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Abstract: We consider a tank containing a fluid. The tank is subjected to a
one-dimensional horizontal move and the motion of the fluid is described by the
shallow water equations. By means of a Lyapunov approach, we deduce control
laws to stabilize the fluid’s state and the tank’s speed. Although global asymptotic
stability is yet to be proved, we numerically simulate the system and observe the
stabilization for different control situations.
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1. INTRODUCTION

We consider an 1-D tank containing an inviscid
incompressible irrotational fluid. We are inter-
ested in the stabilization problem of the fluid state
(height and speed relative to the tank) and the
tracking problem of the trajectory of the tank
(position, speed and acceleration) to a prescribed
trajectory (e.g. a prescribed final position of the
tank).

We suppose that the horizontal acceleration is
small compared to the gravity constant and that
the height of the fluid is small compared to the
length of the tank. Hence we describe the dynamic
of the fluid by the shallow water equations (see
(Debnath, 1994, Section 4.2) and (Prieur, 2001)
and references therein).

The acceleration defines the control variable. We
exhibit a stabilizing feedback based on a Lya-
punov approach (see Theorem 3). We emphasize
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that we proceed by increasing the complexity of
the Lyapunov function. First we stabilize only the
fluid’s state (Section 3.1), then we stabilize also
the tank’s speed (Section 3.2) and then, we use a
forward approach (see (Mazenc and Praly, 1996))
to stabilize the entire state of the system fluid-
tank in Theorem 3.

Many industrial motivations can be found in
(Grundelius, 2000; Mottelet, 2000b) for looking
such a feedback stabilizing the entire state of the
system fluid-tank. Some results can be found in
(Mottelet, 2000a) concerning the problem of the
stabilization of a tank, but the input is defined
as a flexible or a rigid wave generators and the
equations are linearized around the equilibrium.
Here we choose a different model of the control
system.

The asymptotic stability is yet to be proved but
we check numerically that the result is attained
(see Section 4.1).

Note that the shallow water equations, linearized
around a suitable equilibrium, are uncontrollable
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(see (Dubois et al., 1999)) but the non-linear
shallow water equations are locally controllable
around the equilibriums (see (Coron, 2001)). We
check numerically that the stabilization property
is achieved with the non-linear terms of the shal-
low water equations in Section 4.2.

2. MODEL DESCRIPTION

The shallow water equations describe the motion
of a perfect fluid under gravity g with a free
boundary:

∂H

∂t
(t, x) +

∂

∂x
(HV )(t, x) = 0 , (1)

∂V

∂t
(t, x) +

∂

∂x
(gH +

V 2

2
)(t, x) = −D̈(t) , (2)

where x ∈ [0, L] is the spatial coordinate attached
to the tank, t ∈ [0, T ] is the time coordinate,
T > 0, H(t, x) denotes the height of the liquid,
V (t, x) denotes the horizontal speed of the fluid
in the referential attached to the tank, D is the
position of the tank in the world coordinates,
Ḋ and D̈ are respectively the first and second
derivative of D with respect to the time t. See
Figure 1.

0 Lx

V(x,t)
H(x,t)

D(t)0

Fig. 1. A tank of length L containing a fluid.

The boundary conditions are given by, for all t in
[0, L],

V (t, 0) = 0 , V (t, L) = 0 . (3)

Let us denote H̄(x) and V̄ (x) the steady state
values of (H,V ) along the reach, i.e.:

∂

∂x
(H̄V̄ ) = 0 ,

∂

∂x
(gH̄ +

V̄ 2

2
) = −Ā , (4)

where Ā is a constant number defining the con-
stant acceleration of the tank. The above equa-
tions (4) can be rewritten as follows

∀x ∈ [0, L],
V̄ (x) = 0 ,

H̄(x) = H̄(
L

2
) − (x −

L

2
)
Ā

g
.

(5)

In fact, we can compute the (constant) volume of
liquid in the tank:

Vol =

∫ L

0

H̄dx = LH̄(
L

2
) . (6)

We define our control variable u

u = D̈ − Ā. (7)

Let |.| be a norm of R and |.|1 be the norm on
C1([0, L]) defined by, for all f in C1([0, L]),

|f |1 = max
x∈[0,L]

|f(x)| + max
x∈[0,L]

|f ′(x)| ,

where ′ denotes the partial derivative with respect
to x.

Given an initial condition (H̃, Ṽ ) for the fluid and

an initial acceleration of the tank Ã, note that
there exist sufficient conditions for the existence
of a solution of the Cauchy problem (1), (2) and
(3) (see (Li and Yu, 1985, Theorem 4.2, page 96)):

Claim 1. There exists a strictly positive constant
ε such that, for any (H̃, Ṽ ) in C1([0, L])2 satisfy-
ing the compatibility conditions:

2gH̃(0)H̃ ′(0) + Ṽ (0)Ṽ ′(0) = −Ã , (8)

2gH̃(L)H̃ ′(L) + Ṽ (L)Ṽ ′(L) = −Ã , (9)

and

|H̃ − H̄|1 + |Ṽ − V̄ |1 < ε , (10)

the hyperbolic system (1) and (2) with initial
conditions:

H(0, x) = H̃(x) , V (0, x) = Ṽ (x) , ∀x ∈ [0, L] ,

and with boundary conditions (3) has one and
only one solution of class C1 defined on [0, L] ×
[0, T ), for some T > 0.

Now let us define E = {(H, V, D, S)} the affine
subspace of C1([0, L])×C1([0, L])×R×R such that

we have Vol =
∫ L

0
H̃(x)dx, where Vol is defined by

(6), and Hx(0) = Hx(L) = −u+Ā
g

.

We are interested in the problem of the local
stabilization to the equilibrium (H̄, V̄ , D̄, S̄)
with Ā in R fixed, satisfying (5) by the control u,
i.e. we are looking for a function u : [0,+∞) ×
E → R such that we have the following two
properties

1. There exists C > 0 such that, for all
(H̃, Ṽ , D̃, S̃) in E satisfying the conditions (8)-
(10) and

|H̃ − H̄|1 + |Ṽ − V̄ |1 + |D̃ − D̄| + |S̃ − S̄| ≤ C ,

there exists one and only one (H, V, D, S):
[0,+∞) → E such that, we have (1)-(3) where,
for all t ≥ 0,

D̈(t) − Ā = u(t,H(t, .), V (t, .), D(t), S(t)) , (11)

such that we have

H(0, .) = H̃ , V (0, .) = Ṽ , D(0) = D̃ , S(0) = S̃ ,

(12)



and, for all t ≥ 0,

Ḋ(t) = S(t) . (13)

Moreover this function satisfies

|H(t, .) − H̄|1 + |V (t, .) − V̄ |1 + |Ḋ(t) − S̄ − Āt|

+|D(t) − D̄ − S̄t −
1

2
Āt2| →t→+∞ 0 .

2. For all ε > 0, there exists η > 0 such that, if
(H̃, Ṽ , D̃, S̃) in E satisfies the conditions (8)-(10)
and

|H̃ − H̄|1 + |Ṽ − V̄ |1 + |D̃ − D̄| + |S̃ − S̄| ≤ η ,

if (H, V, D, S): [0,+∞) → E is such that, (1)-(3),
(11)-(13) hold, then we have

|H(t, .) − H̄|1 + |V (t, .) − V̄ |1 + |Ḋ(t) − S̄ − Āt|

+|D(t) − D̄ − S̄t −
1

2
Āt2| ≤ ε , ∀t ≥ 0

In all the following we are interested in this prob-
lem and we propose a Lyapunov control design.
Then we check that, numerically, the stabilization
is attained.

3. LYAPUNOV CONTROL DESIGN

We want to build a Lyapunov candidate to stabi-
lize the state of the system fluid-tank. The idea
of this section is to build a Lyapunov function
which is a general tool to prove, for a differential
equation, that the origin is an asymptotic stable
equilibrium.

3.1 Stabilization of the fluid’s state (H,V )

Let us consider first the stabilization of the fluid’s
state. We want to find an entropy E(H,V ) and an
entropic flux F (H,V ). There is an infinite number
of entropies for the shallow water equations (see
(Serre, 1996, Volume II, Section 9.3)), one of them
is derived from the moments of the fluid:

E(H,V ) = H
V 2

2
+ g

(H − H̄)2

2
, (14)

F (H,V ) = H
V 3

2
+ gV H(H − H̄) . (15)

We can define the Lyapunov candidate (see
(Coron et al., 1999)) R1 : [0,+∞) → R

R1(t) = λ1

∫ L

0

E(H(t, x), V (t, x))dx , (16)

for a constant λ1 > 0 introduced for the tuning of
the control. Note that R1 is positive and is zero
only at the point (H,V ) = (H̄, V̄ ). We can now
exhibit a class of control laws for u, making R1

decrease, as stated in the following

Theorem 1. For any positive gain λ1, the control
law

u1(t) = λ1

∫ L

0

(HV )(t, x)dx (17)

makes R1 decrease, i.e. Ṙ1 ≤ 0. Moreover Ṙ1 = 0
if (H,V ) = (H̄, V̄ ).

Remark 1. We can not apply LaSalle’s Theorem
since we do not know, if the fact that the equality
Ṙ1(t) = 0 holds for all t, yields (h, v) = (0, 0).
Note moreover that in an infinite dimensional
space of functions, we have to prove a suitable
compactness property.

Proof. We derive (16) with respect to t:

Ṙ1 = λ1

∫ L

0

(
∂E

∂V

∂V

∂t
+

∂E

∂H

∂H

∂t

)
dx .

Hence, using (1), (2) and (14), we have

Ṙ1 = −u1λ1

(∫ L

0

HV dx − [F ]L0

)
. (18)

Using the boundary conditions (3) and (15), we
have [F ]L0 = 0, hence a natural expression for u1

is (17).2

3.2 Stabilization of the fluid’s state (H,V ) and of

the tank’s speed Ḋ

In this section we want to stabilize also the tank’s
speed Ḋ around S̄ + Āt. In order to achieve this,
we introduce a modified “kinetic energy” of the
tank in (16),

R2(t) = R1(t) + λ2
(Ḋ(t) − S̄ − Āt)2

2
, (19)

where R1 is defined by (16) and λ2 is a positive
constant introduced for the tuning of the con-
troller.

Note that R2 is positive and is zero only at the
point (H,V, Ḋ) = (H̄, V̄ , S̄ + Āt).

Using the same approach as before, we can now
propose a class of control laws for u, making R2

decrease, as stated in the following

Theorem 2. For any positive gains λ1, λ2, the
control law

u2(t) = λ1

∫ L

0

(HV )(t, x)dx−λ2(Ḋ(t)− S̄ − Āt) ,

(20)
makes R2 decrease, i.e. Ṙ2 ≤ 0. Moreover Ṙ2 = 0
if (H,V, Ḋ) = (H̄, V̄ , S̄ + Āt).

Proof. We compute the first derivative of (19)
with respect to t: Ṙ2 = Ṙ1 + λ2(Ḋ− S̄ − Āt)(D̈−
Ā).. Hence, using (18) and (7), we have



Ṙ2 = −u2

(
λ1

∫ L

0

HV dx − λ2(Ḋ − S̄ − Āt)

)
.

(21)
Thus a natural expression for u2 is (20).2

3.3 Complete stabilization

In Section 3.2 we propose a candidate control law
to stabilize the state of the fluid and the speed of
the tank. In this section we want to stabilize the
entire function D and not only its first derivative.
To do this we use a forward approach to find a
modification of the Lyapunov function R2 defined
by (19). See e.g. (Mazenc and Praly, 1996). Thus
we have to find a function of the state whose time-
derivative is proportional to Ṙ2. This leads to

R3(t) = R2(t) +
λ3

2

(
−λ2(D(t) − D̄ − S̄t −

Āt2

2
)

−λ1

∫ L

0

(

∫ x

0

(H − H̄)(t, ξ)dξ)dx

)2

(22)

where λ1, λ2 and λ3 are three positive constants
introduced for the tuning of the controller and R2

is defined by (19). Note that R3 is positive and is
zero only at the point (H,V, Ḋ,D) = (H̄, V̄ , S̄ +

Āt, D̄ + S̄t + Āt2

2 ). We have the following

Theorem 3. For any positive gains λ1, λ2 and λ3

the control law u3

u3 = λ1

∫ L

0

HV − λ2(Ḋ − S̄ − Āt)

−λ2λ3(D(t) − D̄ − S̄t −
1

2
Āt2) (23)

−λ1λ3

∫ L

0

(∫ x

0

((H − H̄)(t, ξ))dξ

)
dx ,

makes R3 decrease, i.e. Ṙ3 ≤ 0. Moreover Ṙ3 = 0

if (H,V, Ḋ,D) = (H̄, V̄ , S̄ + Āt, D̄ + S̄t + Āt2

2 ).

Proof. Note that due to (1) we have

d

dt

(∫ L

0

(

∫ x

0

H − H̄)dx

)
=−

∫ L

0

(∫ x

0

∂(HV )

∂x

)
dx

=−

∫ L

0

HV ,

therefore the time-derivative of R3 is

Ṙ3 = Ṙ2 + λ3

(
−λ2(Ḋ − S̄ − Āt) + λ1

∫ L

0

HV

)

(
−λ2(D − D̄ − S̄t −

Āt2

2
) − λ1

∫ ∫
(H − H̄)

)
,

where Ṙ2 is given by (21). It can thus be shown
that a natural expression for u3 is (23).2

4. NUMERICAL RESULTS

We discretize the shallow water equations with the
semi-implicit Preissman scheme (see (Malaterre,
1994) or (Graf, 1998)). When discretizing, it is
possible to choose Preissman coefficient θ and
Courant number Cr (namely θ = 0.5 and Cr = 1)
such that the discretization does not introduce
numerical damping for the linear equations. How-
ever, with this choice of parameters, the numerical
errors are not damped and the solution obtained
becomes non-smooth. Therefore we use a θ > 0.5
even if it generates an artificial stabilization due to
the numeric damping. To overcome this difficulty,
we compare the stabilization rate of open-loop to
closed-loop systems.

4.1 Simulation with a complete stabilization

In this section, we set the Preissmann coefficient
θ to the value 0.51 and the time-step ∆t = 0.2
and the space-step ∆x = 0.5. We consider the
following initial conditions D̃ = 0, S̃ = 0 and
for all x in [0, L], H̃(x) = 0.02x + 0.88, Ṽ (x) =
sin2(xπ

L
). Let us study the stabilization problem

of the fluid and note that we want the tank of
length L = 12 to stay the most close as possible
from its initial position.

Let us compare the three following control laws:
the null control, u = 0, the control (20) given by
Theorem 2 and the control (23) given by Theorem
3, with the gains λ1 = 0.01, λ2 = 0.05 and
λ3 = 0.04. We note in Figures 2 and 3 that the
controls defined in Sections 3.2 and 3.3 succeed in
stabilizing the fluid’s state contrary to the system
without control, where some oscillations of the
fluid stay even after 100 seconds. In Figure 4,
we check that the control of Section 3.2 stabilize
the tank’s speed around the value 0. We note that
with this controller, the tank’s position tends to a
constant (≈ −0.05). This motives to use a forward
approach as in Section 3.3 to track this value to
0. This control realize the complete stabilization
of the tank. Note that at the bottom of Figure 4,
we have the plot of the accelerations, therefore we
have the controls.

4.2 Importance of the non-linear terms of the

shallow water equations

In this section we consider the following equilib-
rium: D̄ = 0, S̄ = 0, Ā = 0, H̄ = 1.5 and V̄ = 0.
Note that the shallow water equations linearized
around this equilibrium are uncontrollable, even
locally (see (Dubois et al., 1999)). Indeed the
function H, V : [0,+∞) × [0, L] → R and D :
[0,+∞) → R defined by, for all t ≥ 0 and for all
x in [0, L],
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Fig. 2. Fluid’s speed in the tank at time t = 0,
t = 60, t = 120 and t = 180 seconds. The
curve – is the fluid with the null control, − −
with the control (20) of Section 3.2 and · · ·
with the control (23) of Section 3.3.
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Fig. 3. Fluid’s height in the tank at time t = 0,
t = 60, t = 120 and t = 180 seconds. The
curve – is the fluid with the null control, − −
with the control (20) of Section 3.2 and · · ·
with the control (23) of Section 3.3.

D(t) = 0 , H(t, x) = 1 + sin2(
πx

L
) , (24)

V (t, x) = −2
π

gL
t cos(

πx

L
) sin(

πx

L
) , (25)

are solutions of the linearized equations with
u = 0. However the nonlinear shallow water
equations are locally controllable (see (Coron,
2001)), we expect (and we check) numerically that
the nonlinear equations are stabilizable.
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Fig. 4. Trajectory of the tank in closed-loop with
the null control (–), with the (20) control of
Section 3.2 (− −) and with the control (23) of
Section 3.3 (· · · ). At the top, we have the plot
of the position, in the middle, the velocity and
at the bottom, the acceleration in function of
the time.

To do this, we consider as initial condition the
value of the functions (24)-(25) at t = 0 and
we implement the feedback of Section 3.3. More
precisely let us define L = 7.5 and the following
initial conditions, D̃ = 0, S̃ = 0 and, for all x

in [0, L], H̃(x) = 1 + sin2(
πx

L
), Ṽ (x) = 0. We

set λ1 = 0.4, λ2 = 0.1 and λ3 = 0.1. We choose
θ = 0.5001 which is very close to the critical
value (namely 0.5). Therefore we have non-smooth
numerical solutions (see Figure 6). We observe
in Figure 7 that the tank stays very close to
the initial position but succeed in stabilizing the
fluid’s speed (see Figure 5) and the fluid’s height
(see Figure 6).

CONCLUSION

In this paper we have computed a class of feed-
back which numerically stabilizes the system fluid-
tank. A further work of this paper is to prove that
the stabilization is achived. One possible way is
described by Remark 1.

In this paper the control laws are feedbacks of
all variables of the system fluid-tank. But to
implement these feedbacks and to use it for a
physical application it is important to look for a
feedback depending only of variables which are
easy to compute. Thus it is important to explicit
a stabilizing output-feedback where the output is
the height of the fluid at the boundary of the
tank, the time and the trajectory of the tank only.
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Fig. 5. Fluid’s speed in the tank at time t = 0,
t = 16.6, t = 33.3 and t = 50 seconds. The
curve – is the fluid with the null control, − −
with the control of Section 3.3.
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Fig. 6. Fluid’s height in the tank at time t = 0,
t = 16.6, t = 33.3 and t = 50 seconds. The
curve – is the fluid with the null control, − −
with the control of Section 3.3.

An other further work is to study a Lyapunov
approach to find such feedbacks.
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problèmes de stabilisation. PhD thesis. Uni-
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