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Abstract: This paper presents a new approach based on Youla parametrization, to retune 
Generalised Predictive Control (GPC) law while preserving its two degrees of freedom 
structure. This results in a more robust controller with improved high frequency 
disturbance rejection properties. The proposed strategy expresses an initial controller in a 
powerful form via the Youla theory, each transfer function of the resulting closed loop 
system being independently modified. This structure is then particularised to GPC, to 
adjust the transfer between measurement noise and system output, without changes in the 
initial input/output closed loop, so that performance of the initial GPC controller is 
enhanced. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
A classical technique to enhance qualities of GPC 
controllers is to make use of a model parameter as an 
additional degree of freedom. In this way, defining 
the prediction model in the classical CARIMA form, 
the C polynomial modelling the noise influence may 
be used as a tuning parameter, since its identification 
is usually avoided. This approach is developed by 
Yoon and Clarke (1995). It has been shown that the C 
polynomial plays a crucial role in the robustness of 
the control law. More generally, this polynomial 
influences the robustness and disturbance rejection, 
unfortunately its choice remains complicated. 
 
Another way to introduce extra parameters is given 
by the Q-parametrization. It was first used by 
Kouvaritakis, et al., (1992) to enhance robustness of 
the control: a robust optimisation problem is defined 
and an optimal Q parameter is derived. This 
parameter is also considered by Ansay, et al., (1998) 
to adjust the compromise between disturbance 
rejection and robustness. This Q-parametrization can 
be referred to as a Youla type parametrization, see 

(Maciejowski, 1989) with additional implicit 
assumptions which restrict the result. It must be noted 
that links between the C polynomial and the Q 
parameter exist, see for example (Yoon and Clarke, 
1995). A complementary interpretation of the 
parameter can then be obtained but the choice of extra 
parameters remains difficult. 
 
This paper presents a “full” Youla parameter 
approach aiming at retuning GPC controllers, which 
in fact provides an original and more general structure 
compared to all strategies stated above. Moreover, it 
guaranties that all stabilizing controllers can be 
examined. Section 2 briefly reminds the different 
steps required for the GPC controller design. Then, as 
a starting point of the method, Section 3 considers a 
SISO system with an initial two-degrees of freedom 
controller transformed into a MIMO system with a 
one-degree of freedom controller. 
From this model, Section 4 shows that the 
corresponding stabilizing controllers for the MIMO 
case can be parametrized by a 2×2 matrix of stable 
transfers using Youla theory. To maintain 
equivalence with the original SISO case, additional 
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constraints are then considered. As a result, a subset 
of the Youla parameter is obtained that characterizes 
all the two-degrees of freedom stabilizing controllers 
of the original SISO system. In connection with the 
proposed strategy, the characterization of stabilizing 
controllers which maintain particular closed loop 
transfer functions invariant is also studied. It is shown 
that this general approach, particularized to keep 
transfer between reference and output invariant for a 
two-degrees of freedom controller enables to recover 
classical results. 
Finally, Section 5 provides simulation results 
obtained on a GPC controlled asynchronous motor. It 
is shown that this method can optimise noise rejection 
through an appropriate choice of the Q parameter. 
 
 

2. GPC DESIGN 
 
This part briefly reminds the basic steps of the GPC 
controller design, more details may be found in 
(Bitmead, et al., 1990 or Dumur and Boucher, 1998). 
In the GPC theory, the plant is classically modelled 
by the input/output CARIMA form: 
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)(tξ  is a zero mean non-correlated white noise, and 
as previously mentioned, )( 1−qC  models the noise 
influence (Clarke and Mohtadi, 1989). The 
introduction of difference operator 11 1)( −− −=∆ qq  
in the disturbance model helps to find an integral 
action in the controller and so eliminate the static 
errors. The control signal is obtained by minimisation 
of a quadratic cost function: 
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Where 1N  and 2N  define the output prediction 
horizons, and uN  the control horizon. λ is the control 
weighting factor, w  is the reference value, ŷ  is the 
predicted output value, obtained solving diophantine 
equations, and u  the control signal. 
The receding horizon principle assumes that only the 
first value of the optimal control sequence is applied, 
so that at the next sampling period the same 
procedure is repeated. This control strategy leads to a 
two-degrees of freedom RST controller: 

 )()()()()()()( 111 twqTtyqRtuqqS +−=∆ −−−  (3) 

At this stage, it is assumed that the design has been 
performed with 1)( 1 =−qC  and 1N , 2N , uN , λ 
adjusted to obtain the required input/output 
behaviour. The resulting two-degrees of freedom RST 
controller will be denoted 000 ,, TSR  in the following 
sections (Figure 1). It is assumed that the plant model 
is perfectly identified. 
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Fig. 1. Two-degrees of freedom GPC controller 
 
 
3. TWO-DEGREES OF FREEDOM CONTROLLER 

AS A 2-INPUTS/2-OUTPUTS SYSTEM 
 
A SISO system with a two-degrees of freedom 
controller can be represented as stated on Figure 2. 
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Fig. 2. Two-degrees of freedom controller. 
 
Theorem 1. A two-degrees of freedom controller can 
be expressed as a one-degree of freedom controller 
for a 2-inputs/2-outputs plant with a structured 2-
inputs/2-outputs controller. 
 
Proof: Figure 2 can be modified to obtain the 
following scheme of Figure 3. 
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Fig. 3. Two-degrees of freedom controller modelled 
as a 2-inputs/2-outputs system. 

 
With the following equivalence between transfers: 
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4. PARAMETRIZATION OF ALL 
STABILIZING CONTROLLERS 

 
 
4.1 General consideration. 
 
Figure 4 considers a general feedback loop, with the 
classical notations used in our following 
developments. 
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Fig. 4. General feedback loop 



Theorem 2. Let: 

 NMMNG ~~ 11 −− ==  (5) 

and: 0
1

0
1

000
~~ UVVUK −− ==  (6) 

be the fractional representations of G and 0K  respec-
tively. If 0K  is a stabilizing controller, then ,,MN  

000
~,~,~,, UMNVU  and 0

~V  can be chosen such that: 
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Proof: See (Maciejowski, 1989) 
 
Theorem 3. Let Eqs. 5 and 6 verified, such that Eq. 7 
holds. For any compatible dimensions stable transfer 
matrix Q, define: 

 QNVVQMUU +=+= 00  (8) 

 NQVVMQUU ~~~~~~
00 +=+=  (9) 

1) Then UVVU ~~ 11 −− =  and UVVUK ~~ 11 −− ==  
is a stabilizing controller for G  given by Eq. 5. 

2) Furthermore, any stabilizing controller has 
fractional representation Eq. 8 and Eq. 9. 

 
Proof: See (Maciejowski, 1989) 
 
 
4.2 Parametrization of all stabilizing controllers for 

a two-degrees of freedom controller represented 
as a 2-inputs/2-outputs system. 

 
According to the previous notations, the system 
represented Figure 3 can be modelled with the 
following matrices: 
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The aim is thus to find a fractional representation that 
holds Eqs. 5, 6 and 7 in order to parametrize all 
stabilizing controllers as stated by Eqs. 8 or 9. In 
order to achieve that, 1C  and 2C  may be 
decomposed into a numerator and denominator part: 

 dndn CCCCCC 222111 ==  

With this notation, the closed loop of Figure 2 is: 
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assuming that the characteristic polynomial of this 
closed loop can be separated in a control polynomial 

cA  and an observer polynomial oA , both stable, as 
in pole placement, see (Åström and Wittenmark, 
1997). 
 
The fractional representation must hold Eqs. 5, 6 and 
7. These expressions include eight matrices equations 
with eight unknown parameters. In these equations, it 
is straightforward to show that: 

 0VUUV =− 0000
~~  

 0NMMN =+− ~~  

are redundant in Eqs. 6 and 7, and in Eqs. 5 and 7. 
Only six equations remain with eight unknown 
parameters, as follows: 
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However, if M  and M~  are fixed, the other unknown 
parameters can be derived solving previous relations: 
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The fractional representation found in this way is 
valid if all transfers of 000

~,~,~,,, UMNVUMN ,  and 
0

~V  are stable. 
 
Theorem 4. For a system with structure of Figure 3, a 
Youla parametrization exists such that the four 
transfers of the system can be expressed as: 
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Where each transfer is parametrized independently 
from the others, and with jiQ  free stable transfers. 
Taking into account the equivalences in Eq. 4, the 
transfer modified by each parameter jiQ  is: 
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Proof: Choosing: 
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the following fractional representation is obtained 
according to Eq. 13: 
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Each transfer is stable because 0K  is considered as a 
stabilizing controller and oA  and cA  are both stable. 
 
With this fractional representation and applying Eq. 8 
or Eq. 9, all stabilizing controllers can be deduced. 
Applying Eq. 8, e.g., the following controller is 
found: 
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In the other hand, the system of Figure 3, with the 
controller Eq. 17, has the input/output transfers: 
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Replacing in these transfers the controller found with 
Eqs. 17 and 18 leads after calculation to the transfers 
of Theorem 4, Eq. 14, which achieved the proof. 
 
 
4.3 Back to the diagonal controller. 
 
In order to find the class of stabilizing controllers that 
can be implemented as two-degrees of freedom 
controllers, only the diagonal controllers in the 
previous parametrization of all stabilizing controllers 
are considered. As a consequence, 02112 == KK  is 
imposed, leading to the following controller after 
calculations: 
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with: 
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Consequently, among the four parameters 11Q , 12Q , 
21Q  and 22Q , only two of them remain free and only 

two transfers can be independently modified. 
 
 
4.4 Application to a two-degrees of freedom GPC-

controller initially designed with 1)( 1 =−qC . 
 
According to Figure 1 and previous notations, the 
plant and the controller are respectively given by the 
following relations: 
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∆ is introduced in the denominator of H in order to 
preserve the integral action of the controller even 
after parametrization. Applying Eq. 20, all stabilizing 
diagonal controllers are: 
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1N , 2N , uN  and λ have been adjusted to provide 
the desired behaviour of the y/w transfer. To maintain 
this transfer unchanged, 11Q  must be zero, and the 
final controller becomes (Figure 5): 
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Fig. 5. Parametrization of the RST controller keeping 
the y/w transfer unchanged. 

 
The only transfer to be modified thus remains y/d via 
the 12Q  parameter. This particular result, deduced 
from the general “full” Youla parametrization 
presented above, is similar to the parametrization 
proposed by (Kouvaritakis, et al., 1992; Yoon and 
Clarke, 1995; Ansay, et al., 1998). 
This transfer y/d is expressed as: 
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5. APPLICATION TO AN INDUCTION MACHINE 
 
An interesting application of the previous result is 
connected to rejection of measurement noise in high 
frequencies, and 12Q  can be chosen for that purpose 
to induce a ‘low pass’ behaviour to the y/d transfer 
and enhance robustness of the initial GPC controller 
against high frequencies uncertainties. Consider the 
speed control of an induction motor, for which 
measurement noise rejection must be achieved. An 
identified transfer function of this induction motor, 
between torque and velocity, (Dumur and Boucher, 
1998) is, for a 5ms sampling period: 
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An initial GPC controller is designed with 
1)( 1 =−qC  with the following tuning parameters 

selected according to rules given in (Dumur and 
Boucher, 1998): 200,1,8,1 21 ==== λuNNN . 
The velocity and torque signals corresponding to a 
step setpoint are given respectively Figures 6 and 7 
upper part. For this simulation, a zero mean random 
measurement noise of 0.252 variance is added as 
shown on Figure 2. The influence of this noise on the 
output and on the control signal clearly appears. 
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Fig. 6. Velocity output (upper part: initial GPC, lower 
part: robustified GPC) 
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Fig. 7. Torque signal (upper part: initial GPC, lower 
part: robustified GPC) 



To enhance the behaviour of the system with regard 
to the measurement noise, the 12Q  parameter is 
chosen in order to confer to the y/d transfer a low pass 
behaviour. For that purpose, this choice may be 
performed through an optimisation procedure, or for 
example here following (Ansay, et al., 1998). The A 
polynomial is first factorised in stable and unstable 
parts, us AAA = , then 12Q  is chosen as: 
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The transfer y/d is thus: 
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*M  and *C  can be chosen as: 
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Figures 6 and 7 (lower part) show the response 
obtained for 9.01 =µ  and 8.02 =µ . The influence 
of the measurement noise is obviously smaller, both 
on the velocity output and the torque signal, 
compared to results with the previous controller. 
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Fig. 8. Frequency response of the y/d transfer 
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Fig. 9. Frequency response of the u/d transfer 

Figures 8 and 9 give the frequency response of the y/d 
and u/d transfers, showing that the low-pass 
behaviour of both transfers has been increased due to 
the parametrization. 
 
 

6. CONCLUSIONS 
 
A general method which parametrizes all two-degrees 
of freedom stabilizing controllers has been presented 
through the definition of the Youla parameters. This 
theory has been applied to the GPC structure as a 
particular case of two-degrees of freedom controllers, 
in order to robustify its performance. 
Moreover, a restricted family of stabilizing 
controllers keeping particular transfers unchanged has 
been examined. It has been shown that, for the case 
where the input/output transfer remains invariant, the 
presented theory leads to classical results found in the 
literature. 
This strategy has been applied to a GPC-controlled 
induction motor, to improve measurement noise 
rejection. A good behaviour is obtained, mainly on 
the control signal, compared to GPC without extra 
degree of freedom. 
With the general results presented here, other 
transfers than those classically considered may be 
robustified, using an optimisation procedure for the 
design of the Youla parameters. 
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