
USING CHAOS TO IMPROVE GENERALIZATION
IN SMART NN CONTROL DESIGN 1

Cong Wang ∗,2 Guanrong Chen ∗,3 Shuzhi S. Ge ∗∗,4

∗ Department of Electronic Engineering
City University of Hong Kong, Hong Kong SAR, P. R. China

∗∗ Department of Electrical & Computer Engineering
National University of Singapore, Singapore 117576

Abstract: In this paper, a smart NN control scheme is proposed. This scheme is
designed such that the current control action can utilize the knowledge that the
NN learned from the past control process. A chaotic signal is employed as the
reference signal to improve the generalization ability of the NN in the training phase
of the scheme, where the complex chaotic signal offers much more information for
NN learning thereby significantly improving the efficiency of the NN generalization.
Compared with most of the adaptive neural controllers, the smart neural controller (in
the operational phase) is a static and low-order controller, and thus needs much less
computational resources, and is more feasible in practical implementation. Simulation
studies are included to demonstrate the effectiveness of the new control scheme.

Keywords: Neural network (NN), smart NN control, generalization, chaos

1. INTRODUCTION

Over the past decade, adaptive neural control of
uncertain nonlinear systems has attracted consid-
erable interest, and significant progress in this area
has been achieved in both theoretical studies and
practical applications (see, e.g., Lewis et al., 1999;
Ge et al., 2001; and the references therein). In the
adaptive neural control approaches, neural networks
are mostly used as function approximators. One
advantage of the adaptive neural control design is
that both stability and control performance of the
closed-loop can be guaranteed by suitably choosing
the design parameters. However, it is noticed that
in most existing adaptive neural control approaches,
the neural networks used have to learn the uncer-
tainties throughout each control process over and
over again. In other words, the controller does not
utilize the knowledge that the neural network has
learned previously in the earlier control processes.

1 Supported by the Hong Kong RGC under the CERG Grant
No. 9040579
2 E-mail: cwang@ee.cityu.edu.hk
3 Corresponding author: gchen@ee.cityu.edu.hk
4 E-mail: elegesz@nus.edu.sg

All the weights of the NN have to be updated in each
control process, where most elements of the control
process, such as the plant, the reference signal, the
initial conditions, and the control parameters are
kept unchanged. Moreover, with a large number of
neurons being updated simultaneously, adaptive NN
controllers are in general very high-order dynami-
cal controllers, and thus they are complicated and
expensive for implementation in practice. Finally,
the generalization ability of neural networks is not
considered in such adaptive neural design. From a
neural network learning point of view, oftentimes
the purpose of using a neural network is to gen-
eralize, i.e., to process inputs not necessarily in
the training set from which the NN can provide
meaningful outputs. With all these issues consid-
ered, the adaptive neural controllers proposed thus
far are believed to be “not smart,” at least not as
“smart” as desired, at least for the reason that many
basic properties of NNs have not been explored and
utilized. Therefore, “smarter” NN controllers are
expected.

In this paper, we propose a smart neural control
scheme that can utilize the knowledge that the NNs

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

learned from past control processes. The scheme is
composed of two phases: the training phase and the
operational phase, or what is called the general-
ization phase. In the training phase, the uncertain
nonlinear system is controlled by an adaptive neural
controller to track a desired reference signal. The
employment of the adaptive neural controller guar-
antees the stability and control performance of the
closed-loop system. For the facility of utilizing the
knowledge learned in this training phase, RBF NNs,
instead of MNNs, are used as function approxima-
tors due to its spatially localized learning capability.
The weights of the NNs are tuned on-line to learn
the unknown nonlinearities in the desired controller.
In the operational phase, the same uncertain system
is controlled by the smart neural controller, where
the weights of the well-trained RBF NNs are fixed
to some values obtained from the training phase.
The tuning of the weights are completely turned
off. Compared with the adaptive neural controller
in the training phase, the neural controller in the
operational phase becomes “smarter”, since it ex-
ploits the knowledge the NNs learned from previous
control process, and it is in character a static, low-
order controller, which means that the implemen-
tation of such controller is much simplified. It will
be shown that under the condition that the RBF
NNs are well-trained in the training phase such
that some kind of generalization ability of RBF
NNs has been obtained (to be detailed in Section
2), the smart neural controller in the operational
phase can accomplish the same tracking task, i.e.,
the output of the controlled system converges to a
small neighborhood of the desired reference signal.

Since the tuning of the NN weights are turned off in
the operational phase, the NNs may not be able to
approximate the unknown nonlinearities correctly
when the inputs to the NNs take different values
as compared with those in the training phase. In
this case, the possibly invalid of NN approximation
may cause some extra problems, such as the de-
motion of control performance, and even more, the
loss of the closed-loop stability. Therefore, for the
applicability of the smart neural controller in the
operational phase, it is essential for the RBF NNs
to obtain certain level of generalization ability from
the adaptive neural control process. It is well known
that necessary conditions for good generalization
include (Haykin, 1999): (i) the unknown function to
be approximated is smooth enough; (ii) the training
set is a sufficiently large and representative subset in
the parameter space. To improve the generalization
for smooth functions in case of a small training
set, injecting artificial noise (jitter) into the inputs
during training was proposed in (Holmstrom and
Koistinen, 1992). Training with jitter works be-
cause, with similar inputs, the desired outputs will
all be similar due to the smoothness of the functions
to be approximated. However, it is usually difficult

to determine the amount of jitter, since too much of
it will obviously produce garbage, while too little
of it will not have much effect (Holmstrom and
Koistinen, 1992). Moreover, injecting artificial noise
might damage the stability of the closed-loop system
even if the noise is in an exponentially decaying
disturbance form (Krstic et al. 1995). Thus, without
taking particular action to cope with the artificial
noise, using jitter to improve NN generalization is
not an effective method in the training phase of the
smart neural control scheme.

In the literature of adaptive neural control, periodic
signals are commonly used as reference signals, and
the convergence of the controlled system’s output to
a small neighborhood of a periodic reference signal is
usually guaranteed. From the perspective of neural
network training, the control task of tracking to
a periodic reference signal will lead to a limited
training set for the neural networks in the adaptive
neural controller. The insufficiency of the training
set cannot make the RBF NNs well trained to have
“good generalization” ability.

To provide a larger training set for better gener-
alization of RBF NNs, in this paper, we employ a
chaotic reference signal in the training phase, on
the basis of the well-known ergodicity of chaos. The
ergodicity of chaos (see, e.g. Chen and Dong, 1998)
implies that a chaotic trajectory has a dense set of
periodic orbits of different periods, and it passes
arbitrarily closely by any spatial point within the
bounded chaotic attractor of the system. Utilizing
this ergodicity of chaos in the training phase, all the
inputs to the NNs in the adaptive neural controller
become non-periodic. Thus, compared with training
with periodic reference signals, the seemingly simple
employment of chaotic reference signals can provide
a much larger training set for better generalization
of RBF NNs. Moreover, the stability and control
performance of the closed-loop system can be more
easily guaranteed than training with jitter. In the
operational phase to follow, the well-trained neuro-
controller will be able to track any of the periodic
or non-periodic trajectories nearby the chaotic at-
tractor, with good generalization ability.

To summarize, by resolving some problems in the
current adaptive neural control research, the smart
neural control scheme can learn from the past ex-
perience, and finish the same control task in a
“smarter” way. In this sense, we make feasible a
class of neural control methods that can act in a
way similar to the control process of human in learn-
ing to accomplish some complicated control tasks.
We also reveal that chaos can be quite beneficial
to engineering design and applications if appropri-
ately utilized (Chen and Dong, 1998). Simulation
studies are conducted to verify the effectiveness of
the scheme. The idea of the smart neural control
design can be extended to many classes of uncertain

nonlinear systems, and is expected to be applicable
to a wide variety of industrial applications.

2. SMART NN CONTROL DESIGN

In this section, we present a “smart” neural control
scheme. Since RBF NNs (instead of MNNs) are used
as approximation models in the scheme, the reason
for choosing RBF networks is firstly explained in the
following subsection.

2.1 RBF NNs

The RBF NNs belong to the class of local approx-
imators where each basis function can only locally
affect the network output. In other words, RBF NNs
store information locally in a transparent fashion.
The adaptation in one part of the input space does
not affect knowledge stored in a different area, i.e.,
they have spatially localized learning capability. As
will be shown later, it is the local property of RBF
NNs that makes it simple to utilize the “experience”
gained from the past control processes.

In the following, we first give a brief introduction
to the RBF NNs. For a continuous function f(Z) :
Rq → R, it has been shown (see, e.g., Haykin,
1999) that a RBF NN WTS(Z) can be used to
approximate f(Z) over a compact set ΩZ ⊂ Rq to
arbitrary any accuracy, i.e.,

f(Z) =W ∗TS(Z) + ε, ∀Z ∈ ΩZ (1)

where the input vector Z ∈ Ω ⊂ Rq, the weight vec-
tor W = [w1, w2, · · · , wl]T ∈ Rl, W ∗ represents the
ideal constant weights, and ε is the approximation
error; S(Z) = [s1(Z), · · · , sl(Z)]T , with si(Z) being
the following Gaussian functions:

si(Z) = exp
[−(Z − µi)T (Z − µi)

η2
i

]
, i = 1, 2, ..., l

where µi = [µi1, µi2, · · · , µiq]T is the center of the
receptive field and ηi is the width of the Gaussian
function.

2.2 Training Phase

To illustrate the basic ideas of smart neural control
scheme, we begin with a simple second-order non-
linear system in the following Brunovsky form:

ẋ1 = x2

ẋ2 = f(x1, x2) + g(x1, x2)u
y = x1

(2)

where x̄ = [x1, x2]T ∈ R2, u ∈ R , y ∈ R
are the state variables, system input and output,
respectively and f(x1, x2) and g(x1, x2) are both
unknown smooth nonlinear functions.

The control objective is to design an adaptive neural
controller for system (2) such that (i) all the signals
in the closed-loop remain semi-globally uniformly
ultimately bounded, and (ii) the output y follows a
desired trajectory yd generated from the following
reference model:

ẋdi = fdi(xd)
yd = xd1

(3)

where xd = [xd1, xd2, · · · , xdm]T ∈ Rm are the
states, yd ∈ R is the system output, fdi(·), i =
1, 2, · · · ,m are known smooth nonlinear functions.
Assume that the states of the reference model re-
main uniformly bounded, i.e., xd ∈ Ωd, ∀t ≥ 0.

Assumption 1. The sign of g(x1, x2) is known, and
there exist constants g1 ≥ g0 > 0 such that g1 ≥
|g(x1, x2)| ≥ g0 ∀x̄ ∈ Ω ⊂ R2.

Using an RBF NN, the adaptive neural controller
can be obtained from (Ge et al., 2001)

u = −z1 − c2z2 − ŴTS(Z) (4)

where z1 = x1 − yd, z2 = x2 − α1, Z = [x1, x2, α̇1]T

with α1 = −c1z1 + ˙xd1, c1, c2 > 0 are design

parameters, and α̇1 = ∂α1
∂x1
ẋ1 +

(
∂α1
∂xd

)T

ẋd =

−c1x2 +
∑m

i=1
∂α1
∂xdi

fdi is an intermediate variable

which is computable. The RBF NN ŴTS(Z) is
used to approximate the unknown function h(Z) =

1
g(x1,x2)

(f(x1, x2)− α̇1), where Ŵ is the estimate of
W ∗, and is updated via

˙̂
W = ˙̃

W = Γ[S(Z)z2 − σŴ] (5)

where W̃ = Ŵ −W ∗, σ > 0 is a small constant, and
Γ = ΓT > 0.
Lemma 1. Consider the closed-loop system consist-
ing of the plant (2), the reference model (3), the
controller (4), and the NN weight updating law (5).
Assume there exists a sufficiently large compact set
ΩZ ∈ R3 such that Z ∈ ΩZ for all t ≥ 0. Then,
for bounded initial conditions in ΩZ , all signals in
the closed-loop system remain bounded, and the
output tracking error y(t) − yd(t) converges to a
small neighborhood around zero by appropriately
choosing design parameters.

Proof: See (Ge et al. 2001). ♦
Apart from the convergence of y(t) to a small neigh-
borhood of yd(t), it can also be proven that Ŵ−W ∗

converges to a neighborhood of zero. However, due
to the exitance of the NN approximation errors, it is
clear that the exact convergence of Ŵ toW ∗ will not
be achieved. Due to the local property of the RBF
NN, specifically, the property that |si(Z)| become
very small for sufficiently large values of radius |Z−
µi|, the convergence of Ŵ to a neighborhood of W ∗

implies that

h(Z) =W ∗TS(Z) + ε = ŴTS(Z)− W̃TS(Z) + ε

= ŴTS(Z) + ε1, ∀Z ∈ ΩZ1 (6)

where ε1 = ε − W̃TS(Z) is the practical approx-
imation error in the training phase, with possibly
|ε1| > |ε|, ΩZ1 denotes the region in which the
NN input Z visits during the training phase, with
ΩZ1 ⊆ ΩZ ⊂ R3.

Remark 1. From the adaptation law (5), it can be
seen that for the neurons whose centers are far away
from the trajectories of inputs Z, |S(Z)| will become
small due to the local property of the RBF NN. In
this case, the weights of these neurons will converge
to zero because of the term −σŴ in Eq. (5). This
means that only the neurons whose centers are close
to the trajectories of input Z will be activated and
updated in the training phase.

2.3 Operational Phase

The control task in this phase is to achieve tracking
of output y to the same or similar reference signal yd

(still generated from the reference model (3)), under
the restriction that the tuning of the neural weights
is turned off. To fulfill this task, we still exploit
the local property of RBF NNs. The weight of each
neuron in the NNs is chosen as the value which is
related to the maximum value of the neural weight
in the training phase. All of the neural weights are
then fixed to the chosen values and do not need to
be updated again.

The proposed smart neural controller is chosen as

u = −z1 − c2z2 −WT
S(Z) (7)

where z1 = x1 − yd, z2 = x2 −α1, Z = [x1, x2, α̇1]T ,
α1 = −c1z1 + ẋd1, and the NN weights W =
[w̄1, · · · , w̄l]T ∈ Rl are chosen as

w̄i = λ ŵi(timax), i = 1, · · · , l (8)

where timax = {t ∈ [0,∞)|maxt∈[T0,T1] |ŵi(t)|},
0 < λ < 1 is a constant. Ŵ = [ŵ1, · · · , ŵl]T ∈ Rl

are obtained from the training phase, [T0, T1] with
T1 > T0 > 0 represents a piece of time segment
within the training phase after the transient process.

Proof: The selection of W = [w̄1, · · · , w̄l]T in (8)
is based on the localized feature of RBF networks.
With the spatially localized basis function S(Z),
the adaptation law (5) makes the response of each
neuron in the RBF NN only sensitive to local regions
of input space. Thus, it is intuitively understandable
that in the training phase, the ith neuron’s weight
ŵi(t) reaches its maximum value only when the
input trajectory passes the region which is closest to
the receptive field center of this neuron. By choosing
W = [w̄1, · · · , w̄l]T according to (8), the unknown

nonlinearity h(Z) can be approximated byW
T
S(Z)

to an accuracy as good as using ŴTS(Z), i.e.,

h(Z) =W ∗TS(Z) + ε = ŴTS(Z) + ε1

=W
T
S(Z) + ε2, ∀Z ∈ ΩZ1 (9)

where ε2 > 0 is the approximation error in the
operational phase, and |ε1| − |ε2| is a small value.
Moreover, due to the generalization ability of NNs,
it can be reasonably expected that the smooth
function h(Z) can still be approximated in the
region nearby ΩZ1 , i.e.,

h(Z) =W
T
S(Z) + ε3, ∀Z ∈ ΩZ2 (10)

where ΩZ2 denotes the region which is close to ΩZ1 ,
and ε3 > 0 is the approximation error in this region
with |ε2| − |ε3| being a small value. Note that it
is not necessary to achieve accurate approximation
using W

T
S(Z) in both ΩZ1 and ΩZ2 , since what

we seek is to exploit Ŵ (t) effectively such that the
same tracking task can be accomplished.

Since the smooth unknown function h(Z) can be
approximated by W

T
S(Z) to the accuracy ε2 (in

(9)) and ε3 (in (10)) which are close to ε1, following
the similar procedure in the proof of Lemma 1, the
tracking error y − yd can be proven to converge to
a neighborhood of zero, which is as small as using
ŴTS(Z) in the training phase. ♦
Remark 2. The above result can be extended to
many other classes of uncertain nonlinear systems
such as those discussed in (Lewis et al., 1999; Ge et
al., 2001).

2.4 Simulation Studies

To verify and test the smart NN control scheme,
the following van der Pol oscillator system (see, e.g.
Nicolis and Prigogine, 1989) is taken as the plant
for control:

ẋ1 = x2 (11)

ẋ2 =−x1 + β(1− x2
1)x2 + (1.5 + 0.3 cos(x1))u

y= x1

where β > 0 is a system parameter (β = 0.7 in this
paper), the smooth functions f(x1, x2) = −x1 +
β(1 − x2

1)x2 and g(x1, x2) = 1.5 + 0.3 cos(x1) are
assumed to be unknown to the controller u. The
desired trajectory yd is generated from the following
Brusselator model (Nicolis and Prigogine, 1989):

ẋd1 =A− (B + 1)xd1 + x2
d1xd2

ẋd2 =Bxd1 − x2
d1xd2 (12)

yd = xd1

where xd1 and xd2 are system states, A,B > 0
are system parameters. As shown in (Nicolis and

Prigogine, 1989), the phase-plane trajectories of
the Brusselator model approach a limit cycle when
B > A2 + 1 (the solid line in Fig. 1, with A = 0.4,
B = 1.2). The phase-plane trajectories becomes
a chaotic attractor when A is modulated by the
harmonic law: A = A0 + a cos(ωt) (the dashdotted
line in Fig. 1, with A0 = 0.4, B = 1.2, a = 0.05 and
ω = 0.81).

Firstly, the periodic signal is employed as the ref-
erence signal for training the RBF NN during the
training phase. The adaptive neural controller (4)
is used to control the uncertain system (12). The
weights of the NN are updated online according to
Eq. (5), so as to learn the unknown nonlinearity
h(Z) = (1

g(x1,x2)
(f(x1, x2)− α̇1) in the desired con-

trol.

In the following operational phase, system (12) is
controlled by the designed smart neural controller
(7), where the tuning of the weights are set off and
the NN weights are chosen according to Eq. (8), with
λ = 0.75.

In the simulation, the RBF NN, ŴTS(Z), contains
125 nodes (i.e., l = 125), with centers µi (i =
1, · · · , l) evenly spaced on [0, 1.2] × [−0.6, 0.6] ×
[−0.6, 0.6], and with widths ηi = 0.3 (i = 1, · · · , l).
The design parameters of the above controller are
c1 = 0.7, c2 = 0.7, Γ = diag{3.0}, σ = 0.2. The
initial weights Ŵ (0) = 0.0, the initial conditions
[x1(0), x2(0)]T = [0.5, 0.2]T and [xd1(0), xd2(0)]T =
[0.2, 0.3]T .

From Figs. 2-3, we can see that the output of the
system converges to a small neighborhood of the
target periodic signal. The tracking performance
shown in Fig. 3 becomes worse as compared with
that shown in Fig. 2. This is due to the poor
generalization ability of the NN when trained with a
periodic signal, and this will be improved by using a
chaotic reference signal in the smart neural control
scheme, as to be further discussed in next section.

3. CHAOS IMPROVED NN GENERALIZATION

For the applicability of the smart neural controller
in the operational phase, it is essential to make both
ΩZ1 and ΩZ2 as large as possible, so that the NN
approximation of h(Z) is still valid. For this pur-
pose, in this section, we employ a chaotic reference
signal in the training phase based on the ergodicity
of chaos. In the training phase, when tracking to the
chaotic reference signal is achieved, all the inputs
to the NN of the adaptive controller become non-
periodic. The tracking to a chaotic reference signal
will make much more neurons in the RBF networks
being activated and updated, and thus can provide
a much larger training set than using a periodic
reference signal. The stability of the closed-loop sys-
tem is not damaged compared with using scattering
jitter. With this learning, in the operational phase

to follow, the smart neural controller should become
more capable of tracking any given periodic or non-
periodic trajectory nearby the chaotic attractor,
thanks to the good generalization ability of the well-
trained RBF NNs in the controller.

To verify the effectiveness of this method, the
chaotic signal generated from the Brusselator is
employed in the training phase in this simulation.
Figure 4 shows the simulation results when the
controller (4) is applied to system (12) for track-
ing the chaotic signal yd (shown in Fig. 1). In the
operational phase, system (12) is controlled to track
the periodic signal again by using the smart neural
controller (7). Recall from Fig. 3 that this periodic
signal was not tracked satisfactorily by the same
controller trained by a periodic signal. In compari-
son, we can see, from the result shown in Fig. 5, that
fairly good tracking performance is obtained by the
controller after training by the chaotic signal. A de-
tailed comparison of tracking errors of the controller
by using these two different training signals is shown
in Fig. 6.

4. CONCLUSIONS

In this paper, a smart NN control scheme has been
designed. The smart NN controller needs much less
computational resources to complete the same task
as compared with adaptive neural controllers. The
generalization property of NNs is thus effectively
exploited and improved by using chaotic reference
signals. Simulation results have shown that appro-
priately utilizing chaos is indeed beneficial to en-
gineering design, and this potential of chaos ap-
plications in control systems engineering should be
further explored.

5. REFERENCES

Chen, G. and Dong, X. (1998). From Chaos to Or-
der: Methodologies, Perspectives and Applica-
tions, World Scientific Pub. Co., Singapore.

Ge, S. S., C.C. Hang, T.H. Lee and T. Zhang
(2001). Stable Adaptive Neural Network Con-
trol, Kluwer Academic Publishers, Norwell,
USA.

Haykin, S. (1999). Neural Networks: A Comprehen-
sive Foundation, 2nd Ed. Prentice-Hall, New
Jersey.

Holmstrom, L. and P. Koistinen (1992). Using ad-
ditive noise in back-propagation training, IEEE
Trans. Neural Networks, vol. 3, no. 1, pp. 24-38.

Lewis, F. L., S. Jagannathan and A. Yeildirek
(1999). Neural Network Control of Robot Ma-
nipulators and Nonlinear Systems, Taylor &
Francis, London.

Nicolis, G. and I. Prigogine (1989). Exploring com-
plexity, W. H. Freeman and Company, New
York.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Time (Seconds)

Fig. 1. Phase-plane trajectories of the Brussela-
tor (limit cycle–solid line, chaotic attractor–
dashdotted line).

0 10 20 30 40 50 60 70 80

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (Seconds)

Fig. 2. Tracking a periodic signal–training phase (y:
solid line, yd: dashed line).

0 10 20 30 40 50 60 70 80

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (Seconds)

Fig. 3. Tracking a periodic signal–operational phase
(y: solid line, yd: dashed line).

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

Time (Seconds)

Fig. 4. Tracking a chaotic signal–training phase (y:
solid line, yd: dashed line).

0 10 20 30 40 50 60 70 80

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (Seconds)

Fig. 5. Tracking the periodic signal again–
operational phase (y: solid line, yd: dashed
line).

0 10 20 30 40 50 60 70 80
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (Seconds)

Fig. 6. Tracking errors—operational phase
(training with chaotic signal: solid line,
training with periodic signal: dashed line).

