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Abstract: This paper presents a new approach based on Youla parametrization, to retune
Generalised Predictive Control (GPC) law while preserving its two degrees of freedom
structure. This results in a more robust controller with improved high frequency
disturbance rejection properties. The proposed strategy expresses an initial controller in a
powerful form via the Youla theory, each transfer function of the resulting closed loop
system being independently modified. This structure is then particularised to GPC, to
adjust the transfer between measurement noise and system output, without changes in the
initial input/output closed loop, so that performance of the initial GPC controller is

enhanced. Copyright © 2002 IFAC
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1. INTRODUCTION

A classical technique to enhance qualities of GPC
controllers is to make use of a model parameter as an
additional degree of freedom. In this way, defining
the prediction model in the classical CARIMA form,
the C polynomial modelling the noise influence may
be used as a tuning parameter, since its identification
is usually avoided. This approach is developed by
Yoon and Clarke (1995). It has been shown that the C
polynomial plays a crucial role in the robustness of
the control law. More generally, this polynomial
influences the robustness and disturbance rejection,
unfortunately its choice remains complicated.

Another way to introduce extra parameters is given
by the Q-parametrization. It was first used by
Kouvaritakis, et al., (1992) to enhance robustness of
the control: a robust optimisation problem is defined
and an optimal @ parameter is derived. This
parameter is also considered by Ansay, et al., (1998)
to adjust the compromise between disturbance
rejection and robustness. This Q-parametrization can
be referred to as a Youla type parametrization, see

(Maciejowski, 1989) with additional implicit
assumptions which restrict the result. It must be noted
that links between the C polynomial and the QO
parameter exist, see for example (Yoon and Clarke,
1995). A complementary interpretation of the
parameter can then be obtained but the choice of extra
parameters remains difficult.

This paper presents a “full” Youla parameter
approach aiming at retuning GPC controllers, which
in fact provides an original and more general structure
compared to all strategies stated above. Moreover, it
guaranties that all stabilizing controllers can be
examined. Section 2 briefly reminds the different
steps required for the GPC controller design. Then, as
a starting point of the method, Section 3 considers a
SISO system with an initial two-degrees of freedom
controller transformed into a MIMO system with a
one-degree of freedom controller.

From this model, Section 4 shows that the
corresponding stabilizing controllers for the MIMO
case can be parametrized by a 2x2 matrix of stable
transfers using Youla theory. To maintain
equivalence with the original SISO case, additional



constraints are then considered. As a result, a subset
of the Youla parameter is obtained that characterizes
all the two-degrees of freedom stabilizing controllers
of the original SISO system. In connection with the
proposed strategy, the characterization of stabilizing
controllers which maintain particular closed loop
transfer functions invariant is also studied. It is shown
that this general approach, particularized to keep
transfer between reference and output invariant for a
two-degrees of freedom controller enables to recover
classical results.

Finally, Section 5 provides simulation results
obtained on a GPC controlled asynchronous motor. It
is shown that this method can optimise noise rejection
through an appropriate choice of the Q parameter.

2. GPC DESIGN

This part briefly reminds the basic steps of the GPC
controller design, more details may be found in
(Bitmead, et al., 1990 or Dumur and Boucher, 1998).
In the GPC theory, the plant is classically modelled
by the input/output CARIMA form:
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E() is a zero mean non-correlated white noise, and
as previously mentioned, C(q_l) models the noise
influence (Clarke and Mohtadi, 1989). The
introduction of difference operator A(q_]) =1- q_l
in the disturbance model helps to find an integral
action in the controller and so eliminate the static
errors. The control signal is obtained by minimisation
of a quadratic cost function:
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Where N; and N, define the output prediction
horizons, and N, the control horizon. A is the control
weighting factor, w is the reference value, y is the
predicted output value, obtained solving diophantine

equations, and u the control signal.

The receding horizon principle assumes that only the
first value of the optimal control sequence is applied,
so that at the next sampling period the same
procedure is repeated. This control strategy leads to a
two-degrees of freedom RST controller:
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At this stage, it is assumed that the design has been
performed with C(g~')=1 and Ny, Ny, N,, A
adjusted to obtain the required input/output
behaviour. The resulting two-degrees of freedom RST
controller will be denoted R, S(,7 in the following
sections (Figure 1). It is assumed that the plant model
is perfectly identified.
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Fig. 1. Two-degrees of freedom GPC controller

3. TWO-DEGREES OF FREEDOM CONTROLLER
AS A 2-INPUTS/2-OUTPUTS SYSTEM

A SISO system with a two-degrees of freedom
controller can be represented as stated on Figure 2.
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Fig. 2. Two-degrees of freedom controller.

Theorem 1. A two-degrees of freedom controller can
be expressed as a one-degree of freedom controller
for a 2-inputs/2-outputs plant with a structured 2-
inputs/2-outputs controller.

Proof: Figure 2 can be modified to obtain the
following scheme of Figure 3.
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Fig. 3. Two-degrees of freedom controller modelled
as a 2-inputs/2-outputs system.

With the following equivalence between transfers:
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4. PARAMETRIZATION OF ALL
STABILIZING CONTROLLERS

4.1 General consideration.

Figure 4 considers a general feedback loop, with the
classical notations used in our following
developments.
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Fig. 4. General feedback loop



Theorem 2. Let:

G=NM"'=M"'N 5)
and: Ko=U,V," =V5' U, (6)
be the fractional representations of G and K, respec-

tively. If K|, is a stabilizing controller, then N, M,
Uy.V,,N,M, U, and V, can be chosen such that:
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Proof: See (Maciejowski, 1989)

Theorem 3. Let Eqs. 5 and 6 verified, such that Eq. 7
holds. For any compatible dimensions stable transfer
matrix Q, define:
U = UO + MQ
U=0,+QM

V=V,+NQ (8)
V=V,+QN 9)

1) Then UV =V7!U and K=UV ! =V~'U
is a stabilizing controller for G given by Eq. 5.

2) Furthermore, any stabilizing controller has
fractional representation Eq. 8 and Eq. 9.

Proof: See (Maciejowski, 1989)

4.2 Parametrization of all stabilizing controllers for
a two-degrees of freedom controller represented
as a 2-inputs/2-outputs system.

According to the previous notations, the system
represented Figure 3 can be modelled with the
following matrices:

0 1
C; 0
Ko{ 1 } G=|y_Hu | (0

The aim is thus to find a fractional representation that
holds Eqgs. 5, 6 and 7 in order to parametrize all
stabilizing controllers as stated by Eqs. 8 or 9. In
order to achieve that, C; and C, may be
decomposed into a numerator and denominator part:

C1=Cy, [Cryq Cy=Cy, [Caq

With this notation, the closed loop of Figure 2 is:
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assuming that the characteristic polynomial of this
closed loop can be separated in a control polynomial

A, and an observer polynomial 4, , both stable, as
in pole placement, see (Astrdm and Wittenmark,
1997).

The fractional representation must hold Egs. 5, 6 and
7. These expressions include eight matrices equations
with eight unknown parameters. In these equations, it
is straightforward to show that:
\NIO UO - ﬁo VO = 0
~-NM+MN =0
are redundant in Eqs. 6 and 7, and in Egs. 5 and 7.

Only six equations remain with eight unknown
parameters, as follows:
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However, if M and M are fixed, the other unknown
parameters can be derived solving previous relations:
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The fractional representation found in this way is
valid if all transfers of N,M,U(,,V,,N,M,U, and
V,, are stable.

Theorem 4. For a system with structure of Figure 3, a
Youla parametrization exists such that the four
transfers of the system can be expressed as:
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Where each transfer is parametrized independently
from the others, and with Q; ; free stable transfers.
Taking into account the equivalences in Eq. 4, the
transfer modified by each parameter Q; ; is:
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n Wy r d
0, modifies A _Im 05, modifies 2 _Im
n Wy r d
Proof: Choosing:
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the following fractional representation is obtained
according to Eq. 13:
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Each transfer is stable because K, is considered as a
stabilizing controller and 4, and 4, are both stable.

With this fractional representation and applying Eq. 8
or Eq. 9, all stabilizing controllers can be deduced.
Applying Eq. 8, e.g., the following controller is
found:
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In the other hand, the system of Figure 3, with the
controller Eq. 17, has the input/output transfers:
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e AK 5
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Replacing in these transfers the controller found with
Eqgs. 17 and 18 leads after calculation to the transfers
of Theorem 4, Eq. 14, which achieved the proof.

4.3 Back to the diagonal controller.

In order to find the class of stabilizing controllers that
can be implemented as two-degrees of freedom
controllers, only the diagonal controllers in the
previous parametrization of all stabilizing controllers
are considered. As a consequence, Ky = K51 =0 is
imposed, leading to the following controller after
calculations:
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Ky = Ciy Con+Hy O
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with:
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Consequently, among the four parameters Q;;, 02,
0,1 and O, , only two of them remain free and only
two transfers can be independently modified.

4.4 Application to a two-degrees of freedom GPC-
controller initially designed with C(q_l) =1.

According to Figure 1 and previous notations, the
plant and the controller are respectively given by the
following relations:
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A is introduced in the denominator of H in order to
preserve the integral action of the controller even
after parametrization. Applying Eq. 20, all stabilizing
diagonal controllers are:
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N;, N,, N, and A have been adjusted to provide
the desired behaviour of the y/w transfer. To maintain
this transfer unchanged, (J;; must be zero, and the
final controller becomes (Figure 5):
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Fig. 5. Parametrization of the RST controller keeping
the y/w transfer unchanged.

The only transfer to be modified thus remains y/d via
the Q;, parameter. This particular result, deduced
from the general “full” Youla parametrization
presented above, is similar to the parametrization
proposed by (Kouvaritakis, et al., 1992; Yoon and
Clarke, 1995; Ansay, et al., 1998).

This transfer y/d is expressed as:
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with 4, A, = AASy+q 'BR,,.

5. APPLICATION TO AN INDUCTION MACHINE

An interesting application of the previous result is
connected to rejection of measurement noise in high
frequencies, and (), can be chosen for that purpose
to induce a ‘low pass’ behaviour to the y/d transfer
and enhance robustness of the initial GPC controller
against high frequencies uncertainties. Consider the
speed control of an induction motor, for which
measurement noise rejection must be achieved. An
identified transfer function of this induction motor,
between torque and velocity, (Dumur and Boucher,
1998) is, for a Sms sampling period:

g 'B(g7") 13447 +3.024¢72
A(g™H  1-0.98¢71-0.02¢72

H(g™)=

An initial GPC controller is designed with
C(q_1)=l with the following tuning parameters
selected according to rules given in (Dumur and
Boucher, 1998): Ny =1,N, =8, N, =1,A=200.
The velocity and torque signals corresponding to a
step setpoint are given respectively Figures 6 and 7
upper part. For this simulation, a zero mean random
measurement noise of 0.25° variance is added as
shown on Figure 2. The influence of this noise on the
output and on the control signal clearly appears.
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Fig. 6. Velocity output (upper part: initial GPC, lower
part: robustified GPC)
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Fig. 7. Torque signal (upper part: initial GPC, lower
part: robustified GPC)



To enhance the behaviour of the system with regard
to the measurement noise, the (J, parameter is
chosen in order to confer to the y/d transfer a low pass
behaviour. For that purpose, this choice may be
performed through an optimisation procedure, or for
example here following (Ansay, et al., 1998). The 4
polynomial is first factorised in stable and unstable
parts, A= A° A", then Q)5 is chosen as:

*

O = o

The transfer y/d is thus:

vy _q 'BRg -V M®
d A, A, C*

* *
M and C can be chosen as:

M=,
C =(-p g H0-uy g™

Figures 6 and 7 (lower part) show the response
obtained for u; =0.9 and p, =0.8. The influence
of the measurement noise is obviously smaller, both
on the velocity output and the torque signal,
compared to results with the previous controller.
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Fig. 8. Frequency response of the y/d transfer

0 T
Module (dB) .,

dop L e A
,hitalGPC ——— 7

o0l -t 7\\7\\7\\7\:7 7‘7‘7“7“7”:’ Ry NN
' Robustified GPC ' ' !
| S A A R SR 4O R B I I X D R IR AR

-30

 Frequency (rad/s) '

107" 10° 10' 10° 10°

Fig. 9. Frequency response of the u/d transfer

Figures 8 and 9 give the frequency response of the y/d
and u/d transfers, showing that the low-pass
behaviour of both transfers has been increased due to
the parametrization.

6. CONCLUSIONS

A general method which parametrizes all two-degrees
of freedom stabilizing controllers has been presented
through the definition of the Youla parameters. This
theory has been applied to the GPC structure as a
particular case of two-degrees of freedom controllers,
in order to robustify its performance.

Moreover, a restricted family of stabilizing
controllers keeping particular transfers unchanged has
been examined. It has been shown that, for the case
where the input/output transfer remains invariant, the
presented theory leads to classical results found in the
literature.

This strategy has been applied to a GPC-controlled
induction motor, to improve measurement noise
rejection. A good behaviour is obtained, mainly on
the control signal, compared to GPC without extra
degree of freedom.

With the general results presented here, other
transfers than those classically considered may be
robustified, using an optimisation procedure for the
design of the Youla parameters.
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