t = (Rε

t )
−1, whereRε

t =
t∑

k=1

ΦkΦ∗
k + εR, a

R = diag{eµk}∞k=1 is a regularizer. The idea of
such a regularizer for the LSM of infinite order and
its theoretical basis belong to V.N. Fomin (see Gel
and Fomin (2001)). The estimates (4) are called the
regularized estimates of the least-squares method.

The main results from the analysis of consistency
of the LS estimatesτ t for the infinite case are the
following:

1. The estimatesτ t converge with probability 1 to the
vector of unknown parametersτ ∗, i.g. are strongly
consistent. In this connection, it is shown that the

regularized information matrixRε
t = (

T∑
k=1

ΦkΦ∗
k +

εR) is strictly positive definite ast →∞.

2. It is established the degree of convergence with
probability1 of the estimatesτ t to the vectorτ ∗.

3. THE DEGREE OF CONVERGENCE OF
SEMI-MARTINGALES

The result formulated in this section forms the foun-
dation for all subsequent theorems in this paper on
the convergence analysis of the LS estimates for the
infinite AR model. The idea is suggested by the re-
sult on convergence of semi-martingales (see Fomin
(1999)) based on the Doob inequality. According to
V.N. Fomin formulate it as follows.



Theorem 1.Assume that the sequence of nonnegative
stochastic variables(ξn)∞n=0 satisfy

E(ξn+1|ξ1, . . . , ξn) ≤ (1 + αn)ξn + ζn (6)

where αn ≥ 0, ζn = ζn(ξ1, . . . , ξn) ≥ 0 and
∞∑

k=1

αn < ∞,
∞∑

n=1
Eζn < ∞. Thenξn → ξ almost

surely andEξ < ∞.

In the lemma stated below the degree of convergence
of the stochastic variables{ξk} is estimated, thereby
extending the previous results obtained for the limiting
case.

Lemma 1.Assume the stochastic variablesξt ≥ 0 and
ζt satisfy

1) ξ0 = 0, ∀t ≥ 0 E(ξt+1|ξt, . . . , ξ1) ≤ ξt + ζt;

2)
∞∑

t=0

E|ζt| = C < ∞.

Then

∀X > 0 P{∀T ≥ 0, ξT ≤ X} ≥ 1− C

X
. (7)

Proof of Lemma. Let X > 0. Define the random
stopping timeτ by

τ = min{t ≥ 0 | ξt > X}
with τ = ∞ if the full trajectory is below the level
X. For anyt ≥ 0 define the random characteristic
function χτ (t) which is equal to 1 ifτ > t and else
equals to0. Minimum of τ andt will be denoted by
τ ∧ t. Then for anyt ≥ 0 it holds

ξτ∧t =
t−1∑

k=0

χτ (k)(ξk+1 − ξk).

Denote the flow ofσ–algebras associated with(ξt)∞t=0

by (Ft)∞t=0. Then for anyt > 0 the random variable
χτ (t) is measurable with respect toFt and therefore

Eξτ∧t = E
t−1∑

k=0

χτ>k(E{ξk+1 | Fk} − ξk) (8)

≤
t−1∑

k=0

E|ζk| ≤
∞∑

k=0

E|ζk| = C.

Sinceξt ≥ 0 andξτ (ω) > X whenτ(ω) < ∞ it holds

XP{∃t > 0 | ξt > X} ≤ lim inf
t→∞

Eξτ∧t ≤ C

and assertion of Lemma 1 follows.2

Corollary 1. Let ψT = µT

∑T
t=1 νtηt, in which µT

is a decreasing positive function, the random process
(ηt) satisfies the relationE{ηt|η1, η2, . . . , ηt−1} = 0;

for any t > 0 the random variableνt is measurable
with respect to(ηt−1, ηt−2, . . . , η1); and

∞∑
t=1

µ2
t Eν2

t Eη2
t ≤ C < ∞.

Then

∀X > 0 P{∀T > 0, |ψT |2 ≤ X} ≥ 1− C

X
.

The assertion directly follows from Lemma 1 with
ξt = ψ2

t .

Let δ1 > 0. Corollary 1 allows to describe a degree
of convergence to zero of the random variableκt =
t−δ1 |ψt|2 almost surely:

∀Y > 0, ∀T > 0, P{∀t ≥ T, κt ≤ tδ2−δ1Y }
≥ 1− C

Y T δ2
(9)

with 0 < δ2 < δ1.

4. THE DEGREE OF CONVERGENCE OF THE
LS ESTIMATES FOR AN AR MODEL OF

INFINITE ORDER

The question of consistency of the LS estimates for
the AR equation of finite order is very well worked
out (for an overview see Fomin (1998), Ljung (2000)).
However, not so many papers cover the analysis of
the degree of convergence even for the finite case (Lai
and Wei (1982), Barabanov (1983)). Below the result
on the estimate of the degree of convergence of the
LS estimates for the AR equation of infinite order is
stated.

Assertion. For any positiveδ1 andδ2 there is a con-
stantC > 0 such that

∀T0 > 0 P

{
∀T ≥ T0, |τT − τ ∗|2 ≤ 1

T 1−δ1−δ2

}

≥ 1− C

T δ2
0

. (10)

The proof of the main assertion follows readily from
the following two theorems.

Theorem 2.For all δ > 0,

lim
T→∞

(τT+1 − τ ∗)
∗ 1
T δ

(
T∑

t=1

ΦtΦ∗
t + εR)

×(τT+1 − τ ∗) = 0 (11)

holds with probability1. Moreover, there is a positive
constantCδ such that

∀X > 0,



P

{
∀T ≥ 0, (τT+1 − τ ∗)

∗ 1
T δ

(
T∑

t=1

ΦtΦ∗
t + εR)

×(τT+1 − τ ∗) ≤ X

}
≥ 1− Cδ

X
. (12)

Let us briefly discuss the main idea of the proof
of Theorem 2. The justification of assertion (11) is
based on the convergence properties of the stochastic
variable

VT = (τT − τ∗)
∗ 1

(T − 1)δ
(
T−1∑
t=1

ΦtΦt
∗ + εR)

×(τT − τ∗). (13)

It is shown that

E(VT+1|V1, . . . , VT ) ≤ VT +
σ2

T δ
ΦT

∗γT ΦT ,

and that

σ2
T∑

t=1

1
tδ

EΦt
∗γtΦt < ∞. (14)

In view of the inequality in Lemma 1 and arbitrariness
of δ > 0 it follows that the stochastic variablesVT

converge to0 with probability 1 asT → ∞, i.e. the
assertion of Theorem 2.

The main assertion (10) will follow directly from
Theorem 2 if to show that the information matrix

T−δ(
T∑

t=1
ΦtΦ∗ + εR) is bounded away from0 for

T > 0. Below derived and justified the estimate of the
probability that the information matrix is uniformly
bounded away from0. The relation between the con-
sistency of the LS estimates and the behavior of the
information matrix in the finite case is studied in the
works of Lai and Wei (1982), Barabanov (1983). Ex-
tension to the infinite case requires the special bound-
ing of infinite-dimensional matrices, in which the reg-
ularizerR plays a significant role.

Theorem 3.For any α ∈ (0, 1) there are positive
constantsC0, β andT0 such that for allT1 > T0

P

{
∀T ≥ T1,

1
T

(
T∑

k=1

ΦkΦ∗
k + εR) ≥ βI

}

≥ 1− C0

Tα
1

whereΦk = (yk, yk−1, . . . , y1, 0, 0, . . .)∗.

Just as for the previous theorem let us discuss briefly
the main idea of the proof.

Choose an arbitrary positive integerN , N < T .
AfterwardsN = N(T ) will be chosen as a determistic
function ofT . The vectorΦk has the form

Φk = ANΦk−N +
N−1∑

j=0

AjBvk−j (15)

when k > N . The information matrixRT =

T−1
T∑

k=1

ΦkΦ∗k may be divided into three sums (below

all present quantities with negative indexes are0):

1
T

T∑

k=1

ΦkΦ∗
k = Q1,T,N + Q2,T,N + Q3,T,N ,(16)

where

Q1,T,N =
1
T

T∑

k=1

ANΦk−NΦ∗
k−NA∗N ,

Q2,T,N = 2
N−1∑

j=0

AN (
1
T

T∑

k=1

Φk−Nvk−j)B∗A∗j ,

Q3,T,N =
N−1∑

j=0

N−1∑

i=0

AjB(
1
T

T∑

k=1

vk−jvk−i)B∗A∗i.

Clearly, the matrixQ1,T,N is nonnegative. Let us
derive a lower bound for the matrixQ2,T,N +ε1R/T ,
whereε = ε1 + ε2, ε1, ε2 > 0.

Lemma 2.There existC1, C2, C3 > 0 such that for
anyX0 > 0 andε3 > 0 it holds

P

{
∀T > 0, ∀N ∈ [

log T

µ
,
C3T

1/2−ε3

X0
],

Re Q2,T,N +
ε1

T
R ≥ −C2N

2X0

T 1/2−ε3
I

}
≥ 1− C1

ε3X2
0

whereI is the identity operator.

Turn now to a bound on the matrixQ3,T,N . Divide it
into Q3,T,N = σ2UN + WT,N where

UN =
N−1∑

i=0

AiBB∗A∗i,

WT,N =
N−1∑

i=0

AiB
1
T

T∑

k=1

(v2
k−i − σ2)B∗A∗i

+2Re
N−1∑

i=0

N−1∑

j=i+1

AiB(
1
T

T∑

k=1

vk−ivk−j)B∗A∗j

andReX = (XT + X)/2 for any square matrixX.

The sumsUN andWT,N are bounded in the follow-
ing assertion.

Lemma 3.1. There existC4 > 0, C5 > 0 such that
for anyε4 ∈ (0, 1/2)



∀Y0 > 0,

P

{
∀T > 0, ∀N > 0, ‖WT,N‖ ≤ C4N

2Y0

T 1/2−ε4

}

≥ 1− C5

ε4Y 2
0

.

2. There existK > 0, α > 0 such that for anyN ≥ K

PN−K

N−1∑

i=0

AiBB∗A∗iPN−K ≥ αPN−K .

HerePm is a standard projector

Pmc = (c0, c1, . . . , cm−1, 0, 0, . . .),

whenc = (c0, c1, . . .).

Finally, collecting the bounds for the matrixesQ2,T

andQ3,T yields the required result of Theorem (3).

From (10) follows directly the power degree of con-
vergence with probability1 of the LS estimates for the
infinite-dimensional AR equation.

Corollary 2.

lim
T→0

T 1−δ|τT − τ ∗|2 = 0 (17)

with probability1.

CONCLUSION

In the standard estimation algorithms the number of
parameters is fixed and their convergence with proba-
bility 1 is proved as the number of observations tends
to infinity. If the number of observations is fixed then
an attempt to estimate too many parameters leads to
an unreliable result. It is recommended to choose a
model with the number of parameters proportional to
log T , whereT is the number of observations (the
AIC criterion). If T increases then the model can be
made richer, but the number of parameters increases
much slower thanT and proportional tolog T . The LS
algorithm in the infinite dimensional regression model
does not satisfy this logarithmic relation.

The number of parameters that are obtained afterT
observations in the infinite linear regression model
is equal toT for the RLS algorithm. Therefore it is
impossible to extract a small set of parameters that
are estimated precisely and to expand this set slowly
with time T . Let a functionF (p) be the accuracy of
the estimates of the firstp parameters. In the standard
approaches (Mari et al. (2000)) this function is small
for the first log T parameters and arbitrary for others
that were not estimated afterT observations. This
function can be smoothed in the standard LS algorithm
if the initial conditions are chosen properly.

The initial covariance of parameter estimates in the
RLS algorithm is equal to the inverse of the initial

information matrix, namely the regularizerR. Small
covariances imply small correction gains. The rate
of correction is inversely proportional to the values
of R. It is proposed in in this paper to defineR as
a diagonal matrix with exponential entrieseµk on
the diagonal. A sum of correction gains at timeT
for parameter numberk achieves some fixed value
when k ∼ log T . The number of parameters that
can be precisely estimated is proportional tolog T ,
and estimates of other parameters cannot move far
from their initial values. For this reason the initial
information matrixR determines a smoothed number
of parameters with reliable estimates at timeT .

The degree of convergence with probability 1 is
obtained from the lemma on convergence of semi-
martingales. This lemma presented in Section 4 gives
a simple expression for probability of the exceptional
set if a semi-martingale converges. It is used in the
proofs of different assertions in this paper.

Proofs of the main theorems about the degree of con-
vergence of the RLS estimates for the AR(∞) model
are based on the standard Lyapunov function asso-
ciated with the LS approach (Barabanov (1983). A
special mathematical technique was developed to find
appropriate lower and upper bounds on the informa-
tion matrix and to analyze their asymptotic behavior
almost surely.
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