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Abstract: Constructive methods of optimization is used to solve classical problems of
regulation. It is sho wn thatfast algorithms of positional optimization of dynamical
systems elaborated in Minsk (Belarus) represent the effective tool for solving such
problems as 1) transfering an object from one position to the other and stabilizing a
new regime by bounded feedbacks, 2) tracking problems (problems of realizing given
motions). Results are illustrated by classical benchmarks.

Keywords: optimal control, fast algorithms, regulator, closed-loop control,

stabilization, tracking systems

The final test of a theory is its capacity to solve
the problems which originated it.

G.Dantzig

1. INTRODUCTION

Mathematical theory of optimal control arose in
the middle 50s of the 20th century after the first
results on synthesis of optimal systems obtained
by engineers on automatic regulation. The ad-
vancement of automatic con trol theory resulted
partially in the optimal synthesis problem. As
is known, basic problems such as regulation and
tracking problems occupied a highly important
place among the others. The regulation problem
consists (in informal statement) in the following.
A control object is given and it has several regimes
of function. The problem is to design a feedback
under which the control system passes from an
initial state to a new regime and is stably func-
tioning in that regime. One can select two parts
in the problem: 1) the realization of a transient
passing on from the initial state to a new regime;
2) the stabilization of a new regime. A long time
scien tists paid attertion mostly to the second part

of the problem, although the solution of the first
part was of great importance for applications.

The second fundamental problem of classical reg-
ulation theory is kno wnin different variants (a
problem of realization of motions, tracking prob-
lem etc.). For instance, a problem of realization of
motions may be formulated as follows. A control
system and a family of motions are giv en (more
often it is a set of periodic motions). The problem
is to design a feedback under which a chosen
element of the family becomes an asymptotically
stable trajectory for the closed-loop system. A t
solving mentioned classical problems of regulation
engineers had to solve important for applications
problems such as invariance problems, robustness
problems, damping, amortization problems etc. In
early 50s in the USSR and the USA engineers
stated a problem of creating the theory of synthe-
sis of optimal systems. The time-optimal systems
of one freedom degree were the first to be syn-
thesized. So the pioneer optimal systems solv ed
in a best way the first part of the classical prob-
lem of regulation. Generalization of these results
on more complex systems came across serious
difficulties and outstanding mathematicians paid
atten tion to the problem (Pntry aginet al., 1962),



(Bellman, 1957). Intensive investigations of Soviet
and American scientists led in the middle 50s to
discovery of two fundamental methods of opti-
mal control theory — the Pontryagin maximum
principle and the Isaacs- Bellman dynamic pro-
gramming. Since then problems and methods of
optimal control theory have been generalized and
reinforced in various direction and now optimal
control theory represents rich and deep mathe-
matical theory. It is a natural question: ”What
did optimal control theory give for the solution of
the mentioned above classical problems of regula-
tion?”

Below we describe results obtained in Belarus
(Minsk) which concern this question. The authors
cannot analyze papers of another authors due
to limited volume of the paper with reference
to (Aizerman, 1975), (Bissel, 1992), (Feldbaum,
1963), (Pesch and Bulirsch, 1994). We begin with
results obtained in the field of constructing fast
algorithms of optimal control (Balashevich et al.,
2000; Gabasov and Kirillova, 2001).

2. LINEAR OPTIMAL CONTROL PROBLEM
IN THE CLASS OF DISCRETE CONTROLS

Consider a linear optimal control problem

J=cdz(t*) - max, @ = Az +bu, x(0) = o,

Hz(t") =g, |ut)| <1, te T =10,t"]. (1)

This problem is a simplest problem of optimal
control theory but up to now there are no suf-
ficiently effective methods of constructing open-
loop and closed-loop solutions to it.

For the concrete solution of problem (1) it is nec-
essary to use numerical tools of discrete actions. In
this connection it is natural to investigate problem
(1) in the class of discrete functions

u(t) = u(kh),
t € [kh, (k + 1A,k =0, N — L. 2)

(h is a quantization period). In this class of ad-
missible controls problem (1) is equivalent to a
linear programming problem which however has
at small h > 0 series specific features due to which
the use of linear programming methods is slightly
effective. In Minsk special dynamic modifications
of linear programming methods have been elab-
orated that allowed to construct effectively op-
timal open-loop solutions and then to justify a
new approach to the solution of optimal synthesis
problem (Balashevich et al., 2000).

Let us illustrate effectiveness of the method by the
following problem.

Ezample 1. Consider two-mass oscillating system
which has to be damped with minimal fuel con-
sumption in a finite time

25

() = / w(t)dt - min,
0
j;.l = l’3,j}'2 = T4,

T3 = —x1 + T2+ u, 4 = 0.12; — 1.0225,
,271(0) = ,272(0) = 0,.173(0) = 27'174(0) = 17
21(25) = 22(25) = z3(25) = 24(25) =0,
0<u(t)<1,te0,25] 3)
1, T2 : deviations of the masses from the equi-

librium state; x3, x4 : velocities of the masses; u :
fuel consumption per second used for control.

Fig. 1. Two-mass oscillating system

Let a function u(t), t > 0, belong to (2). In
this case, problem (3) is reduced to (1), (2) in
which the dimension of the state vector equals
5. Following (Fedorenko, 1978) we estimate the
complexity of methods according to a number of
complete integrations of original or adjoint sys-
tems which are necessary to construct an optimal
control. With the help of the algorithms from
(Balashevich et al., 2000) the following results of
computer experiments were obtained.

Table 1 Optimal open-loop control,
complexity of calculation

N h JO c

100 0.25 6.353339 241
1000  0.025 6.331252  2.239
10000 0.0025 6.330941 2.2018
25000 0.001 6.330938 2.3564

Table 1 contains results of solving problem (3) for
different quantization periods. The last column



contains data on complexity of the method. Two
complete integrations were spent for preparatory
work connected with testing an initial admissi-
ble control on optimality. From Table 1 one can
observe that a number of complete integrations
for constructing the optimal open-loop control
depends slightly on the quantization period and
does not exceed 2.5. The known methods of con-
structing optimal open-loop controls based on the
maximum principle and other approaches do not
possess the mentioned efficiency (Balashevich et
al., 2000).

3. POSITIONAL SOLUTIONS

Optimal open-loop solutions play an important
part in control theory but they are connected a
little with classical problems of regulation as the
form of solutions used in these problems is controls
of feedback type. Let us imbed problem (1) into
the family

dz(t*") - max, @ = Az + bu, z(7) = 2,
Hz(t*) =g, |[ul®)| <1, t e T(r) =[r,t*] (4)

depending on a scalar 7 and an n-vector z. Let
u’(t|7,z), t € T(r), be an optimal open-loop
control to problem (4) for the position (7,z), X,
be a set of all vectors z € R™ for which problem
(4) has a solution with 7 fixed. The function

u®(1, 2) :u0(7'|7',z),
2€X,, T€Th=0,h,....t" —h,  (5)

is called a positional solution to problem (1) or
an optimal control of feedback type. Analytical
construction of (5) is as a rule impossible if the
dimension of problem (1) exceeds 3. The possi-
bilities of dynamic programming at constructing
positional solutions are limited due to the known
"curse of dimensionality”. A roundabout way to
the problem in question based on using fast al-
gorithms of optimal control and modern com-
puter technology was suggested and elaborated
(Gabasov et al., 2001), (Gabasov et al., 1995). It
consists in the following.

Let the optimal feedback be constructed. We
close system (1) by this feedback and consider
the behavior of the closed-loop system under
constantly acting disturbances

&= Az + bu®(t,x) + w(t), £(0) = zo. (6)
Let w*(t), t € T, be a realizing (unknown)

disturbance. A transient z*(t), t € T, of closed-
loop system (6) satisfies

#* = Az*(t) + bul(t,2*(t)) + w*(t), t € T.(7)

From (7) one can see that in this concrete pro-
cess the optimal feedback is used only along the
isolated curve z*(t), t € T.

Definition 1. A device which for any current po-
sition (7,z*(7)) able to calculate a value u*(7) of
the realization of the optimal feedback u*(t) =
ul(t,z*(t)), t € T, for the time not exceeding h,
is said to be Optimal Controller.

Thus, the optimal synthesis problem is reduced
to constructing an algorithm for Optimal Con-
troller. The algorithm for Optimal Controller is
based on one dual method of linear programming
modified to dynamical structure of problem (1)
(Balashevich et al., 2000), (Gabasov et al., 2001).

Let us illustrate the results of functioning of
Optimal Controller using the previous example:

Ty = X3, T2 = T4, T3 = —T1 + T2 + U,

4 = 0.1z — 1.0222 + w*(¢),

where w*(t) = 0.3sin4t, t € [0,9.75; w*(¢) =
0, t > 9.75.
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Fig. 2. Optimal Controller. Realization of the
optimal feedback

The realization of the optimal feedback is given on
Fig 2. The values of complexity C(7) of calcula-
tion of current values of realization u*(7), 7 € T,
is presented on Fig 3.

nnz C'(_/T,\/
0.015

0.m
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Fig. 3. Complexity of calculation on iterations

So, the time of calculation spent to obtain current
values of u*(t), t € T, does not exceed 2% with
respect to the time of the whole integration the
initial or adjoint systems. It is clear that such
volume of work at optimizing dynamic systems
many modern microprocessors are able to do.



4. STABILIZATION PROBLEM

Methods of synthesis of optimal systems can be
used to solve the mentioned classical problems
of regulation. We begin with the stabilization
problem. Consider system (1) which at w(t) =
0, t > 0, is not asymptotically stable. Let G be a
vicinity of the equilibrium state z = 0.

Definition 2. A function v = u(z), z € G, is a
bounded stabilizing feedback in G if 1) u(0) =
0; 2) |u(t)] < L, z € G; 3) the zero solution of
the closed system & = Az+bu(z) is asymptotically
stable in G.

As is known, classical methods of construction
of stabilizing feedbacks are based on sufficient
conditions of asymptotic stability (parametric,
frequency conditions, methods of the Lyapunov
functions etc.). Optimal control theory with a
view of stabilization was first used by R.Kalman
and A.M.Lyotov in 60s of the last century. They
proved that a positional solution u®(z) = k'z of
a linear-quadratic optimal control problem with
an infinite horizon possessed stabilizing property.
Later on to construct stabilizing feedbacks also
linear-quadratic problems with a finite horizon
were widely used. But in these papers geomet-
ric constraints on control functions, important
for applications, were seldom taken into account.
Even the Kalman-Lyotov problem with control
constraints cannot give simple optimal positional
solutions. In the middle 90s the authors of the
paper suggested to use the method of optimal
synthesis in combination with the moving hori-
zon principle (Kwon and Pearson, 1977) for the
construction of bounded stabilizing feedbacks.

Choose a number 0, 0 < © < +oo (parameter of
the method) and introduce auxiliary (accompany-
ing) optimal control problem

©
Bg(z) = min/ |u(t)|dt,
0

& = Az + bu, z(0) = z,
2(©) =0, [u@®)| <L, teT =]0,0],
rank{b, Ab,..., A" b} =n. (8)
Let u%(t|z), t € T, be an optimal open-loop
control for z, G(O) be a set of all states z for which

problem (8) has a solution. It can be proved that
function

u(z) = u’(0lz), = € G(O), (9)
is a bounded stabilizing feedback. This feedback

possesses very important for applications proper-
ties: 1) by choosing O, the domain G(©) can be

made as close as possible to the maximal domain
of stability; 2) transients of the system closed by
(9) possess the following extremal property

00 ©
/|u*(t)|dt§/|u0(t|x0)dt, (10)

i.e. fuel consumption on the whole stabilization
process does not exceed its value necessary for
optimal damping system (8) for the time ©. At
forming accompanying optimal control problems
another criteria can be used, for instance

u

©
Bo(z) = minmtax|u(t)|, Bo(z) = /uz(t)dt,
0

that allows to obtain transients with different
extremal properties.

Ezample 2. Consider a stabilization problem for
oscillating system (Sussmann et al., 1994)

&y = T2, &y = —x1 + T3,

I3 = X4, T4 = —T3 + U, (11)
where (z1,%2,%3,%4) are as usual coordinates of
state, u is a control. For system (11) the bounded

stabilizing feedback constructed in (Sussmann et
al., 1994) has the form

sat(29(—xz1 + x3 + x4))
59 )(12)

u = —sat <x4 +

where |u(t)| < 1, sat(s) = sgn(s) min{|s|,1}.

Introduce the accompanying optimal control prob-
lem

e

/|u(t)|dt — min,

0
1 = @2, T2 = —x1 + 3,
Ty = X4, T4 = —T3 + U,

21(0) = 3 (1), 22(0) = w3 (7),
23(0) = (1), 24(0) = 23 (7),
2:(0) =0, i = 1,4,

()| <1, te T =1,

o], (13)

here z* (1) = (27 (1), x5 (1), 25 (1), z; (7)) is a state
of (13) at a current instant 7.

On Fig. 4 one can observe and compare both
the transient in (11) closed by (12) (the curve
1) and the transient constructed by the use of
the feedback solution of accompanying optimal
control problem (13)(the curve 2).

At constructing stabilizing feedbacks engineers do
not restrict themselves by obtaining asymptoti-
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Fig. 4. Behaviour of z} at using feedback (12)
and the feedback for (13)

cally stable closed systems. They take into consid-
eration also quality of transients. Except of inte-
gral criteria of the estimate of quality very popular
among engineers are: degree of stability, degree of
oscillations, degree of overcontrol, monotonicity
etc. The suggested approach to the solution of
optimal synthesis problems proves to be rather
effective at obtaining the mentioned indices of
quality if the accompanying problem is chosen in
an appropriate way.

Ezample 3. Let the output signals y(t) = x4 (¢), t >
0, of system (11) have to possess the degree of
stability o > 0 :

21 (8)] < aexp(—at) > 0,

While solving the accompanying optimal control
problem to stabilize system (11), the following
parameters were chosen © = 8, h = 04, 2§ =
(0.1.0.1.0.1.0.1).

On Fig. 5 lines 4, 5 stand for the restrictions on
the output signal. Curves 1, 2 correspond to the
cases 1) a = 0.1, a = 0.2; 2) a = 0.5, a = 04,
curve 3 denotes y(t) = z1(t), t > 0, when the
restrictions on outputs are omitted.
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Fig. 5. Behaviour of z} at 1) a = 0.1, a = 0.2
(curve 1); 2) a = 0.5, a = 0.4 (curve 2); 3) no
restrictions on y(t) (curve 3)

The results given above were prolongated to non-
stationary systems, multidimensional controls,
systems with delay (Gabasov et al., 1999b) , dis-
tributed parameter systems, nonlinear control sys-
tems. The algorithms were tested by computer on

the stabilization problems for the inverted pendu-
lum (Furuta et al., 1999), the problem of damping
oscillations of a string (Gabasov et al., 1999aq).

5. CLASSICAL PROBLEM OF REGULATION

Let a control system be described by (1) where
controls u(t), ¢t € T, satisfy the inequality |u(t)| <
L, t > 0. Introduce a set Xg = {x € R" : Az +
buy, =0, |ug| < L}. Elements of Xy are said to be
admissible equilibrium states of (1).

Definition 3. For given L, 0 < L < 400, a vector
z € intXp and a domain G € R", a function

u=uy(x), z€Gq, (14)

is said to be a feedback solving the classical
problem of regulation for (1) in G if 1) u,(z) = uy;
2) |uz(z)] < L, z € G; 3) the closed system

&= Az +buy(z), x(0) =z9 € G, (15)

has a solution z(t) € G, t > 0; 4) the equilibrium
state z(t) = z, t > 0, of (15) is asymptotically
stable in G.

From the point of view of applications it is impor-
tant that in addition to the mentioned 5) domain
of attraction G of z would be sufficiently large;
6) transients of (15) possess in some sense a high
quality.

Example J. Consider a crane that transfers the
load hanging on cable from one equilibrium state
to the vicinity of another (Fig. 6). The linearized
model has the form

(M +m)i —mHp = u,
I¢+mgHp =mHZ, (16)

z(0) = (0) =0, ¢(0) = ¢(0) =0,
z(t) = z, (t) = 0, @(t) =0, ¢(t) =0,

where z: deviation of the crane from the equi-
librium state, ¢: deviation of the cable from the
vertical, M: mass of the crane, m: mass of the
load, H: the distance from the crane to the center
of inertia of the load, I: moment of inertia of
the load relatively to the point of the suspension.
Choose parameters of (16) putting M =7, m =
3, H=3, g=10, I = mH? = 27. Then system
(16) takes the form

'2.71 = T2, Zbg = —30/75[71 + 1/71,1,,
i‘g = T4, i‘4 = —100/211’1 + 1/21u (17)
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Fig. 6. A crane with its load on the cable. z is a
new equilibrium state

Introduce the accompanying optimal control prob-
lem

)
/|u(t) — u,|dt — min,
0
1 = To, $2 = —30/Tx1 + 1/Tu,
T3 = x4, £4 = —100/21x; + 1/21u,
21(0) = x2(0) = x3(0) = z4(0) = 0,
21(0) =6, 22(0) = x3(0) = 24(0) =0,
lu(t)| < L, t € T =0,0]. (18)

In the given computer experiments two values of ©
were taken: 1) © = 5; 2) © = 10. The behaviour z
is given on Fig. 7, Fig 8 where curves 1 correspond
to ©® = 5, curves 2 stand for © = 10.

T
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Fig. 7. Behaviour of x = 2, at © =5, 10
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Fig. 8. © =5 (curve 1), © =10 (curve 2)

6. A PROBLEM OF REALIZING GIVEN
MOTIONS

Consider dynamical system (1). Let together with
system (1) a motion

x=uay(t), t >0, (19)

be given. Motion (19) is said to be accessible (re-
alizable) if there exists such an admissible control
ug(t), |lup(t)| < L, t >0, that &;(t) = Az, (t) +
bug(t), t > 0. Let G € R" be a domain of phase
space of (1). Suppose z¢(t) € intG, t > 0.

Definition 4. A function
u=u(t,z), r€qG, t>0 (20)

is said to be a bounded feedback which realizes
motion (19) if 1) u(t,z;(t)) = us(t), t > 0; 2)
lu(t,z)] < L, ¢ € G, t > 0; 3) the closed system

& = Az + bu(t,z), z(0) € G, (21)

has a solution z(t), t > 0; 4) the solution z =
xy(t), t >0, of (21) is asymptotically stable in G.

If the motion © = ¢(t), t > 0, is a closed
curve, then the problem of constructing a bounded
stabilizing feedbacks arises at which the closed
system has a limiting cycle (¢), t > 0.

Ezample 5. Consider the control system

t=y+u, y=-z+u, (22)
which at ¥ = 0 has periodic solutions. Let the
closed curve [z*(t) —2]? +[y*(t) —2]* = 1 be given.
A bounded feedback was constructed (Gabasov et
al., 1999a). After the closure of system (22) this
curve became a limiting cycle (Fig. 9).

Fig. 9. Closed-loop system (22)

Ezample 6. Consider the control system

i+ x=u. (23)

At u(t) = 0, ¢ > 0, system (23) has periodic
solutions but they are not limiting cycles. Select



one curve z>(t) + y2(t) = 1, ¢t > 0, (y = i), and
use the method under consideration. Results are
given on Fig. 10.

Fig. 10. Closed-loop system (23)

Ezxample 7. Let the system

f—T+r=u (24)

which has no periodic solutions (u(t) = 0) and a
fixed motion

P +i?=1 (25)

be given. By virtue of using a bounded feedback
(Gabasov et al., 19994a), motion (25) became the
limiting cycle for the system closed by the con-
structed feedback (Fig. 11).

a 0 1
Fig. 11. Closed-loop system (24)

7. OPTIMAL CONTROL FOR NONLINEAR
SYSTEMS

Consider the nonlinear optimal control problem
c'z(t*) — max,

&= f(z) +bu, x(0) = o, (26)

Hz(t") = g,

where z = z(t) € R™; w = u(t) € R is a scalar
control from the class of discrete functions.

lu(®)] < L, teT =][0,t"],

At the local solution of problem (26) a linear ap-
proximation often leads to satisfactory results. In
our approach the solution of the problem for this
case consists of two procedures: 1) the solution
of the linearized optimal control problem, 2) the
asymptotic correction of approximate solutions
obtained (Gabasov et al., 1998). A peculiarity of
the approach is the use as the basis for iterations
switching points of the optimal controls. Switch-
ing points and the Lagrange multipliers are used
at asymptotic expansions of the second procedure.
At the global optimization of nonlinear control
system (26) the process of solving also consists of
two procedures. At first, a set X C R™ in which
processes of system (26) are studied is represented
as a unification of polyhedral sets X, X, ...,
X,, such that int X;N int X; = @, i # j. The
function f(z), x € X, in system (26) is replaced
by a continuous function f(z), z € X, linear on
each set X;, j =1,p. A number

5=I;lgz(<||f(w)—f(w)ll/llf(ﬂf)ll (27)

is said to be an accuracy of approximation. Then
the piecewise linear problem of optimal control
corresponding to (26) is solved. After that the
solution of piecewise linear optimal control prob-
lem is corrected by the asymptotic methods elabo-
rated for the piecewise quasilinear control systems
(Gabasov et al., 1998). To do this, problem (26)
is rewritten in the equivalent form

cz(t*) — max,

b= f@)+ Sga) +bu, 2(0) =20, (29)
Hz(t")=g, |u(@®)|<1, teT,

where g(z) = (f(2) — f(x))/s.

Then problem (28) is imbedded into the family of
problems

c'z(t*) — max,
&= f(z) + pg(@) +bu, z(0) =z, (29)
He(t) =g, (<1, teT,

depending on a small parameter pu.

To construct an asymptotic solution u®(t,z, i),
x € Xy, t € T, u > 0, for problem (29) with
any degree of accuracy s fast algorithms based on
solutions of linear and piecewise linear approxima-
tive problems have been elaborated (Gabasov et
al., 1998). Computer experiments have shown that
even at rather gross approximations of nonlinear



elements it is possible to obtain the solution with
sufficiently high accuracy.

Example 8. Consider the problem of optimal
damping of the pendulum

10
/u(t)dt —> min,
0
'2.71 = T2, j32:—sinm1 +U,
(30)
z1(0) = 1.5, 22(0) = z1(10) = z2(10) =0,
0 <u(t) <

0,
0.5, t € T =[0,10],
(

in the domain X = {(z1,22) : |z1] < 7/2}.

We use two approximations of the nonlinear ele-
ment —sinz;:

1) linear approximation —z1, z € X;

2) piecewise linear approximation (1—4/7)z,+1—
/2, x € X1 = {(z1,22) : w/4 <z <7)2}; —xy,
x € Xo = {(z1,22) : |z1| < w/4}. The accuracy
(27) of the linear approximation is 6; = 0.570796,
using the piecewise linear approximation one gets
02 = 0.110721.

Table 2 Open-loop controls

Control Switching Cost Endpoint

points function state

uW(t), teT  0.723, 2.419 1.696 0.017
7.006, 8.702 -0.517

ul(t), t€T  1.008,2.517  1.489 -0.012
7.547, 9.018 -0.056

ud(t), t€T  1.078, 2.593 1.509 -0.014
7.372, 8.877 -0.112

ul(t), t€T  1.065, 2.573 1.496 -0.001
7.553, 9.037 -0.009

u0(t,8),teT 1.065, 2.574 1.496 10—8
7.566, 9.049 10-8

Table 2 contains results of open-loop solution
to problem (30). Trajectories of system (30)
have been constructed by the following controls:
1) ud(t), t € T, is the optimal control of the linear
base problem (Gabasov et al., 1998); 2) ul(t), t €
T, is the realization of asymptotically 1-optimal
open-loop control for the fixed value p = 4; in
(29); 3) ud(t), t € T, is the optimal control of the
piecewise linear base problem; 4) ul(t), t € T, is
the realization of asymptotically 1-optimal open-
loop control for the fixed value u = d2; 5) u(t,6),
t € T, is the sample optimal open-loop control of
problem (30).

In each case the control has the form

o 0, te [0,t1[U[t2,t3[U[t4, 10[,
ult) = {0-5, t € [t1, t2[U[ts, tal. (3D
Let us construct the positional solution to prob-
lem (30). The realization u'*(t), t € T, was
constructed by the l-optimal controller (h =
0.01). Necessary values of auxiliary functions
(Gabasov et al., 1998) have been constructed

by the Fehlberg fourth-fifth order Runge-Kutta
method (Forsythe, 1977). The control u'*(t), t €
T, has the form (31) with switching points 1.06,
2.58, 7.567630, 9.039940 and the transition in-
stant between domains of linearity ©F = 1.21
of the piecewise linear approximative function.
At the instant t* = 10 the trajectory of system
(30) reaches the state (—0.000129,—0.000455),
the value of the cost function is 1.496155.

Now we consider the behaviour of the system
under the disturbance w*(t) = 0.4sin 3¢, ¢t € [0, 7],
w*(t) =0, t > 7, unknown for the controller:

i?l = T2, i?g = —sinxl +u+w*(t). (32)

Trajectories of system (32) have been constructed
under various realizations of the optimal feedback:
1) u*(t), t € T, has been constructed by the
l-optimal controller with calculating the values
of auxiliary functions by the method (Forsythe,
1977); 2) uls(t), t € T, has been constructed by
the 1-optimal controller with the use of the middle
box quadrature with IV knots for calculating the
values of auxiliary functions for N = 10, 50, 100,
300. The constructed controls have form (31). For
each of them the realized value of the transition
instant is ©7 = 1.39.

Table 3 Closed-loop controls

Control Switching Cost Endpoint
points function state
ul* (1), 1.3, 2.7 1.449196 0.00002
teT 7.7894, 9.2877 -0.00119
uls (t), 1.3, 2.7 1.469973  -0.00372
teT 7.7180, 9.2579 -0.00282
uds (t), 1.3, 2.7 1.449858  -0.00007
teT 7.7785, 9.2782 -0.00123
uldo(t), 1.3,2.7 1.449955 1076
teT 7.7784, 9.2783 -0.00120
udso(t), 1.3, 2.7 1.449982 0.00001
teT 7.7784, 9.2784 -0.00113

Table 3 contains switching points of the realiza-
tions, the corresponding values of the cost func-
tion and the endpoint states of system (32).

Example 9. Consider the mathematical model
of an inverted pendulum which is controlled by
horizontal movements of the pin (Astrom and
Furuta, 2000)

Z —sinz +ucosz = 0. (33)

Here z is an angle between the vertical and the
pendulum. Let z = z1, & = 5. The state (7, 0) is
the lower stable equilibrium of (33), (0,0) is the
upper unstable one. Denote

X ={(z1,22) : —w <zy <7} (34)

and divide domain (34) into subdomains X; =
{(1’1,1‘2) R S Tl S —37T/4}, X2 = {(1’1,1’2) :



—37(/4 S Iy S —7(/2}, X3 = {(1‘1,1’2) . —7T/2 S
x1 < —7m/4}, Xy = {(z1,22) : —7w/4d < 11 <
w/4}, X5 = {(z1,22) : 7/4 <z < 7/2},
.X6 = {(1’1,1’2) : 7T/2 S T S 37T/4}, X7 =
{(z1,22) 3r/4 < =z < 7}. In computer
experiments a piecewise linear approximation for
sinz and a piecewise constant approximation for
cos x were used.

Let the initial state zo = (7,0), values L, ©, h be
given. The problem is to transfer the pendulum
to the upper unstable state (0,0) and stabilize it.
Consider the auxiliary optimal control problem

(C]
[ —  min @)
0

= gt + 7T —u, Z’l(o) = Zlail(o) = %2,

t €[0,04];
PP=1—-n/4)2* +3/2—7/2 —u(l —4/7),
t € [01,0,];

B =(r/4-1)2° +7/2 -1 +u(d/7 - 1),

t € [02,03];
it =a2* —u, t €[03,0];
2H(0)) = /4, 22(0,) = 7w/2, 23(03) = 31 /4,
z4(0) =0, #4(©) =0; |ut)| < L, teT,

where
0} = 07(0) = ©7(x(0),%(0)),
05 = ©3(0) = ©5(2(0),%(0)),
05 = 05(0) = ©5(x(0),4(0))

are optimal moments of crossing boundaries of the
corresponding domains I : Xy, Il : X5, IIT :
Xe, IV : Xq, I = II,II - III,II] = IV.

At testing the algorithm (Gabasov et al., 1999a)
the influence of parameters L, © was studied. The
results are given in Table 4. The values of minimal
cost functions are given in the first line (corre-
sponds to the problem of damping the pendulum
to (0, 0)) and in the second line (corresponds
to the solution of problem (35) which gives a
realization of the feedback on the interval [0, 20]).

On Fig. 12 the trajectories of the closed-loop
system for different L, © are pictured. A curve
number corresponds to a number given in Table
4. The feedback realized for the piecewise linear
approximation of (33) by solving problem (35)
manages to damp out oscillations for nonlinear
model (33). The corresponding phase trajectories
are presented on Fig. 13 for ® = 3, L = 4. Both
the piecewise linear system and the original non-
linear system were closed by the optimal feedback
for (35). The curve 1 and the curve 2 correspond to

them. It can be seen from Table 4 that inequality
(10) holds.

Table 4 Influence of ©, L

o(h) L=4 L=2 L=1
3(0.1) 40.54041
21.77021,
4(0.1)  25.44218
21.64750,
5(0.2) 16.34493  17.79221
15.41292, 16.57428,
6 (0.2) 15.72967  16.70155
1441151,  16.41495,
8(0.2) 15.45285  16.44656  16.90072
1541129, 16.10531, 16.45942,
10 (0.4) 12.24193 1322911  13.61861
1223775, 13.10527, 13.45920,
12 (0.4) 12.23832  12.62847  12.92553
12.23775;  12.59836, 12.89541,
14 (0.4) 12.23457 1257533  12.75824
12.23331, 12.56470, 12.74239,
16 (0.4) 12.23309  12.56614  12.74453
12.228015 12.56647; 12.74238;
18 (0.4) 12.22947  12.46490  12.74237
12228015 12.464705 12.74238;
X
3
1 2 3

T

02T e T T 12 1n 18 18 20
Fig. 12. Trajectories of closed-loop system (33)

¥
0 (x(0),%(0))
-0.24
-0.49
064
-0.84

-1.29
1.4
-1.69
-1.84

0

Fig. 13. Phase trajectories of closed-loop system
(33) and its piecewise linear approximation

8. CONCLUSION

A method of constructing optimal feedbacks (po-
sitional solutions) is applied to the solution of
classical problems of regulation. Several control,



damping and stabilization problems are consid-
ered supplemented by the following examples:
damping of two-mass oscillating system, stabiliza-
tion of oscillating systems, the classical problem of
regulation, realization of given motions (or limit-
ing cycles), damping of pendulums. The optimal
feedbacks suggested have been tested on invari-
ance and robustness. These feedbacks preserve
their quality at the large variations of parameters
of control systems and under influence of consid-
erable disturbances.
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