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Abstract: A solution of the Bayesian recursive relations by the particle filter approach is
treated. The stress is laid on the sample size setting as the main user design problem.
The Cramér-Rao bound was chosen as a tool for setting the sample size for the three
basic types of the state estimation, for filtering, prediction and smoothing. The mean
square error matrices of particle filter state estimates for different sample sizes and the
CR bounds are compared. Quality of the particle filters and their computational load are
illustrated in a numerical example.
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1. INTRODUCTION

State estimation of discrete-time nonlinear dynamic
systems from noisy measurement data has been a sub-
ject of considerable research interest for the last three
decades. Bayesian approach can be used for design of
the general solution of the state estimation problem.
The closed form solution of the Bayesian recursive
relations (BRR) is available only for a few special
cases. Thus, it is necessary to provide some analytical
or numerical approximations. The detailed discussion
of the development of practical nonlinear estimators is
proceeded e.g. in Sorenson (1974), Kulhavý (1996).

In nineties a significant approach to nonlinear filter
synthesis using simulation Monte Carlo (MC) meth-
ods appeared (Liu and Chen, 1998). Simplicity of
the MC approach is the main reason for attractivity
of these methods in nonlinear estimation. Concern-
ing on-line estimation, the most important represen-
tative of this approach is particle filter (Gordon et
al., 1993), (Pitt and Shephard, 1999) which approxi-
mates the posterior probability density function (pdf)
by weighted random samples. The samples are some-

times called particles which the filter was named after,
and can be looked upon as a grid of points covering
the state space. Nonetheless the sample size of the
filter is insufficiently specified issue and thus should
be subject of research interest. There are some indirect
recommendations to set out the sufficient sample size
e.g in statistical learning theory (Vidyasagar, 2001),
however their application in particle filters has not
been satisfactorily solved.

An alternative approach to setting sample size for
filtering pdf by filtering CR bound was presented in
Šimandl and Straka (2001). The aim of the paper
is to extend the result for multi-step prediction and
smoothing pdf.

The paper is organized as follows: The usage of the
particle filter in state estimation is introduced in Sec-
tion 2, computation of the CR bound in nonlinear
estimation is dealt with in Section 3 and usage of the
CR bound in determination of the sample size is dis-
cussed in Section 4. Further, the numerical illustration
of sample size determination procedure is provided in
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Section 5 and finally, main results of the paper are
summarized in Section 6.

2. STATE ESTIMATION BY PARTICLE FILTER

This section provides usage of the particle filter to the
state estimation of a discrete-time nonlinear stochastic
system and consequently discussion of sample size as
a filter parameter.

The general solution of state estimation problem is
provided by the BRR (Kramer and Sorenson, 1988).
The particle filter supplies an approximative numer-
ical solution of the BRR. Filtering pdf and predictive
pdf of the BRR are approximated by weighted random
samples as well as the smoothing pdf.

Consider the discrete time stochastic system:

xk
�

1
� fk

�
xk ��� ek � k � 0 � 1 � 2 ���	�	� (1)

zk
� hk

�
xk �
� vk � k � 0 � 1 � 2 �	���	� (2)

where the vectors xk �
� n , zk �
� m represent the state
of the system and the measurement at time k, respec-
tively, fk : � n � � n , hk : � n � � m are known vector
functions, ek ��� n , vk ��� m are state and measurement
zero mean white noise sequences with positive definite
covariance matrices Qk and Rk respectively, mutually
independent and independent of x0 and the pdf of the
initial state x0 is given by p

�
x0 � ��� �

x0 : m0 � M0 � .
The recursive relations for filtering pdf, prediction pdf
and smoothing pdf have the following form:

p
�
xk � zk� � p

�
xk � zk � 1 � p � zk � xk ��

p
�
xk � zk � 1 � p � zk � xk � dxk

(3)

p
�
xl � zk� ��� p

�
xl � 1 � zk � p � xl � xl � 1 � dxl � 1 (4)

p
�
xk � zl � � p

�
xk � zk� � p

�
xk
�

1 � zl �
p
�
xk
�

1 � zk� p
�
xk
�

1 � xk� dxk
�

1 (5)

where l � k � zk ��� zT
0 � zT

1 ���	����� zT
k � T and p

�
x0 � z � 1 � is

prior conditional pdf of the initial state x0. The rela-
tions require knowledge of the transient pdf p

�
xk
�

1 � xk �
and the measurement pdf p

�
zk � xk � . The pdf’s can be

found by (1), (2) and are given by:
p
�
xk
�

1 � xk � ��� �
xk
�

1 : fk

�
xk ��� Qk � and

p
�
zk � xk � ��� �

zk : hk

�
xk ��� Rk � .

The idea of the particle filter in nonlinear state esti-
mation is to approximate the filtering, predictive and
smoothing pdf p

�
xk � zm � , m � 0 � 1 � 2 �	��� , by the set

Sk �m of ν random samples of state at time instant

k denoted as x � i �
k �m � i � 1 ���	�	��� ν and corresponding

weights w � i �
k �m � i � 1 �	���	��� ν . The sample x � i �

k �m with

weight w � i �
k �m is called the weighted random sample

and denoted as
�
x � i �

k �m � w � i �k �m � . Thus, the set Sk �m has the

following form:
Sk �m �! � x � 1 �k �m � w � 1 �k �m �����	����� � x � ν �k �m � w � ν �k �m �#" .
Now, the filtering step given by (3) can be described.
Considering the set of weighted samples
Sk � k � 1

�$ � x � 1 �
k � k � 1 � w � 1 �k � k � 1 �����	����� � x � ν �k � k � 1 � w � ν �k � k � 1 ��" repre-

senting the approximative pdf pA

�
xk � zk � 1 � of the pre-

dictive pdf p
�
xk � zk � 1 � and the new measurement zk

it is possible to obtain the set Sk � k representing the ap-

proximative pdf pA

�
xk � zk � of the filtering pdf p

�
xk � zk � .

The samples x � i �
k � k remain the same as samples x � i �

k � k � 1

and the weights w � i �
k � k in Sk � k are given by

w � i �
k � k � w � i �

k � k � 1
pzk � xk

�
zk � x � i �k � k � .

Due to equality of samples x � i �
k � k for filtering, x � i �

k � k � 1

for one step prediction and x � i �
k � k � m

for smoothing the

following notation for samples at time instant k will be

introduced: x � i �
k

, where x � i �
k %� x � i �

k � k � x � i �
k � k � 1

� x � i �
k � k � m

.

The prediction step related to (4) in BRR between
the set Sl � 1 � k approximating the l & 1 & k predictive

(filtering for l � k � 1) pdf p
�
xl � 1 � zk � and the set Sl � k

approximating the l & k step predictive pdf p
�
xl � zk � at

the next time instant consists in transforming the sam-
ples by the system dynamics. The next ith sample x � i �

l
is randomly generated from the so called importance
function, in this case from the transient pdf p

�
xl � x � i �l � 1 � .

The weights w � i �
l � k belonging to the new samples x � i �

l
are

the same as the weights w � i �
l � 1 � k of the last prediction

(filtering for l � k � 1) step. Then the new set Sl � k
represents the approximative pdf pA

�
xl � zk � of the l & k

step predictive pdf p
�
xl � zk � .

The smoothing step related to (5) consists of updating
the previous smoothing (filtering) weights of the sam-
ples by information provided by future measurements
according to
w � i �

k � l � w � i �
k � k ∑ν

j ' 1 w � j �
k
�

1 � l p
�
x � j �

k
�

1 � 1 � x � i �k � k � As already men-

tioned, the smoothing particles x � i �
k � l are same as filter-

ing ones, i.e. x � i �
k � l � x � i �

k � k. As it can be seen, to evaluate

approximative pdf pA

�
xk � zl � it is necessary to evaluate

all approximative filtering pdf’s up to time instant l,
i.e. pA

�
xl � zl � .

Note that the filter is initialized by the set S0 of random
samples that are equally weighted due to assumed
knowledge of the initial pdf p

�
x0 � that samples were

generated from.

The aforesaid procedure of approximative filtering
pdf, prediction pdf and smoothing pdf generation of-
ten suffers from samples degeneration that decreases
approximation quality. Therefore the algorithm of the
particle filter often involves the so called resampling
step which is intended to rejuvenate the samples. It
removes samples that have very small weights and



thus contain “unimportant” information and boosts in-
fluence of the important samples with higher weights.
The new resampled set of equally weighted samples
consists of samples that are drawn from the old set of
samples according to the weights.

It is necessary to mention the fact that the presented
algorithm is very similar to the well known boot-
strap filter. A more sophisticated algorithm should use
importance function that involves new measurement
into particles generation. It is also advisable to in-
corporate a MCMC procedure (Markov Chain Monte
Carlo) (Godsill et al., 2001) after resampling which
improves positioning of the particles in the state space.
Nevetherless the presented way of sample size speci-
fication can be used for all different types of particle
filter.

To summarize, the basic computation scheme of the
particle filter follows:

FILTERING PART

0. Initialization: Let k � 0. The filter starts from the
set S0 of ν weighted samples
S0 � � 1

�  � x � 1 �
0 � w � 1 �0 � � 1 � �	�	� � x � ν �0 � w � ν �0 � � 1 �#"

where x � i �
0

� p
�
x

0 � z � 1 � ; i � 1 � 2 ���	���	� ν and

w � i �
0 � � 1

� 1
�
ν ; i � 1 � 2 �	���	�	� ν . This set represents the

prior pdf p
�
x0 � z � 1 � .

1. Update: The filter updates the weights using the
new received measurement zk so that

w � i �
k � k � w � i �

k � k � 1
p
�
zk � x � i �k � � i � 1 � 2 ���	�	� � ν

Then the weights w � i �
k � k; i � 1 � 2 ���	�	��� ν are scaled to

sum to 1. The new set Sk � k of weighted samples

approximates the posterior pdf p
�
xk � zk � .

2. Resampling: The resampling step together with
the MCMC procedure passes in the case that the
Effective Sample Size (ESS) holds the condition
ESSk � ν αk, where the ESS expresses equivalent
number of random draws which describe the pdf
with the same accuracy as samples of the particle
filter and the αk � � 0 � 1 � is threshold set by designer.
The ESS at time k is approximately given by

ESSk
� ν

1 � var
�
w � i �

k � �

3. Prediction: The set Sk
�

1 � k of weighted samples

representing the predictive pdf p
�
xk
�

1 � zk � is con-

structed from new samples x � i �
k
�

1
generated from

p
�
xk
�

1 � x � i �k � and the corresponding weights

w � i �
k
�

1 � k � w � i �
k � k for i � 1 � 2 �	�	���	� ν . Now, let k � k � 1

and continue at the step 1. Update.

MULTISTEP PREDICTION PART

0. Requirements To obtain approximation of the pre-
dictive pdf p

�
xl � zk � � l � k � , the filtering approxima-

tive pdf pA

�
xk � zk � must be evaluated at first. Thus

the set of weighted random samples Sk � k is required
for the evaluation of the samples of the set Sl � k.

1. Prediction The set Sk
�

1 � k of weighted samples

representing the predictive pdf p
�
xk
�

1 � zk � is con-

structed from new samples x � i �
k
�

1
generated from

p
�
xk
�

1 � x � i �k � and the corresponding weights

w � i �
k
�

1 � k � w � i �
k � k for i � 1 � 2 �	���	�	� ν . This step is re-

peated for increasing time instant k until the re-
quired set Sl � k is obtained.

SMOOTHING PART

0. Requirements To obtain approximation
of the smoothing pdf p

�
xk � zl � � l � k � , the approx-

imation of the filtering pdf p
�
xl � zl � must be evalu-

ated at first. Thus the set of weighted random sam-
ples Sl � l is required for the evaluation of the samples
of the set Sk � l .

1. Smoothing The set Sl � 1 � l of weighted samples

representing the smoothing pdf p
�
x1 � 1 � zl � is con-

structed from the samples xi
l � 1 and the correspond-

ing weights
w � i �

l � 1 � l � w � i �
l � 1 � l � 1

∑ν
j ' 1 w � j �

l � l p
�
x � j �

l � x � i �l � 1 �
for i � 1 � 2 �	���	�	� ν . This step is repeated until the
required set Sk � l is obtained.

It is obvious that this basic scheme of the particle filter
is relatively simple, nevertheless the crucial parame-
ter ν defining the sample size and strongly affecting
approximation quality is not sufficiently specified. A
procedure for sample size setting is designed for fil-
tering problem in Šimandl and Straka (2001) where
determination of a feasible sample size is based on
filtering CR bound.

To extend the result for prediction and smoothing,
the predictive and smoothing Cramér-Rao (CR) bound
(Šimandl et al., 2001) will be chosen for determination
of a feasible sample size of the predictive and smooth-
ing particle filters. Hence, the recursive relations for
filtering, predictive and smoothing CR bounds will be
presented in the next section.

3. CR BOUND FOR NONLINEAR FILTERING

The CR bound is the standard lower bound in pa-
rameter estimation (Kerr, 1989) defined as the in-
verse of the Fisher Information Matrix (FIM). The
idea of the CR bound for random parameters can be
applied to the state estimation problem for nonlinear
stochastic dynamic systems, (Bobrovsky et al., 1987),
(Doerschuk, 1995). This section is based on (Šimandl
et al., 2001) where the recursive relation for compu-
tation of filtering, multi-step predictive and smoothing
CR bounds are derived.



Consider nonlinear systems (1), (2) with Gaussian ini-
tial conditions and Gaussian disturbances, where Qk,
Rk are non-singular matrices. To simplify notations,

the nabla operator will be used ∇x
��� ∂

∂ x1

∂
∂ x2 ����� ∂

∂ xn � .

The filtering, predictive and smoothing CR bounds
Ck � k, Cl � k and Ck � l for state xk can be derived from

the FIM J
�
xk � for the complete state history

xk %� � xT
0 � xT

1 ���	����� xT
k � T. The state history xk may be

interpreted as a vector of parameters of the random
measured vector zk. In this case the FIM J

�
xk � is

defined as:

J
�
xk � %� &��	� ∇

xk
�∇

xk ln p
�
xk � zk � ��
 � (6)

provided that the derivatives and expectation exist.

Knowledge of the
�
k � 1 � n � � k � 1 � n FIM matrix

is fundamental for derivation of recursive relations
for the filtering, the predictive and the smoothing CR
bounds Ck � k, Cl � k and Ck � 1. The detailed description of

the above outlined derivation is provided in Šimandl
et al. (2001).

The CR bound sets the limit of cognizability of the
state of the stochastic dynamic system and thus it may
serve as a gauge for evaluating the filter performance
quality.

Let x̂k � k, x̂l � k and x̂k � l be arbitrary filtering, pre-
dictive and smoothing point estimates of the state.
Conditional-mean values generated by the particle fil-
ter will be preferred in this paper.

The mean-square error matrices (MSEMs) Πk � k, Πl � k
and Πk � l are defined as:

Πk � k %� �  � xk & x̂k � k � � xk & x̂k � k � T " (7)

Πl � k %� �  � xl & x̂l � k � � xl & x̂l � k � T " (8)

Πk � l %� �  � xk & x̂k � l � � xk & x̂k � l � T " � (9)

The MSEMs are bounded by the filtering CR bound
Ck � k, the predictive CR bound Cl � k and the smoothing
CR bound Ck � l as follows:

Πk � k 
 Ck � k � xk � (10)

Πl � k 
 Cl � k � xk � (11)

Πk � l 
 Ck � l � xk ��� (12)

To compute (6) the following notation for n � n matri-
ces will be introduced:

Ki
i
�

1
� �  & ∇xi

�∇xi
ln p

�
xi
�

1 � xi � � T " (13)

Ki � i � 1
i
�

1
� �  & ∇xi � 1

�∇xi
ln p

�
xi
�

1 � xi � � T " (14)

Ki
�

1
i
�

1
� �  & ∇xi � 1

�∇xi � 1
ln p

�
xi
�

1 � xi � � T " (15)

Li
i
� �  & ∇xi

�∇xi
ln p

�
zi � xi � � T " (16)

with Ki
�

1 � i
i
�

1
� �Ki � i � 1

i
�

1 � T, i � 0 � 1 �	�	���	� k, and

K0
0
� �  & ∇x0

�∇x0
ln p

�
x0 � � T " � (17)

Considering the nonlinear system (1), (2), the relations
(13) - (17) have the following form:

Ki
i
�

1
� �  
�∇xi

fi

�
xi � � TQ � 1

i ∇xi
fi

�
xi �#" (18)

Ki � i � 1
i
�

1
� &��  
�∇xi

fi

�
xi � � T " Q � 1

i (19)

Ki
�

1
i
�

1
� Q � 1

i (20)

Li
i
� �  
�∇xi

hi

�
xi � � TR � 1

i ∇xi
hi

�
xi ��" � (21)

K00
0
� M � 1

0 � (22)

Then the recursive relations for the filtering, the pre-
dictive and the smoothing CR bounds are given by:

C � 1
k � k � C � 1

k � k � 1 � Lk
k (23)

C � 1� � k � K
�� & K

� � � � 1� �
K
� � 1� � C � 1� � 1 � k � � 1K

� � 1 � �� (24)

C � 1
k � � � C � 1

k � k � Kk
k
�

1 & (25)

Kk � k � 1
k
�

1

�
Kk
�

1
k
�

1 � C � 1
k
�

1 � � & C � 1
k
�

1 � k � � 1Kk
�

1 � k
k
�

1

4. THE USE OF CR BOUND IN PARTICLE
FILTER DESIGN

Accuracy of the particle filter is affected by the sample
size. Usually the sample size is determined ad hoc
by the filter designer. A more technical approach can
be based on comparing the MSEMs obtained from
the particle filters with different sample sizes and
confronting them with the CR bound. This procedure
allows to set a feasible sample size.

To compare accuracy of the particle filter with differ-
ent sample sizes the following criterion utilizing the
CR bound was chosen:

VCR
k �m � ν � � 1

N

N

∑
k ' 0

tr
� �Πk �m & Ck �m � ��� (26)

where tr
� � � denotes matrix trace and Πk �m is one of the

MSEMs (7), (8), (9) which depend on ν . The sample
size can be determined with respect to value of VCR

k �m � ν �
for different sample sizes and also respecting com-
putational demands of the filter. Comparing values of
the criterion, one can set up the sample size which is
sufficient to ensure satisfactory quality of the filter.

Both the MSEM of a state estimate and the CR bound
are computed using the MC simulation method. Af-
ter carrying M experiments for the system (1), (2)
with k � 0 � 1 �	�	���	� N, we obtain M realizations of the
state trajectory  xk " N

k ' 0 and of corresponding mea-
surements  zk " N

k ' 0. The CR bounds are computed by
(23),(24) and (26) with the matrices Kk

�
1

k � k , Kk
�

1
k � k � 1 and



Lk replaced by their estimates; e.g. the estimate of
Kk
�

1
k � k � 1 is computed as:

K̂k
�

1
k � k � 1

� 1
M ∑M

j ' 1

��
& ∂ fk � xk �

∂ xk

�����
xk ' xk � j �

�� T

Q � 1
k � (27)

where  xk

�
j �#" N

k ' 0 is a j-th state trajectory, j � 1 � 2 �	���	��� M.

The MSEM Πk �m is estimated from M different se-
quences of filtering, prediction and smoothing esti-
mates  x̂k �m � j ��" N

k ' 0 which correspond to M state tra-
jectories, thus

Π̂k �m � 1
M

M

∑
j ' 1

� xk

�
j � & x̂k �m � j � � � xk

�
j � & x̂k �m � j � � T �

(28)
This estimate converges to the Πk �m for M � ∞. Thus

for a sufficient number of MC runs the estimate Π̂k �m
is close to the MSEM Πk �m which is always greater
than or equal to the filtering, prediction and smoothing
CR bound. The greater the difference is, the worse is
quality of the filter. It is necessary for MC estimation
of the CR bound and MSEMs to specify sufficient
number of MC runs. The number of MC runs can
be chosen such that further increasing of MC runs
influences results very slightly.

5. NUMERICAL ILLUSTRATIONS

The proposed procedure of determination the sample
size for the particle filter will be presented for a
nonlinear stochastic system.

Consider the nonlinear system with two-dimensional

state xk %� � x1 � k � x2 � k � T described by�
x1 � k � 1
x2 � k � 1 � � �

0 � 9 0
0 1 � 0 � �

x1 � k
x2 � k � � �

e1 � k
e2 � k � (29)

with the state noise ek %� � e1 � k � e2 � k � T
with � �

ek : � 0 0 � T � Q � , where Q � �
0 � 1 0 � 05

0 � 05 0 � 1 � .

The state is observed by the scalar measurement zk
described by the measurement equation:

zk
� atan � x2 � k & sin

�
k �

x1 � k & cos
�
k �	� � vk (30)

The measurement zk is influenced by the measurement
noise vk with pdf vk

� � �
vk : 0 � r � where r � 0 � 025.

The initial state is given by
p
�
x0 � ��� �

x0
� 27 � 0 � T � diag  9 � 4 " � . The predictive

pdf p
�
x0 � z � 1 � for the filter is same as p

�
x0 � .

Table 1 presents value of the criterion (26) for dif-
ferent sample sizes. The table together with Figs. 2,
3 and 4 where the traces of the filtering, prediction
and smoothing MSEMs for ν � 1000 tend to the cor-
responding CR bound, demonstrate sufficient quality
of the filter for this sample size. On the other hand,

the experiments also indicate that the same estimation
quality given by the criterion (26) requires slightly dif-
ferent sample size for prediction, filtering and smooth-
ing.

The CR bound for this system was evaluated using
M � 10000 MC simulations. The number of simula-
tion used for MSEMs evaluation for ν � 50 � 300 was
M � 10000 whereas for ν � 1000 M � 1000 simula-
tions were used only. The reason is extreme growth of
computational load as documented in Table 2. That is
the reason why trace of the MSEM is at some k lower
than the CR bound.

Table 1. Value of the criterion V CR with
respect to the sample size

ν 50 100 300 1000
VCR

k 
 k 0.91 0.84 0.80 0.42

VCR
k 
 k � 2 1.10 0.71 0.66 0.35

VCR
k 
 k � 1 1.56 0.86 0.86 0.41

Fig. 1 presents comparison of time development of
traces of the filtering, predictive and smoothing CR
bounds.

Figs. 2, 3 and 4 illustrate time development of traces
of MSEMs of the estimates obtained from the particle
filter with different sample sizes compared to time
development of CR bound trace.
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Fig. 1. Time development of traces of the filtering,
predictive and smoothing CR bounds
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Fig. 2. Time development of traces of the CR bound
and MSEMs of estimate produced by filter with
different sample size
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Fig. 3. Time development of traces of the CR bound
and MSEMs of estimate produced by 2-step pre-
dictor with different sample size
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Fig. 4. Time development of traces of the CR bound
and MSEMs of estimate produced by 1-step
smoother with different sample size

Table 2. Number of FLOPS used for one
simulation for different ν

ν 50 300 1000
filtering 3 � 66 � 106 7 � 04 � 106 1 � 03 � 108

2-step prediction 7 � 04 � 106 4 � 50 � 107 1 � 69 � 108

1-step smoothing 2 � 70 � 107 8 � 62 � 107 9 � 94 � 108

6. CONCLUSION

Aspects of particle filter solution of nonlinear estima-
tion were discussed and a new procedure for sample
size setting was developed. The procedure was based
on comparison of the particle filter MSEMs for filter-
ing, prediction and smoothing with the corresponding
CR bound. This allows to take into account computa-
tional load and filter quality in sample size setting. To
illustrate the designed procedure, a numerical example
was presented. The experiments also indicate that the
same estimation quality requires different sample size
for prediction, filtering and smoothing.

7. ACKNOWLEDGMENT

The work was supported by the Grant Agency of the
Czech Republic, project GA ČR 102/01/0021 and the
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