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MPC algorithms are also presented via an example.

Keywords: Uncertain linear systems, Predictive control, Constraint satisfaction problems,
Convex programming, Minimax techniques.

1. INTRODUCTION

Model predictive control (MPC) has become an at-
tractive feedback strategy, especially for linear plants
subject to input and state/output inequality constraints
(Rawlings and Muske, 1993). More recently, attempts
at extending the basic strategy to uncertain linear
systems have also been accomplished in (Kothare et
al., 1996). The key idea used there was to explicitly
take into account the plant uncertainty by resorting
to a min-max cost index (minimizing the worst-case
value of the objective function, where the worst case
is taken over the set of all admissible plant uncer-
tainty). While most of the robust MPC literature deals
with polytopic or multi-model uncertain linear sys-
tems (see also (Casavola et al., 2000), (Scuurmans
and Rossiter, 2000) and references therein), in this
paper, instead, we propose a robust MPC strategy for
uncertain norm-bounded linear systems. The main de-
fect of polytopic MPC schemes is in their large numer-
ical burdens. It is well known, in fact, that the num-
ber of constraints grow exponentially with the control
horizon N. On the contrary, it will be shown that
such a growth in only linear in the proposed Norm-
Bounded (NB) MPC scheme while the control perfor-
mance remains essentially the same. On this subject,
Kothare et al. (Kothare et al., 1996) gave the first con-
structive solution for the case N = 0. More recently,

Primbs and Nevistic (Primbs and Nevistić., 2000) de-
veloped robustness analysis tools for optimization-
based control strategies, postulating the existence of
robust MPC schemes for NB uncertainty. However,
no algorithms were there presented. Therefore, at the
best of authors’ knowledge, this is the first algo-
rithm that solve the problem for arbitrary control hori-
zons N. The method is based on the minimization,
at each time step, of an upper bound of the worst-
case infinite horizon quadratic cost under LMI con-
straints derived by a recursive use of the S-procedure
(Yakubovich, 1992). It is found that the number of
LMI to be considered grows linearly with the control
horizon N. Finally, closed-loop stability and feasibility
properties are proved and comparisons with polytopic
MPC schemes are provided via an example.

2. PROBLEM FORMULATION

Consider the following discrete-time uncertain system
with uncertainties or perturbations appearing in the
feedback loop

Σ :




x(t + 1) = Φx(t)+ Gu(t)+ Bp p(t)
y(t) = C x(t)
q(t) = Cq x(t)+ Dq u(t)
p(t) = (∆q)(t)

(1)
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with x ∈ IRnx denoting the state, u ∈ IRnu the control
input, y ∈ IRnu the output, p,q ∈ IRnp additional vari-
ables accounting for the uncertainty. The uncertain
operator ∆ is block-diagonal ∆ = diag(∆1,∆2, . . . ,∆r),
with ∆i : IRni → IRni ,i = 1, . . . ,r. Note that ∆ can rep-
resent either a memoryless time-varying matrix with
‖∆(t)‖2 ≤ 1 , ∀t, or a convolution operator with the
operator norm induced by the truncated � 2-norm less
than 1, viz.

t

∑
j=0

pi( j)T pi( j) ≤
t

∑
j=0

qi( j)T qi( j) ,∀t ≥ 0 . (2)

i = 1, . . . ,r. It is assumed that the plant input is subject
to the following saturation-type constraints∣∣u j(k)

∣∣≤ u j,max, k ≥ 0, j = 1,2, . . . ,nu . (3)

The objective is to determine a state-feedback control
law

u(t) = g(x(t)) , (4)

such that the system (1) under the input constraint (3)
is asymptotically stable. We recall that the system Σ is
robustly stabilizable by a constant state-feedback gain
K if all the closed loop trajectories of (1) converge to
zero as t→ ∞. From the literature (Boyd et al., 1994),
it is well known that, when a linear state-feedback
control law is chosen, viz. u = K x, the system (1) is
quadratically stabilizable if there exist a matrix P =
PT > 0 and a set of scalars λ1,λ2, . . . ,λr > 0 such that
the following matrix inequality is satisfied


(

ΦT
K PΦK −P

+CT
q,K ΛCq,K

)
ΦT

K PBp

BT
p PΦK BT

p PBp−Λ


≤ 0 (5)

where ΦK � Φ + GK, Cq,K � Cq + Dq K and Λ �
diag(λ1 In1 , λ2 In2 , . . . , λr Inr). In order to solve the
design problem (4) in a receding horizon fashion,
we will denote as v(·|t) � {v(t + k|t}∞

k=0 the k-steps
ahead prediction of a generic system variable v when
the actual state is x̂(t|t) � x(t) and the plant input
is û(·|t). Moreover, let C(P,ρ) �

{
x ∈ IRn |xT Px≤ ρ

}
denote ellipsoidal sets which will be used in the sequel
to define robust positively invariant regions for the
predicted states of the uncertain system. The following
input strategy will be adopted

u(·|t) =
{

û(t + k|t) � K x̂(t + k|t)+ ĉ(t + k|t), k = 0,1, . . . ,N−1,

û(t + k|t) � K x̂(t + k|t), k ≥ N,
,

(6)
where ĉ(·|t) denotes N free terms and

x̂(·|t) � Φk
K x̂(t|t)+

k−1

∑
i=0

Φk−1−i
K (Gĉ(t + i|t)+Bp p̂(t + i|t)) (7)

the set-valued state predictions, computed under the
condition p̂(t + i|t)∈ S p̂(t+i|t) i = 0,1, ...,N−1, Sp̂(t+i|t)
being the set of all admissible perturbations along
the system trajectories corresponding to command se-
quences (6). It results that

Sp̂(t+i|t) � {p̂(t + k|t) | ‖p̂(t + k|t)‖2 ≤∥∥Cq,Kx̂(t + k|t)+ Dqĉ(t + k|t)∥∥2

}
(8)

Our control strategy will consist in determining, at
each instant t ∈ZZ+, an instance of (6) that satisfies the

saturation constraint (3) and minimizes the following
minmax quadratic index

V (x(t),P, ĉ(·|t)) �
N−1

∑
k=0

max
p̂(t+k|t)∈Sp̂(t+k|t)

‖x̂(t + k|t)‖2
Rx +‖ĉ(t + k|t)‖2

Ru

+ max
p(t+N|t)∈Sp̂(t+N|t)

‖x̂(t +N|t)‖2
P(t), (9)

where ‖x‖2
Q � x

′
Qx and P is computed at each time t =

0 on the basis of the initial state x(0) and satisfies next
LMI conditions (11)-(14). When N = 0, the problem
has been solved in (Kothare et al., 1996): at each time
step t solve

min
ρ,Q,Y,Λ

ρ (10)

subject to [
1 x(t)T

x(t) Q

]
≥ 0 , (11)



Q ∗ ∗ ∗ ∗
R1/2

u Y ρInu 0 0 0

R1/2
x Q 0 ρInx 0 0

Cq Q+ DquY 0 0 Λ 0
ΦQ+ GY 0 0 0 Q−Bp ΛBT

p


≥ 0

(12)
(asterisk denotes the corresponding transposed ele-
ment), where

Λ = diag(λ1 In1 , λ2 In2 , . . . , λr Inr) > 0 , (13)[
X Y

Y T Q

]
≥ 0 , with Xj j ≤ u2

j,max, j = 1,2, . . . ,nu ,

(14)
P � ρQ−1, K = Y Q−1.

In the sequel, for simplicity, we will consider the case
of a single uncertain block, viz. r = 1 or ∆ = ∆1.
The extension to the general case is direct and will
be presented elsewhere.

3. UPPER BOUND DERIVATION

In order to determine a suitable upper-bound to the
cost rewrite temporarily the right-hand term of (9) as

J(x(0),P,c(·|0)) = x(0)T Rx x(0)+
N−2

∑
i=0

{
x̂T (i+ 1|0)Rx x̂(i+ 1|0)+ ĉ(i)T Ruĉ(i)

}

+ x̂T (N|0)Px̂(N|0) + ĉ(N−1)T Ruĉ(N−1), (15)

where ĉ(i) � ĉ(i|0), Rx = CT Ry C, Ry = RT
y > 0, Ru =

RT
u > 0. Then, the following upper bound for (9) will

be derived

J̄ � xT (0)Rx x(0)+
N−1

∑
i=0

Ji , (16)

such that

max
p̂(i)∈Sp̂(i)

x̂T (i+1|0)Rx x̂(i+1|0)+ ĉT (i)Ru ĉ(i)≤ Ji, (17)

i = 0,1, . . . ,N−2 and

max
p̂(N)∈Sp̂(N)

x̂T (N|0)Px̂(N|0)+ ĉT (N−1)Ru ĉ(N−1)≤ JN−1 , (18)

so that the optimal synthesis problem stated in the
previous section can be rephrased as the following
guaranteed cost problem



Problem 1. Find a sequence of inputs u(·|0) such that
the upper bound J̄ is minimized.

In order to shorten the notational burden we will define
the following matrices, Θk

G �
[

Φk−1
K G Φk−2

K G . . . G
]
,

Θk
Bp

�
[

Φk−1
K Bp Φk−2

K Bp . . . Bp
]
, k = 1, . . . ,N,

χk � [
x(0)T ĉ(0)T ĉ(1)T . . . ĉ(k)T p̂(0)T p̂(1)T · · · p̂(k)T

]T
, (19)

Y k �
[

Φk
K Θk

G Θk
Bp

]
, (20)

Hk
k−1 �

[
CqΦk−1

K CqΘk−1
G Dq CqΘk−1

Bp 0nq×np

]
Hk

k−2 �
[

CqΦk−2
K CqΘk−2

G Dq 0nq×nu CqΘk−2
Bp 0nq×2np

]
.
.
.

.

.

.
.
.
.

Hk
0 � [

Cq Dq 0nq×((k−1)nu+knp)
]

Ek
u � diag

(
0(nx+(k−1)nu)×(nx+(k−1)nu), Ru, 0knp×knp

)

Ek
p,k−1 � diag

(
0(nx+knu )×(nx+knu ), 0(k−1)np×(k−1)np , Inp

)
Ek

p,k−2 � diag
(

0(nx+knu )×(nx+knu ), 0(k−2)np×(k−2)np , Inp , 0np×np

)
.
.
.

.

.

.
.
.
.

Ek
p,0 � diag

(
0(nx+knu )×(nx+knu ), Inp , 0(k−1)np×(k−1)np

)

(21)

3.1 Conditions for J0

Given x(0), the following inequality

max
p(0)∈Sp(0)

x̂(1|0)T Rx x̂(1|0)+ ĉ(0)T Ru ĉ(0)≤ J0 (22)

must be satisfied, where x̂(1|0) denotes the one-step
prediction. The inequality (22) is convex and its ex-
tremum is reached on the boundary of S p(0), say it
∂Sp(0), where

‖p̂(0)‖2 =
∥∥Cq x(0)+ Dq ĉ(0)

∥∥
2

Note that the previous equality can be rewritten as

χT
0

(
H0,T

0 H0
0 −E0

p,0

)
χ0 � χT

0 D0
p(0)χ0 = 0 . (23)

By observing that x̂(1|0)= ΦK x(0)+Gĉ(0)+Bp p̂(0),
the argument of (22) becomes

χT
0

(
Y 0,T RxY 0−E0

u

)
χ0 � χT

0 D0
J0

χ0 ,

and the related inequality to be satisfied is

χT
0 D0

J0
χ0 ≤ J0 . (24)

As a consequence, the conditioned inequality (22) can
be equivalently stated as


J0−χT

0 D0
J0

χ0 ≥ 0

∀χ0 ∈ IRnx+nu+np s.t.
χT

0 D0
p(0)χ0 = 0 .

(25)

By applying the S -procedure (see (Yakubovich, 1992)),
(25) is satisfied if there exists a no-zero scalar τ0

p(0) ∈
IR such that

J0−χT
0

(
D0

J0
+ τ0

p(0) D0
p(0)

)
χ0 ≥ 0 . (26)

∀χ0 ∈ IRnx+nu+np . The scalar is chosen by solving off-
line the following GEVP problem


min

τ0
p(0) 	=0

λ̄
(

D0
J0

+ τ0
p(0) D0

p(0)

)
subject to (

D0
J0

+ τ0
p(0) D0

p(0)

)
> 0 .

(27)

Once such a coefficient is determined, the following
equivalent LMI condition[

J0 χT
0

χ0

(
D0

J0
+ τ0

p(0) D0
p(0)

)−1

]
≥ 0 . (28)

results for (26) from the use of the Schur’s comple-
ments.

3.2 Conditions for J1

LMI (28) allows one to define the set Z 1
1 , an ellipsoidal

set that provides an outer approximation of the set of
all admissible one-step ahead state predictions x̂(1|0),
as follows

Z1
1 �

{
x̂(1|0)

∣∣ x̂(1|0)T Rx x̂(1|0)+ ĉ(0)T Ru ĉ(0)≤ J0
}

.
(29)

The above set can be equivalently formulated in terms
of χ0 as

Z̃1
1 �

{
χ0

∣∣∣χT
0

(
D0

J0 + τ0
p(0) D0

p(0)

)
χ0 ≤ J0

}
(30)

Then, the condition which must be imposed on J1 is

max
p̂(1)∈∂Sp(1)
p̂(0)∈∂Sp(0)
x̂(1|0)∈∂Z1

1

{
x̂(2|0)T Rx x̂(2|0)+ ĉ(1)T Ru ĉ(1)

}≤ J1 , (31)

where x̂(2|0) =
[

Φ2
K ΦK G G ΦK Bp Bp

]
χ1 repre-

sents two-steps ahead state predictions. The argument
of (31) can be rewritten as

χT
1

(
Y 2,T Rx Y 2 + E2

u,1

)
χ1 = χT

1 D1
J1

χ1 ,

and the conditions p̂(1) ∈ ∂S p(1), and p̂(0) ∈ ∂Sp(0)
become

χT
1

(
H2,T

1 H2
1 −E2

p,1

)
χ1 � χT

1 D1
p(1)χ1,

χT
1

(
H2,T

0 H2
0 −E2

p,0

)
χ1 � χT

1 D1
p(0)χ1 .

The condition on x̂(1|0) ∈ ∂Z 1
1 can be expressed as

χT
0

(
D0

J0 + τ0
p(0) D0

p(0)

)
χ0 = J0. This equation can be

rewritten in terms of χ1 by suitably adding zero blocks

inside
(

D0
J0 + τ0

p(0) D0
p(0)

)
becoming χT

1 D1
J(0)χ1 = J0.

Then, condition (31) is true if


χT
1 D1

J1
χ1 ≤ J1 ∀χ1 s.t.

χT
1 D1

J0
χ1 = J0

χT
1 D1

p(1)χ1 = 0

χT
1 D1

p(0)χ1 = 0 .

This conditioned inequality can be reduced to an un-
conditioned one via the S-procedure by finding no-
zero scalars τ1

J0
,τ1

p(1),τ
1
p(0) ∈ IR such that



J1−χT
1

(
D1

J1
+ τ1

p(1) D1
p(1) + τ1

p(0) D1
p(0)

)
χ1 +τ1

J0

(
J0−χT

1 D1
J0

χ1

)
≥ 0 . (32)

The scalars τ1
J0

,τ1
p(1),τ

1
p(0) can be chosen by solving

off-line the following convex optimization problem




min
τ1
J0

, τ1
p(1), τ

1
p(0) 	=0

λ̄
(

D1
J1

+ τ1
p(1) D1

p(1) + τ1
p(0) D1

p(0) + τ1
J0

D1
J0

)

subject to (
D1

J1
+ τ1

p(1) D1
p(1) + τ1

p(0) D1
p(0) + τ1

J0
D1

J0

)
> 0 .

(33)

Once such scalars have been determined, the inequal-
ity (32) can be rewritten as an LMI constraint using
the Schur’s complements as follows


 J1 + τ1

J0
J0 χT

1

χ1

(
D1

J1
+ τ1

p(1) D1
p(1) + τ1

p(0) D1
p(0) + τ1

J0
D1

J0

)−1


≥ 0 . (34)

3.3 Conditions for Jk

For the k-th term we have to satisfy

max
p̂(i)∈∂Sp(i)

x̂( j|0)∈∂Zk
j−1

{
x̂(k|0)T Rx x̂(k|0)+ ĉ(k−1)T Ru ĉ(k−1)

}≤ Jk , (35)

i = 0, . . . ,k− 1, j = 1, . . . ,k. The k-steps ahead state
prediction is given by

x̂(k|0) =
[

Φk
K Φk−1

K G . . . G Φk−1
K Bp . . . Bp

]
χk .

The constraint p̂(k−1)∈ ∂S p(k−1) can be expressed as

χT
k Dk

p(k−1) χk = 0,

where Dk
p(k−1) � Hk,T

k−1 Hk
k−1 − Ek

p,k−1. By following

the previous reasoning scheme, the condition p̂(k−
2) ∈ ∂Sp(k−2) becomes

χT
k Dk

p(k−2) χk = 0,

where Dk
p(k−2) � Hk,T

k−2 Hk
k−2−Ek

p,k−2, and so on until

p(0) ∈ ∂Sp(0), which is equivalently stated as

χT
k Dk

p(0)χk = 0,

with Dk
p(0) obtained as before. In order to better un-

derstand the constraints related to the state predictions
at the steps k− 2,k− 3, . . . ,1, we will start with the
constraint x̂(1|0) ∈ ∂Zk

1. This constraint, by consider-
ing the expression for ∂Z1

1 from (29), translates into
the following equality constraint

χT
0

(
D0

J0 + τ0
p(0) D0

p(0)

)
χ0 = 0.

By adding a proper number of zero blocks to

D0
J0 + τ0

p(0) D0
p(0),

we obtain that the condition x̂(1|0) ∈ ∂Z k
1 can be

expressed as

χT
k Dk

J0
χk = J0 � Jk

0 .

Further, we have to satisfy x̂(2|0) ∈ ∂Z k
2 that, by con-

sidering (32), can be expressed in terms of χ 2 as

χT
2

(
D1

J1
+ τ1

p(1) D1
p(1) + τ1

p(0) D1
p(0) + τ1

J0
D1

J0

)
χ2 = J1 + τ1

J0
J0 � Jk

1 .

By adding a proper number of zero blocks to the left
hand matrix, the previous equality can be written in
terms of χk as

χT
k Dk

J1
χk = Jk

1 .

Iteratively, we can obtain the condition for x̂(2|0) ∈
∂Zk

k−1 by considering that, in terms of χ k−1 we have

χT
k−1

(
Dk−1

Jk−1
+

k−2

∑
i=0

τk−1
p(i) Dk−1

p(i) +
k−2

∑
i=0

τk−1
Ji

Dk−1
Ji

)
χk−1

= Jk−1 +
k−2

∑
i=0

(
i

∏
j=0

τk−2− j
Jk−2− j

)
Jk−2−i � Jk

i ,

which, finally, can be expressed in terms of χ k,

χT
k Dk

Jk−1
χk = Jk

i ,

where Dk
Jk−1

can be obtained from Dk−1
Jk−1

+∑k−2
i=0 τk−1

p(i) Dk−1
p(i) +

∑k−2
i=0 τk−1

Ji
Dk−1

Ji
by adding proper zero blocks. Finally,

the argument of (35) is equal to

χT
k Dk

Jk
χk ,

where
Dk

Jk
�Y k,T Rx Y k +Ek

u,k−1

By grouping the inequality which represents (35) to-
gether with the constraints written so far, we have to
satisfy 



χT
k Dk

Jk
χk ≤ Jk ∀χk s.t.

χT
k Dk

J0
χk = Jk

0

χT
k Dk

J1
χk = Jk

1
. . .

χT
k Dk

Jk−1
χk = Jk

k−1

χT
k Dk

p(k−1)χk = 0
. . .

χT
k Dk

p(0)χk = 0 ,

By applying the S-procedure to this conditioned in-
equality we arrive, by determining no-zero scalars
τk

p(0), . . . ,τ
k
p(k−1), τk

J0
, . . . ,τk

Jk−1
, to the following LMI

constraint




Jk +
k−1

∑
i=0

(
i

∏
j=0

τk−1− j
Jk−1− j

)
Jk−1−i χT

k

χk

(
Dk

Jk
+

k−1

∑
i=0

τk
p(i) Dk

p(i) +
k−1

∑
i=0

τk
Ji

Dk
Ji

)−1



≥ 0 .

(36)

The procedure so explained is valid until k = N − 2;
in the next subsection we will express the conditions
for JN−1 and for the belonging of the state trajectory
at step N into the invariant terminal ellipsoid.

3.4 Terminal state conditions

The terminal condition on the state prediction is given
by

max
p̂(i)∈∂Sp(i)
x̂( j|0)∈∂ZN

j

{
x̂(N|0)T Px̂(N|0)+ ĉ(N−1)T Ru ĉ(N−1)

}≤ JN−1 ,

(37)



i = 0, . . . ,N − 1, j = 1, . . . ,N − 1. It is straightfor-
ward to observe the similarity with condition (35),
the difference being only on the weighting terminal
state matrix that is P instead of Rx. By direct substi-
tution, we have that the condition (37) is translated
into the following terminal state LMI ( ĴN � JN−1 +

∑N−1
i=0

(
∏i

j=0 τN−1− j
JN−1− j

)
JN−1−i)




ĴN χT
N

χN

(
DN

JN
+

N−1

∑
i=0

τN
p(i) DN

p(i) +
N−1

∑
i=0

τN
Ji

DN
Ji

)−1


≥ 0 . (38)

It remains to impose that

x̂(N|0) ∈C(P,ρ), ∀x̂(N|0) ∈ ∂ZN
N , (39)

which translates into the following invariant ellipsoid
LMI condition


ρ+ τF ĴN χT

N

χN

(
D̃N

F + τF

(
DN

JN
+

N−1

∑
i=0

τN
p(i) DN

p(i) +
N−1

∑
i=0

τN
Ji

DN
Ji

))−1


≥ 0 , (40)

where τF 	= 0 results from the use of the S-procedure
and can be obtained by solving off-line the following
GEVP problem

min
τF 	=0

λ̄
(
D̃N−1

F + τF D∗F
)

subject to
(
D̃N−1

F +θF D∗F
)
> 0

(41)
where

D∗F �
(

D̃N
F + τF

(
DN

JN
+

N−1

∑
i=0

τN
p(i) DN

p(i) +
N−1

∑
i=0

τN
Ji

DN
Ji

))
.

3.5 Algorithm NB-MPC

An implementable MPC algorithm which summarizes
all the previous conditions is as follows:

1. At time t = 0, given x(0), find

[Y,Q] � arg min
Y,Q,ρ,Λ

ρ (42)

subject to (11), (12), (13) and (14). Compute τ F

as in (41) be used in (40) in step 2);
2. At each time t ≥ 0 find ĉ∗(t|t), ĉ∗(t + 1|t), . . . ,

ĉ∗(t + N−1|t), the minimizer of

min
Ji ,ĉ(t+i|t), p̂(i), i=0...N−1

J̄ (43)

subject to (36) for k = 0,1, . . . ,N− 2, (38), (40)
and the input constraint

∣∣û(t + i|t) j
∣∣≤ u j,max, i =

0, . . . ,N−1, j = 1,2, . . . ,nu ;
3. feed the plant by û∗(t|t) = Kx(t|t)+ ĉ∗(t|t);
4. t← t + 1 and go to step 2.

Proposition 1. Let the NB-MPC scheme have solu-
tion at time t = 0. Then, it has solution at each future
time instant t, satisfies the input constraints and yields
an asymptotically (quadratically) stable closed-loop
system.

Proof: The demonstration is omitted for space limita-
tions. It is standard and can be obtained by following
the same arguments used in (Casavola et al., 2000).

4. A NUMERICAL EXPERIMENT

Consider the same two-carts/spring system of (Kothare
et al., 1996).







x1(τ +1)
x2(τ +1)
x3(τ +1)
x4(τ +1)


 =




1 0 0.1 0
0 1 0 0.1

−0.1
K
m1

0.1
K
m1

1 0

0.1
K
m1

−0.1
K
m1

0 1







x1(τ)
x2(τ)
x3(τ)
x4(τ)




+




0
0

0.1
m1
0


 u(τ) ,

y(τ) = x2(τ) .
(44)

Here, x1 and x2 are the positions of body 1 and 2,
and x3 and x4 their respective velocities. m1 and m2

are the masses of the two bodies and K is the spring
constant. For the actual system used in the simulation
we consider m1 = m2 = 1, K = 1 with appropriate
units. The spring constant is assumed to be uncertain
in the range Kmin := 0.25 ≤ K ≤ 1 =: Kmax. The
uncertainty on K is modelled as a norm bounded
uncertainty on δ = (K−Knom)/Kdev, δ2 ≤ 1, and we
have

Φ =




1 0 0.1 0
0 1 0 0.1

−0.1Knom 0.1Knom 1 0
0.1Knom −0.1Knom 0 1


 ,

Bp =




0
0
−0.1
0.1


 ,

Cq =
[

Kdev −Kdev 0 0
]
, Dq = 0

where Knom = 1
2 (Kmax + Kmin) and Kdev = 1

2 (Kmax−Kmin).
We shall assume that the state is available and the
problem consists in unit-step output tracking of y. In
all simulations we have used Ru = 1, Rx = H ′Ry H,
with Ry = 1 and saturation constraints |u| ≤ 0.1. Fig.

Table 1. Comparison of numerical complexity
per step

Flops per step N=1 N=2 N=3 N=4
Algorithm NB-MPC 2167 4578 7828 11996

Algorithm A1 3557 10930 29842 76741

1 shows the output and input for the proposed NB-
MPC algorithm for N = {1,2,3,4} whereas Figs. 2-
3 report comparisons between the NB-MPC and the
polytopic MPC scheme A1 of (Casavola et al., 2000)
for N = {2,4} respectively. As there clearly results,
a similar control performance has been obtained by
using the two different descriptions for the uncer-
tain system (structured uncertainty and polytopic one).
Moreover, as expected, the use of increasingly larger
control horizons improves the control performance
at the expenses of increasingly larger computational



burdens for both types of uncertainty. However, as
reported in Table 1 the NB-MPC algorithm shows a
remarkable reduction of the computational complexity
for all control horizons.

5. CONCLUSIONS

We have presented a new predictive controller which
robustly asymptotically stabilizes an input constrained
uncertain linear system with norm-bounded uncertain-
ties. The receding horizon control strategy is based on
the minimization, at each time instant, of a convex
optimization problem costing an upper bound of a
minmax quadratic index, under the constraint that all
future states are robustly steered within N-steps into
a feasible positively invariant set. The S -procedure
plays a crucial role in determining the convex con-
straints of such an optimization problem. A signif-
icant reduction of the computational burden and no
control performance loss with respect to the polytopic
paradigm has been observed from the numerical ex-
periments. This results especially true for large values
of the control horizon N and when the number of
vertices of the polytopic family is high.
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Primbs, J. A. and Nevistić, V. (2000). A framework
for robustness analysis of constrained finite re-
ceding horizon control. IEEE Trans. Auto. Con-
trol, 45, 1828–1838.

Rawlings, J. B. and Muske, K. R. (1993). The stability
of constrained receding horizon control. IEEE
Trans. Auto. Control, 38, 1512–1516.

Schuurmans, J. and Rossiter, J.A. Robust predictive
control using tight sets of predicted states. IEE
Proccedings Control Theory and Applications,
147, 13–18.

Yakubovich, V. A. (1992). Nonconvex optimization
problem: The infinite-horizon linear-quadratic
control problem with quadratic constraints. Sys-
tems and Control Letters, 19, 13–22.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1
Regulated output

NB−MPC: N=1
NB−MPC: N=2
NB−MPC: N=3
NB−MPC: N=4

0 50 100 150 200 250 300 350 400
−0.05

0

0.05

0.1
Plant input

sec.

NB−MPC: N=1
NB−MPC: N=2
NB−MPC: N=3
NB−MPC: N=4

Fig. 1. Regulated plant output and input for N =
{1,2,3,4}
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Fig. 2. Polytopic vs Norm-bounded: output and input
for N = 2
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Fig. 3. Polytopic vs Norm-bounded: output and input
for N = 4


