
NEURAL NETWORK BASED TIME-DELAY ESTIMATION FOR
NONLINEAR DYNAMIC SYSTEMS

Yonghong Tan, Chun-Yi Su+, Naz Karim++

Lab. of Intelligent Systems & Control Engineering
Guilin University of Electronic Technology, 541004 Guilin, China

+Dept. of Mechanical Eng., Concordia University, Montreal, Canada
++Dept. of Chemical Eng., Colorado State University, Fort Collins, USA

Abstract: The estimation for the nonlinear dynamic system with time-varying input time-
delay is an important issue for system identification. In order to estimate the dynamics of
the process, a dynamic neural network with external recurrent structure is applied to the
modelling procedure. In the case where time-delay is time varying, a useful way is to
develop on-line time-delay estimation mechanisms to track the input time-delay variation.
In this paper, two schemes respectively called direct as well as indirect time-delay
estimators are proposed. Finally, two numerical examples are illustrated for the test of the
proposed methods.  Copyright © 2002 IFAC
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1. INTRODUCTION

It is known that many industrial processes involve
input time-delays. Therefore, the identification of the
process input time-delay is one of the important
issues in the domain of system modelling and
identification. Some literatures can be found on time-
delay estimation. Reed et. al.(1981) applied LMS
algorithm to locate the cross-correlation function so
as to estimate the time-delay between input/output
signals. Teng and Sirisena (1988) proposed an
approach to extend the order of the numerator
polynomial function for time-delay estimation. Lim
and Macleod (1995) proposed an adaptive time-delay
tracking method for IIR filter. Balestrino et. al.(1998)
proposed a strategy for steady state time-delay
estimation. However, almost all of these approaches
are only available for linear systems. It is noted that
most industrial systems more or less contain not only
time-delay but also non-linearity. Hence, if the non-
linearity of the process is significant, it will be
necessary to develop the approaches for the modeling
of nonlinear processes with time-delay.

During the recent decade, neural networks have been
proved to be useful for system modeling and function
approximation. In this paper, the dynamic neural
network where the input layer has the external
recurrent connection with the output of the network is
used to model the dynamic nonlinear process. It is

noted that the time-delay in some industrial processes
may be varying with time. For example, the inlet flow
rate, the manipulated variable of a continuous stirred
tank reactor, may change with time, it thus causes the
variations of the manipulating time-delay.

In this case, the on-line time-delay estimation is
necessary if the effect of those variations can not be
ignored. In this paper, two neural network based
methods for the modelling of a class of nonlinear
process with input time-delay is proposed. The first
one is called as indirect time-delay estimation method.
In this method, the criterion is minimized with respect
to the estimated time-delay that is contained in the
neural network based model used for the
identification of the non-linearity and the dynamic
behaviour of the process. The indirect method can be
considered as a nonlinear programming problem. The
second scheme, on the other hand, is called direct
time-delay estimator which is constructed by a neural
network. In order to model the time-delay, a neural
network is applied. To evaluate the proposed time-
delay estimation schemes, two numerical examples
are illustrated for comparison.

2. INDIRECT TIME-DELAY ESTIMATION

Suppose the process is described by f: RR mn →+ , i.e.
)U,Y(fy
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kkk
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respectively the output and input vectors, and kτ  is
the time-delay. The neural network based model used
to describe the process, i.e.
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where kŷ  is the output of the neural model with time-

delay, hT
h1 R]w,...,w[W ∈=  is the weight vector

connecting the outputs of the hidden layer and the

output of the model, hT
h1 R)]x(s),...,x(s[)x(S ∈=  is

the output vector of the hidden layer,

)e1/()e1()x(s xx −− +−=  is the sigmoid function,
and the inputs of the sigmoid function in the hidden
layer are of the form, i.e.
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where kτ̂  is the estimate of the time-delay,. na and nb
are respectively the lags of the output and input of the
neural model, and ijw s are the weights. The

introduction of the auto-regression of the model
output into the network can be useful to simulate the
dynamics of the process. Consider the case where
time-delay is varying with time. It is supposed that
the time-delay can be separated as integer and
fractional parts as well, i.e.   

kkk ˆd̂ˆ τδ+=τ ,                                                        (4)

where kd  is the integer part of the time-delay whilst

kδτ  denotes the fractal part of the time-delay, which
is constrained within the range of one sample period,
i.e. (2,3) (Lim and Macleod 1995). Suppose that the
time-delay changes slowly so that it means that the
time-delay can be considered as constant during one
sample period. For the estimation of the fractional
part of time-delay, the gradient of the output of the
neural model with time-delay respect to τδˆ , i.e.

τδ∂∂ ˆ/ŷ k  should be calculated. Considering (2) and
(3), it yields
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where ))x(s1(5.0dx/)x(ds)x('s 2−== . In (5), the
effect of the recurrent connection to the gradient has
been considered. Using a method of first-order
interpolation can derive the gradient τδ∂∂ −τ− ˆ/u jˆk k

.

From the first-order Taylor's series expansion, it leads
to

)uu(u

)1d̂k(d̂k

uu
uu

1d̂kd̂k1d̂k

kk

1d̂kd̂k
1d̂kˆk

kkk

kk

kk

−−−−−

−−−
−−τ−

−δτ+=
−−−−

−
δτ+≈

.         (6)

Hence, the gradient of 
kˆku τ−  with respect to δτ  can

be derived as
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Moreover, the gradients of the output of the neural
model with respect to the weights are respectively
obtained by
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as well as
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ŷ

k

=

+
∂

∂
∑∑=

∂
∂

−τ−
−

==        (10)

Define the index
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and the parameter matrices, i.e.
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Then, the estimate of these matrices will be

ω∂
∂λ−ω=ω

θ∂
∂λ−θ=θ Q

and,
Q

21 .                   (13)

where )2,1i(,0i =>λ  are the optimizing step-
sizes. If an optimizing algorithm with second-order
convergence, e.g. a modified Levenberg-Marquardt
method, is applied, the update of matrices, i.e. θ  and
ω , becomes
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ŷ

(H
ψ∂

∂
ψ∂

∂= , 0>α  and is adjustable

factor. The factor α  can be changed from 0 to ∞.
When α  is zero, the Gauss-Newton algorithm is
obtained. If  α  changes to ∞, the algorithm becomes
the gradient descent method. In addition, α  has the
capability for numerical stabilization if the algorithm is
converging towards a saddle point, then  [∂ kŷ /∂ Ψ ]

may approach zero. In this singular case, α >0 will
considerably improve the numerical stability. If the
proposed step size is too large, even if the direction of
the step is correct, the final result may be worse. By
increasing α , it can also reduce the step size, and move
more in the direction of the gradient. In order to
increase the possibility to escape from some local
minimums, a momentum term is embedded into this
algorithm and 0>β  is the momentum factor. When

the estimated kτ̂δ  is obtained, both the fractional and
integer parts will be updated by (Lim and Macleod,
1995)
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where 10 <η<  is a very small number. As the

indirect time-delay estimation is a procedure of on-
line nonlinear programming, it requires much cost on
computational load.

3. DIRECT TIME-DELAY ESTIMATION

The procedure of the indirect time-delay estimation
illustrated in above section is considered as a problem
of nonlinear programming. In this section, the so-
called direct time-delay estimation approach will be
proposed. A dynamic neural network will be
constructed directly for the time-delay estimation.
The performance of the estimator depends on the
specification of the weights V, the orders of the inputs
and the number of the hidden nodes of the network.
In this section, the time-delay estimation is
formulated as a procedure of system identification.
Assume that the time-delay can be separated as
integer and fractional parts as well, i.e.   

kkk ˆd̂ˆ τδ+=τ ,                                                     (17)

where kd  is the integer part of the time-delay whilst

kδτ  denotes the fractal part of the time-delay.

In order to estimate the time-delay, the estimator of
the fractional part of time-delay is proposed as
follows:

)I,V(gˆ kkk =τδ ,                                                   (18)

where g(.) 2C∈  realises the mapping g: RRq → ,
where q=q1+q2; kV  is the weight matrix;

T
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kkk ŷye −= . The formula (18) can be realised
using a neural network, i.e.
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The gradient of kŷ  with respect to kτ̂  can be
obtained by

]
ˆ

u
w

ˆ

ŷ
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To determine the weights of the neural network,
which is used for the modelling of fractional time-

delay, the gradients of τδˆ  with respect to iv  and ijv

are calculated respectively by:
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The gradients of kŷ  with respect to the weights of the
neural network are determined respectively based on
(8) - (10). The weights are adjusted using the
modified Levenberg-Marquadt method shown in (14).

Then based on the estimated result of the fractional
part of time-delay, both the integer part as well as the
fractional part of the time-delay are adjusted
separately by using the following formulae
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where 10 <η<  is a very small number.

The on-line computational load of the direct time-
delay estimation will certainly be heavier than the
indirect method. However, the direct neural time-
delay estimator can be trained either on-line or off-
line. Then the training procedure can be cut off if the
neural network has been trained well. In this case, the
estimator can be implemented with much less on-line
computational effort and can be used for fast
processes as well.

4. NUMERICAL EXAMPLES

Two numerical examples are illustrated to show the
performances of the proposed time-delay estimation
approaches.

Example 1: Suppose that the nonlinear process with
time-delay is

τ−
−−

− +
++

+= k2
2k

2
1k

1k
k u5.0

yy1

01.0y
y

where the time-delay is a continuous time-varying
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Suppose the sampling period is 0.1 second and a
neural network with the architecture of single input-
single output and five hidden nodes is used for system



modeling. The input signal in the form shown in the
following

)ksin(2)2/kcos()5/kcos(

)10/ksin(2)20/ksin(uk

++
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is used to stimulate the process. Both the direct and
indirect algorithms for time-delay estimation are
applied to the modeling procedure respectively. Fig. 1
shows the result of time-delay estimation using direct
method. In this method, a neural network with 7
hidden nodes and the input vector of the form:

T
3k2k1k3k2k1k ]1,e,e,e,,,[I −−−−−− δτδτδτ=

is used for the construction of time-delay estimator.

Fig. 1 Time-delay estimation using direct method

For the indirect time-delay estimation method, the
parameters for Levenberg-Marquadt algorithm are
chosen as: 025.0=λ , 15.0=α  and 75.0=β . The

corresponding time-delay estimation result is
illustrated in Fig. 2.  The estimation errors are
respectively demonstrated in tables 1 and 2.

Table 1 Estimation errors of indirect method

Mean squared error Maximum error
0.9715 4.4950

Table 2 Estimation errors of direct method

Mean squared error Maximum error
0.1077 3.8622

From the illustrated results, it is known that the direct
approach for time-delay estimation is better that the
indirect method. Obviously the direct method results
in much smaller estimate residual. The on-line
computational cost for the direct method is, however,
much more expensive than that of the indirect
approach. If the neural time-delay estimator is trained
well, then, the training mechanism can be cut off. In
this case, the well-trained neural estimator can be
implemented with fast speed and much less
computational cost. Moreover, the dynamic model
validation result is illustrated in Fig. 3. It shows that
the system identification based on the on-line time-
delay estimation can get satisfactory result.

Fig.2 Time-delay estimation using indirect method

Fig. 3 Dynamic model validation

Example 2: The van de Vusse reactor can be
described by[4]
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The isothermal series/parallel reactions:
D2A,CBA →→→

take place in the reactor. In the process, CA and CB are
respectively the effluent concentration of component
A and B, d is the dilution-rate, and τ  is the time-
delay. The values of the parameters are k1=50 h-1,

k2=100 h-1, and k3=10 1hmoll −⋅⋅ . The concentration
of A in the feed stream is given by CAf and equals to

10 1lmol −⋅ . Initially, the process is at steady state

with CA=0.2143 1lmol −⋅  and CB=0.1520 1lmol −⋅ .
The process is sampled at every 0.002 h. The time-
varying time-delay τ  is caused by the change of the
dilution rate flowing through the pipe, i.e.
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Both approaches proposed in this paper are applied to
the modeling of the time-delay. Fig. 4 and Fig. 5
respectively demonstrate the time-delay estimate
results using the direct as well as the indirect methods.

Fig. 4 Time-delay estimate for the van de Vusse
reactor using direct method

Fig. 5 Time-delay estimate for the van de Vusse
reactor using indirect method

It seems that the method of the direct time-delay
estimate derives better result than that obtained by
using indirect method. In the indirect method, the
optimizing step size λ  is chosen as 0.275, 15.0=α ,
and 5.0=β ; while in the direct method, the number

of the hidden nodes of the neural network is 20, the
order of the network inputs are respectively ,2q1 =
and 3q 2 = . Moreover, the parameters βαλ ,,  of the
training algorithm are respectively 0.95, 0.5 and 0.05.

5. CONCLUSIONS

In this paper, the neural network based direct and
indirect time-delay estimation methods for nonlinear
dynamic systems with time-varying time-delay are
proposed. The proposed indirect approach, based
upon a neural model with time-delay to simulate the
nonlinear dynamic system with time-delay, can be
considered as an on-line nonlinear programming
problem. On the other hand, the direct method for

time-delay estimation is using a neural network based
time-delay estimator to identify the time-delay
directly. For the computational cost, the direct
method is obviously larger than the indirect method if
the on-line training is implemented. However, if the
training procedure is finished, the well-trained
estimator will have much less computational load
than the indirect method since it does not require any
on-line optimizing computation in this case. In order
to simplify the procedure of time-delay estimation,
the technique of dividing the time-delay as both the
integer and fractional parts has been applied. The
numerical examples show that both the proposed
methods can be used to estimate the time-delay for
nonlinear systems with time-delay. The direct method
however obtained better estimation results.

REFERENCES

Balestrino, A., F. Verona, and A. Landi (1998). On-
line process estimation by ANNs and Smith
controller design, IEE Proc., Pt. D. Contr.
Theory Appl., 145(2), 231-235

Lim, T. J. and M. D. Macleod (1995). Adaptive
algorithm for joint time-delay estimation and IIR
filtering, IEEE Trans. Signal Processing, 43(4),
841-851

Reed, F., P. Feintuch, and N. Bershad (1981). Time-
delay estimation using the LMS adaptive filter-
static behavior; dynamic behavior, IEEE Trans.
Acoustics, Speech, and Signal Processing, 29(3),
561-576

Teng, F. C. And H. R. Sirisena (1988). Self-tuning
PID controllers for dead time processes, IEEE
Trans. Industrial Electronics, 35(1),  119-125


