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1. INTRODUCTION

Real-time fault detection (FD) is a decision prob-
lem in which the healthy or faulty state of a sys-
tem has to be inferred from the observation of the
available data. Two kinds of decision problems,
namely hypotheses testing or change point detec-
tion problems can be stated. Fault isolation ex-
tends the decision problem to the consideration of
more than two hypotheses. This paper addresses
the FD problem, by means of the two hypotheses
testing problem.

The main difficulty in FD is that the observed
data depends on some nuisances : unknown pa-
rameters, inputs, initial conditions. In control
(the so-called geometric approach), the system
model is used to eliminate those parameters
(Cocquempot et al., 1991), (Seliger and Frank,
1991). This produces a residual vector, which
is created using identification, parity space or
observer based approaches, which are related in
some sense (Gertler, 2000), (Cocquempot and
Christophe, 2000), (Magni and Mouyon, 1994).
The decision procedure applies to this residual.
However, there are many cases in which this ap-
proach does not work, either because all the nui-
sances cannot be eliminated (heuristic approxi-
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mate decoupling is then used, (Gertler and Kun-
wer, 1993), (Staroswiecki et al., 1993)), or because
nuisances and faults act in the same spaces (see
(Staroswiecki and Darkhovski, 2001) for exam-
ple).

Statistical decision approaches directly consider
the (stochastic) available observation, by set-
ting some optimisation problem in which false
alarms and missed detections are minimized
(Basseville and Nikiforov, 1993), (Brodsky and
Darkhovsky, 2000). Relations between control and
statistical decision approaches have been exhib-
ited (Basseville and Nikiforov, 1993), (Nikiforov et
al., 1996). Again, when nuisances are present, this
problem receives only heuristic solutions, whose
asymptotic optimality (i.e., when the number of
observations tends to infinity) has been proven
only under restrictive assumptions on the faults
(like the assumption about the bringing hypothe-
ses - see (Borovkov, 1984)).

This paper proposes an approach to the FD
problem which is not purely geometric and not
purely statistical. The decision problem is based
on a game theoretic formulation, which does not
need the decoupling of nuisances, provides non-
asymptotical results, and can be interpreted in
terms of some rational behaviour of the decision
maker. Section 2 presents the system normal and
faulty operation models, and gives a Bayesian
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setting of a unified decision problem, which is
developed in a game theoretic frame in section
3. Section 4 gives three results which characterize
the solutions of the game, and Section 5 provides
an illustrative application for linear systems. Con-
cluding remarks are given in Section 6.

2. NORMAL AND FAULTY OPERATION

Consider a dynamic system in discrete time:

xk+1 = F (xk, uk, vk, ϕk), x0 ∈ X0

yk = G(xk, uk, vk, ϕk, ξk) (1)

Here xk ∈ Rn is the state vector, X0 ⊆ Rn is a
given set, and yk ∈ Rp is the output vector. The
measurements are corrupted by some stochastic
vector ξk ∈ Rr. The system inputs are the control
vector uk ∈ Rm – a known function of time,
and two unknown inputs, namely vk ∈ Θ ⊆ Rq

which represents external disturbances or model
uncertainties which are not to be detected (Θ is a
given set), and ϕk ∈ Rr which represents the fault
vector. The system operation is considered on a
given time window of finite lenghth {0, 1, ...N} ,
and the problem is to decide whether the system
is in normal or in faulty operation on that time
window.

Using the notation

ϕ̄ = (ϕτ
0 , ϕτ

1 , . . . , ϕτ
N )τ ,

ξ̄ = (ξτ
0 , ξτ

1 , . . . , ξτ
N )τ

where the superscript τ stands for transposition,
and supposing that joint density function (d.f.)
f(·) of vector ξ̄ is known, normal and faulty
operation can be defined as follows.

Problem 1

H0 : normal operation, ϕ̄ ∈ Φ0, ξ̄ ∼ f0(·)
H1 : faulty operation, ϕ̄ ∈ Φ1, ξ̄ ∼ f0(·)

(2)

where Φ0 and Φ1 are two given sets, Φ0∩ Φ1 = ∅
for consistency, and f0 is a given d.f.

Problem 2

H0 : normal operation, ϕ̄ ∈ Φ0, ξ̄ ∼ f0(·)
H1 : faulty operation, ϕ̄ ∈ Φ0, ξ̄ ∼ f1(·)

(3)

2.1 Decision problem 1

Define

z = (xτ
0 , v̄τ , ϕ̄τ )τ

Z0 = X0 × V × Φ0

Z1 = X0 × V × Φ1

The (off-line) fault detection problem consists of
testing if the fault vector ϕ̄ belongs to Φ0 or to Φ1.
For any given control sequence {u0, u1, ...uN−1},
the observation ȳ = (yτ

0 , yτ
1 , ...yτ

N )τ depends on
the initial state x0 ∈ X0, on the unknown vectors
v̄ =

(

vτ
0 , vτ

1 , ...vτ
N−1

)τ
(which belongs to the known

set V = ΘN ) and ϕ̄ (which belongs either to Φ0

or to Φ1 according to the system operation mode)
and on the stochastic vector ξ̄. Let g be the d.f.
of the observation vector, which is generated by
(1) and the d.f. f0. It obviously depends on the
parameter z. Therefore, for a given f0, there is a
collection of density functions g(·, z). Let

G0 = {g(., z), z ∈ Z0} ,G1 = {g(., z), z ∈ Z1}

then the fault detection problem can be set as a
problem of statistical hypotheses testing:

H0 : the d.f. of the vector ȳ belongs to G0

H1 : the d.f. of the vector ȳ belongs to G1
(4)

This problem is called the two parametric sets
problem (Z0 and Z1). A necessary and sufficient
condition for the faults (2) to be detectable is:

G0 ∩ G1 = ∅ (5)

2.2 Decision problem 2

In decision problem 2, ϕk plays the same role as
vk, so considering only the latter in the parameter
vector z = (xτ

0 , v̄τ )τ is enough. Under the fault
(3), the d.f. of the observation vector changes for
any z from g0(., z) to g1(., z) (due to the change
in the d.f. of ξ̄ from f0 to f1), and the hypotheses
testing problem is still described by (4), where G0

and G1 are now

G0 = {g0(., z), z ∈ X0 × V }
G1 = {g1(., z), z ∈ X0 × V } (6)

This problem is called the one parametric set
problem (Z = X0 × V ). The necessary and suf-
ficient condition for such faults to be detectable
is still given by (5).

2.3 Unified decision problem

The two above decision problems can be stated in
a unified frame. Indeed, denote by ζ ∈ Z = Z0 ×
Z1 a new unknown parameter and consider the
following density functions

γ0
(

ȳ, ζ
)

= g
(

ȳ, PrZ0ζ
)

, γ1
(

ȳ, ζ
)

= g
(

ȳ, PrZ1ζ
)

,

where PrA is the projection operator on the set
A. Obviously, one has γ0

(

ȳ, ζ
)

= g
(

ȳ, z0
)

for some
z0 ∈ Z0 and γ1

(

ȳ, ζ
)

= g
(

ȳ, z1
)

for some z1 ∈ Z1.
It follows that for the functions γ0, γ1 and the



parameter ζ ∈ Z the problem is reduced to a one
parametric set one.

Now, let ȳ ∈ RN , where N = (N + 1)p, be the
data, and z ∈ Z ⊂ RM, where M = n × Nq, be
the unknown parameter vector, Z is a given set.
The problem is to test the two hypotheses :

H0 : d.f. of ȳ is g0(ȳ, z)
H1 : d.f. of ȳ is g1(ȳ, z) , z ∈ Z

Let ρ(ȳ) be a decision function, i.e., a measurable
map from RN to {0, 1}. If ρ(ȳ) = 0, H0 is
accepted, otherwise H1 is accepted. Let Pz,0, Pz,1

be the probabilistic measures associated with the
hypotheses H0, H1 and the parameter value z
respectively.

Hypotheses testing problems can be set using ei-
ther the Bayesian or the Neyman-Pearson (NP)
approach. In this paper, only the Bayesian ap-
proach is presented (the NP approach can be
developed using similar lines), i.e. the criterion is:

J
(

ρ(·), z
)

= αPz,1
(

ρ(ȳ) = 0
)

+ βPz,0
(

ρ(ȳ) = 1
)

,
(7)

where α > 0, β > 0 are given real numbers, for
any z ∈ Z.

Some remarks and comments are in order here.
First, the problem with one parametric set is
not usually considered in the literature. Second,
when strict decoupling can be achieved, geometric
approaches can be seen to solve problem (4) under
the simple situation where

Z0 = Φ0, Z1 = Φ1

As already noticed, strict decoupling is not pos-
sible in many cases. Approximate decoupling in-
troduces heuristic approaches, based on geometric
manipulations, in order to ”maximise the influ-
ence” of ϕ̄ while ”minimizing the influence” of
x0 and of v̄ on the observations ȳ. However, such
approaches allow for different means of defining
the ”influences”, which cannot be easily related
with the optimality criterion (7).

On another hand, problem (4) is well known
in mathematical statistics (see (Borovkov, 1984)
for example). Considering the Bayesian statement
(7), the following decision rule is used in practice

if
max
z∈Z0

g(ȳ, z)

max
z∈Z1

g(ȳ, z)
> η, then accept H0,

in the opposite case accept H1

(8)

where η is some constant. However, it is known
((Borovkov, 1984), p.349-350) that this rule is not
the optimal one in the general case, and that it
is only possible to prove asymptotic optimality
(i.e., when N → ∞) under special assumptions
on the faults (for example, the assumption about
the bringing hypotheses).

3. THE GAME PROBLEM SETTING

In this section, a game theoretic based approach
to the solution of the one parametric set deci-
sion problem, with criterion (7), is proposed. This
formulation provides a rational scheme from the
decider’s point of view, which needs neither any
decoupling property, nor any statistical consider-
ation.

For any given value of the parameter, the well
known optimal rule for problem (7) is:

ȳ ∈ D(z) =
{

ȳ :
αg1(ȳ, z)
βg0(ȳ, z)

> 1
}

=⇒ ρ(ȳ) = 1

ȳ ∈ RN \D(z) =⇒ ρ(ȳ) = 0
(9)

Denote by ρz(ȳ)
4
= ρz(·) the optimal solution

when the parameter is equal to z. Obviously,
this rule cannot be implemented, since it depends
on the unknown parameter. In the proposed ap-
proach, the decision is made based on the guess
that the parameter is equal to ẑ ∈ Z while its
true value is equal to z ∈ Z.

Since the unknown parameter is guessed to be ẑ,
it is natural to make the decision ρẑ(·). Thus, the
decision will be ρẑ(ȳ) = 1 on the set D

(

ẑ
)

and
ρẑ(ȳ) = 0 on the supplementary set. The cost
functional under such decision will be

J
(

ρẑ(·), z
)

= β +
∫

RN \D(ẑ)

(

αg1
(

ȳ, z
)

− βg0
(

ȳ, z
)

)

dȳ

The minimum cost (which one could get if the true
value of the parameter would be known) is

J
(

ρz(·), z
)

= β +
∫

RN \D(z)

(

αg1
(

ȳ, z
)

− βg0
(

ȳ, z
)

)

dȳ

Now the following game between the decision
maker and the Nature is considered :

• the decision maker chooses the vector ẑ ∈ Z
• the Nature chooses the vector z ∈ Z
• the loss function of the game is

LB(ẑ, z)
4
= J

(

ρẑ(·), z
)

− J
(

ρz(·), z
)

(10)

Therefore, the initial hypotheses testing prob-
lem with unknown parameter can be reduced to
some finite-dimensional problem, whose setting
depends on the assumption which is made about
Nature’s behaviour. First, suppose that Nature
plays randomly, according to some probabilistic
measure, with d.f. p(.), on the parametric set.
Such measure can be considered as some a priori
available knowledge about the parameter. Then it
is natural to consider the following problem :

λ(ẑ)
4
=

∫

Z
LB(ẑ, z)p(z)dz −→ min

ẑ∈Z
(11)



When no a priori knowledge is available, or when
guaranteed results are needed, the worst case sit-
uation is considered for Nature’s decision. Then,
the following problem arises:

λ(ẑ) , max
z∈Z

LB(ẑ, z) −→ min
ẑ∈Z

(12)

Let z∗ ∈ Z be the solution of problem (11) or (12).
Then the final solution of the initial problem is to
accept hypothesis H1 on the set D(z∗).

It can be underlined that the direct setting of
the min-max approach to the initial problem, i.e.,
considering a problem of the type

max
z∈Z

J
(

ρ(·), z
)

−→ inf
ρ(·)

where the inf operation is carried out over all mea-
surable maps from ȳ into {0, 1}, is very difficult.
Note also that instead of minimizing the initial
cost functional, one might consider minimizing its
upper estimate, i.e., the problem

J̃
(

ρ(·)
)

=
∫

ρ(ȳ) max
z∈Z

(

αg1(ȳ, z)− g0(ȳ, z)
)

dȳ

−→ inf
ρ(·)

(13)

whose optimal solution would be

ρ̃(ȳ) =

{

0 if max
z∈Z

(

αg1
(

ȳ, z)− βg0(ȳ, z)
)

> 0

1 in opposite case,

However, this solution seems unsuitable because
in general it is impossible to construct any simple
region for the acceptation of the hypothese in the
ȳ-space.

Remark 1. Note that under the proposed ap-
proach, the detectability conditions are not used.
This is because the decision is not a statistical
one in the usual meaning. The detectability condi-
tions guarantee that under any rational statistical
decision, the cost functional tends to zero as the
size of the sample tends to infinity (due to the
law of large numbers). In the proposed approach,
one is not interested in the asymptotic features
of the solution, but one would only like to find a
rational solution for finite sample sizes. The above
mentioned solution is just such one.

4. THREE RESULTS FOR THE GAME
PROBLEM

Let Z ⊂ RM be the given parametric set, and
L(ẑ, z) be a given function, for ẑ ∈ Z, z ∈ Z.
Everywhere below (to avoid trivial complexity) it
is assumed that Z is compact.

Depending on the assumption which is made
about Nature’s behaviour, two problem settings
are considered, namely

λ(ẑ)
4
= max

z∈Z
L(ẑ, z) −→ min

ẑ∈Z
(14)

when Nature is supposed to play in the most
aggressive way, and

λ(ẑ)
4
=

∫

Z
L(ẑ, z)p(z)dz −→ min

ẑ∈Z
(15)

when Nature is supposed to play randomly by
choosing the unknown parameter vector z under
some known probabilistic measure p(·).

Theorem 4.1. (The minmax problem). Let the fol-
lowing assumptions hold:

1) the set Z has a center of symmetry,

2) the function L depends only of the difference
ẑ − z and it is symmetric with respect to zero,

3) L is a continuous and quasi-convex function.

Then the center of symmetry of the set Z is a
solution of problem (14).

Proof. Without any loss of generality, assume that
0 ∈ Z and 0 is the center of symmetry. It has to
be proven that 0 ∈ arg min λ(ẑ).

Recall that a function f is called quasi-convex iff
its Lebesgue set

{x : f(x) ≤ b}

is convex for any b ∈ R. It is easy to see that if f is
a continuous quasi-convex function then for any x
there exists at least one halfspace R(x) such that

f(x + z) ≥ f(x) ∀z ∈ R(x).

From the central symmetry of Z (−Z = Z) it
follows :

λ(ẑ) = max
z∈Z

L(ẑ − z) = max
z∈Z

L(ẑ + z)

= max
z∈Z

(

L(z) + L(ẑ + z)− L(z)
)

≥ L(z∗) + L(z∗ + ẑ)− L(z∗),

where z∗ ∈ arg maxz∈Z L(z).

If ẑ ∈ R(z∗), then from the above inequality and
the quasi-convexity of L it follows that λ(ẑ) ≥
L(z∗).

Suppose that ẑ 6 ∈R(z∗). Therefore, L(z∗ + ẑ) <
L(z∗). Using the symmetry of L one has

L(−z∗ − ẑ) =L
(

− (−z∗ − ẑ)
)

<L(z∗) = L(−z∗)

and therefore (−ẑ) 6 ∈R(−z∗), i.e., ẑ ∈ R(−z∗).

But due to the symmetry, one has (−z∗) ∈
arg maxz∈Z L(z) from which it follows that

λ(ẑ) ≥ L(−z∗ + ẑ)− L(−z∗) + L(−z∗) ≥
L(−z∗) = L(z∗)



Therefore, for any ẑ ∈ Z, λ(ẑ) ≥ L(z∗) =
maxz∈Z L(z) holds. But on another hand

min
ẑ∈Z

λ(ẑ)≤ λ(0)

= max
z∈Z

L(−z) = L(z∗)

Hence

min
ẑ∈Z

max
z∈Z

L(ẑ − z) = max
z∈Z

L(z)

and so ẑ = 0 is an optimal guess. 2

Theorem 4.2. (The probabilistic problem). Let the
following assumptions hold:

1) the set Z has a center of symmetry,

2) the function L depends only of the difference
ẑ − z and it is symmetric with respect to zero,

3) the function L is continuous and convex,

4) the probability measure p(·) is symmetric with
respect to the center of symmetry.

Then

min
ẑ∈Z

λ(ẑ) = λ(0) =
∫

Z
L(z)p(z)dz

Proof. Without any loss of generality, assume that
0 is the center of symmetry of Z. Due to the
symmetry and convexity 0 belongs to the set of
minima L. Therefore it is possible to assume that
L ≥ 0. From assumption 2, one has

λ(ẑ) =
∫

Z
L(ẑ − z)p(z)dz

Fix vector ẑ ∈ Z and denote

R(ẑ) = {z ∈ Z : L(ẑ + z) ≥ L′ẑ)},
R(−ẑ) = {z ∈ Z : L(−ẑ + z) ≥ L(−ẑ)}

Obviously, due to the symmetry of Z it follows
that z ∈ R(ẑ) ⇔ (−z) ∈ R(−ẑ) and Z =
R(ẑ)

⋃

R(−ẑ). Therefore one has

λ(ẑ) =
∫

R(ẑ)

(

L(z + ẑ) + L(z − ẑ)
)

p(z)dz (16)

As the function L is convex and continuous, it
has at any point the subdifferential ∂L. Therefore,
for any z ∈ Z, h ∈ Z there exists a vector
u(z) ∈ ∂L(z) such that

L(z + h) ≥ L(z) + 〈u(z), h〉

In particular, if L(·) is a differentiable function,
u(z) = dL

dz (z). Therefore,

L(z + ẑ) ≥ L(z) + 〈u(z), ẑ〉,

L(z − ẑ) ≥ L(z) + 〈u(z),−ẑ〉.
(17)

From (16) and (17) and due to the assumptions
one has

λ(ẑ) ≥ 2
∫

R(ẑ)
L(z)p(z)dz =

∫

Z
L(z)p(z)dz = λ(0)

which is the result. 2

Another result concerning the probabilistic prob-
lem is as follows.

Theorem 4.3. Let the following assumptions hold:

1) the set Z has a center of symmetry,

2) the function L depends only of the difference
ẑ − z, symmetric with respect to zero, and non-
negative,

3) the probability measure p(·) is symmetric with
respect to the center of symmetry, convex and
twice differentiable.

Then

min
ẑ∈Z

λ(ẑ) = λ(0) =
∫

Z
L(z)p(z)dz

Proof. Without loss of generality assume that 0 is
the center of symmetry of Z. We can assume that
the function p(·) is defined on the whole space but
has the support Z. Then, taking the integral over
the whole space, we have

λ(ẑ) =
∫

L(u)p(u− ẑ)du

Calculating the derivative of λ at 0, we obtain

λ′(0) =
∫

L(u)p′(u)du = 0

due to the symmetry of L and p. Further,

λ′′(0) =
∫

L(u)p′′(u)du

and this matrix is positive semi-definite due to
nonnegativity of L and convexity of p. There-
fore, the point ẑ = 0 satisfies a weak local
minimum condition. The function λ being con-
vex (by assumptions 1 and 3), therefore 0 ∈
arg min λ(ẑ). 2

Note that if the matrix
∫

L(u)p′′(u)du is definite
positive, the point 0 is at least a local minimum
of λ(·) without the convexity assumption of p(·).

5. AN ILLUSTRATIVE APPLICATION

Consider the LTI version of system (1) :

xk+1 = Axk + Buk + Evk (18)

ζk = Cxk + εk

where x0 ∈ X0 ⊂ Rn, vk ∈ Θ ⊂ Rq, and the
considered fault is the change of the d.f. of ε



from g0(.) in normal operation to g1(.) in faulty
operation. From (18), it follows that

ζ̄ = OBSx0 + COMBū + COME v̄ + ε̄ (19)

where OBS,COMB , COME are respectively the
observability matrix, and the influence matrices
associated with the known and unknown inputs.
(19) obviously writes under the form

ȳ = Hz + ε,

where ȳ = ζ̄ − COMBū ∈ RN is the observa-
tion vector, ε = ε̄ is the random vector, z =
(

x0
v̄

)

∈ Z ⊂ RM is the parameter, and H =
(

OBS, COME
)

.

First, note that the applicability of the parity
space approach depends on the rank of E. Second,
when parity space works, the decision procedure
leads to detect a change in the means of the
residual r = Wȳ (whose evaluation form is Wε),
where W is the parity space matrix, such that
WH = 0.

Assuming that Z is a given central symmetric
convex compact set, with center of symmetry 0,
and under some mild hypothesis about the d.f.
g0(·) and g1(·) (which are satisfied in the classical
setting, where g0(.) and g1(.) are gaussian, have
the same covariance matrix, but different means),
it can be shown that the optimal guess for the
parameter is ẑ = 0. Thus, the resulting decision
problem resumes in detecting a change in the
means of the observation ȳ (instead of a change
in the means of the residual r).

6. CONCLUSION

Fault Detection and Isolation in dynamic systems
rises decision problems in the presence of nuisance
parameters. In this paper, the problem has been
set in a game theoretic framework, in which the
decider guesses the nuisance parameters and Na-
ture chooses the actual ones. The loss function
expresses the penalty endured by the decider for
not being able to guess the actual parameter
values. Different problem formulations have been
proposed, and solutions have been characterized
under some reasonable assumptions. It has to
be noted that this approach does not need any
pre-treatment of the data (e.g. producing first a
residual vector independent on the initial state),
since it directly takes into account the known sets
to which the unknown parameters belong.
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