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Abstract: A class of control systems, modeled as a finite set of differential equations
with parameters uncertainty and with sector bounded nonlinearities is considered. Each
model of this family describes the individual mode (or regime) of the system. The
transitions between these modes are described by a homogeneous Markov chain. At
the moment of discontinuous mode change the state vector can be changed by jump
with uncertain parameters. The static output feedback control law is obtained, which
guarantees exponential stability in the mean square of closed-loop system for all plant
parameters uncertainty, all jump parameters uncertainty, and for all transition probabilities
matrix uncertainty from the given domains.Copyright ©2002 IFAC
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1. INTRODUCTION

In real life we can find a lot of dynamical systems
with random jumping changes of their structure or
parameters, such as aerospace systems, manufacturing
systems, economic systems, etc., see, for example, the
books by Kats (1998), Kazakov and Artem’ev (1980),
Mariton (1990) and the references therein. Systems
with random jumps arehybrid ones with many op-
erating modes. Every mode corresponds to an indi-
vidual deterministic or stochastic dynamics. The sys-
tem mode switching is governed by a Markov process
with a finite set of statesIN = {1, 2, . . . , ν} (Markov
chain). When the modei ∈ IN is fixed, the plant state
evolves according to the corresponding individual dy-
namic. So the state space of these systems is naturally
hybrid: to the usual plant state inIRn we append a
discrete variable taking values in the setIN.

The stability and control theory for the systems with
random jumps began to develop since the pioneer-
ing works of Kats and Krasovskii (1960), Krasovskii
and Lidskii (1961) correspondingly. The stochastic

moment approach to the stability problem was intro-
duced by Mil’stein (1972). The linear quadratic (LQ)
control problem was solved by Sworder (1969) using
stochastic maximum principle for state feedback in
finite horizon case. Wonham (1970) obtained the same
results using dynamic programming for both finite
and infinite horizon cases. He also obtained a set of
sufficient conditions for the existence of a finite solu-
tion. Kazakov and Artem’ev (1980) have developed a
general theory of random structure systems based on
Fokker-Planck-Kolmogorov type equation approach.
Now, due the large number of applications several
results for this class of systems can be found in the
current literature, regarding stability, optimal control,
stabilization, controllability and observability prob-
lems, see for instance (Ji and Chizeck, 1990; Kats,
1998; Mariton, 1990) and the references therein. For
the latest papers in this field the reader is addressed
to Proceedings of the European Control Conference
(Porto, Portugal, 4-7 September 2001).

Robust control offers the advantage to design a con-
troller which enables us to cope with the uncertainties
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which appear in the more realistic models. Few papers
dealing with the robustness of the class of systems
with random jumps have been published. The stability,
stabilization,H2, H∞, mixedH2/H∞ problems and
their robustness have been investigated.

Boukas (1995) has considered the robustness of the
class of linear piecewise deterministic systems whose
uncertainties are upper bounded. A sufficient condi-
tion for stochastic stabilizability of this class of sys-
tems has been given under a state feedback control
law. Boukas and Yang (1997) have dealt with the
uncertain nonlinear piecewise deterministic systems.
Under some special matching conditions, they have
established sufficient conditions, which guarantee the
stochastic stability robustness of this class of systems.
Without any intention of being exhaustive here, we
quote the papers by Shi (1996), Benjelloun,et al.
(1998) and the references therein.

De Souza and Fragoso (1993) was considered theH∞
problem for both finite and infinite horizon cases. It is
shown that the finite-horizon problem can be tackled
via a certain set of interconnected Riccati differential
equation, while the solution for the infinite horizon
case is based upon a set of interconnected algebraic
Riccati equation. Aliyu and Boukas (1999) considered
mixedH2/H∞ control problem and studied its robust-
ness. The linear matrix inequality (LMI) optimization
approach, see (Boyd,et al., 1990) is effectively used
in cited papers.

Usually it is supposed for considered class of systems
that only the plant has parameters uncertainty. In this
paper we study the robust static output feedback con-
trol problem in the case, when the plant contains sector
bounded (Lur’e type) nonlinearities and both the plant
and the regime change process (matrix of transition
probabilities) have uncertainty in their parameters.
Moreover we suppose that at the moment of mode
(regime) change the plant state vector can be changed
by jump with uncertain parameters. We develop here
some ideas by Pakshin (1997), Pakshin and Retinskii
(2001), and use the game theoretic approach (Basar
and Bernhard, 1995; Kogan, 1999) for solution of the
robust control problems under study.

The paper is organized as follows. In Section 2 we
give the mathematical description of the considered
nonlinear system. In section 3 we formulate and solve
robust control problem against both plant parameters
uncertainty and jump parameters uncertainty, formal-
ized in the form of quadratic inequalities. We obtain
this control in the explicit form of linear switching
(regime dependent) plant state feedback, which guar-
antees exponential stability in the mean square of the
considered system. In section 4 we obtain the per-
fect robust control i.e. the robust control against plant
parameters uncertainty, jump parameters uncertainty
and regime change parameters uncertainty. Some short
concluding remarks ends the paper.

2. SYSTEM DESCRIPTION

Consider a control system described by the family of
differential equations

ẋ(t) = [A(rt) + F(rt)Ω(t, rt)E(rt)]x(t) +

B(rt)u(t) + D(rt)ϕ(t, zt),

y(t) = C(rt)x(t), z(t) = L(rt)x(t), (1)

wherex(t) is the n-dimensional plant state vector;
u(t) is thek-dimensional control vector;y(t), z(t)
are s-dimensional andm- dimensional output vec-
tors; rt is homogeneous discrete state Markov pro-
cess (Markov chain) representing a mode (or regime)
of system and taking values in a finite setIN =
{1, . . . , ν} with a matrix of transition probabilities
P(τ) = [pij(τ)]ν1 , from modei to modej during the
time interval [t, t + τ ] given byP(τ) = exp(Qτ),
pij(τ) = P{r(t + τ) = j | r(t) = i} (i, j ∈ IN),
Q = [qij ]ν1 , qij ≥ 0 (i 6= j), qii = −

∑ν
j 6=i qij ;

Ω(t, rt) is a matrix of uncertain parameters, satisfying
for everyt andrt the following inequality

I−ΩT (t, rt)Ω(t, rt) ≥ 0; (2)

ϕ(t, z) is a nonlinearm-dimensional vector function,
whose components have form

ϕl(t, z) = ϕl(t, zl),

ϕl(t, 0) = 0 (l = 1, ...,m) (3)

and satisfy restrictions

0 ≤ ϕl(t, zl)zl ≤ κl(i)z2
l , if rt = i

(l = 1, . . . ,m, i ∈ IN); (4)

A(i),B(i),L(i),C(i),D(i),E(i),F(i) (i ∈ IN) are
known matrices of appropriate dimensions. For sim-
plicity, but without the loss of generality we assume
thatκl(i) = 1 (l = 1, . . . ,m, i ∈ IN). Then we can
write

ϕ(t, z)Γ[ϕ(t, z)− z] ≤ 0, (5)

whereΓ = diag[γl]m1 (γl > 0, l = 1, . . . ,m).

Let τ > t0 be the moment of discontinuous mode
change, i.e. the moment of transition fromr(τ−0) = i
to r(τ) = j 6= i. It is supposed that at the momentτ
the plant state vectorx can changed discontinuously
too and its value after jump linearly dependent on the
same value before the jump:

x(τ) = [Φij + FijΩij(τ − 0)Eij ]x(τ − 0), (6)

whereΦij , Fij , Eij (i, j ∈ IN), i 6= j aren × n
constant matrices,Ωij(t), (i, j ∈ IN) are matrices
of uncertain parameters, satisfying for everyt the
following inequalities

I−ΩT
ij(t)Ωij(t) ≥ 0 (i, j ∈ IN). (7)



Note that as a rule the case of continuous change of
the plant state vector is considered(Φij = I), but
in many real systems the situation, when some plant
state variables are changed by jump is more typical.
This situation is natural for mechanical systems with
sudden change of mass or moment of inertia; in this
case the linear or angular velocity will be changed by
jump, see (Kats, 1998) for more details.

3. ROBUST CONTROL AGAINST THE PLANT
PARAMETERS UNCERTAINTY

Suppose that both output vectory(t) and mode change
processr(t) are available for controller. Let the con-
trol law has the form of static linear output feedback

u(t) = −K(i)y(t), if r(t) = i, (8)

such that for every fixedi ∈ IN it is stabilizing control
for deterministic system

ẋ(t) = A(i)x(t) + B(i)u(t),

y(t) = C(i)x(t),

or in other words such that the matrices

Ac(i) = A(i)−B(i)K(i)C(i) (i ∈ IN)

are Hurwitz. The matrixK(i) can be obtained by
known methods of solving of the deterministic static
output feedback control problem, see (Syrmoset al,
1998). In this section we obtain an additional condi-
tions for this matrix which guarantees that the control
law (8) stabilizes the original system (1) in the sense
of exponential stability in the mean square for all plant
parameters uncertainty, satisfying inequality (2), all
nonlinearities, satisfying (3), (4) and for all jump pa-
rameters uncertainty, satisfying (7). We say that such
a control is robust stabilizing control. For this purpose
we introduce an auxiliary system

ẋ(t) = A(rt)x(t) + B(rt)u(t) +

F(rt)v(t) + D(rt)v1(t), (9)

y(t) = C(rt)x(t), z(t) = L(rt)x(t), (10)

x(τ) = Φijx(τ − 0) + Fijvij(τ − 0), (11)

wherev(t), v1(t), vij(t)(i, j ∈ IN) are random
disturbance vectors. If

v(t) = Ω(t, rt)E(rt)x(t), (12)

v1(t) = ϕ(t, zt), (13)

vij(t) = Ωij(t)Eijx(t), (14)

then the system (9) coincides with original system (1).

Let us define the vector of all disturbances asw =
[v,v1,vij ]T (i, j ∈ IN). We say that the disturbances
are admissible if

E{
∞∫
0

wT (t)w(t)dt} < ∞,

whereE is the expectation operator.

Consider the cost functional of the form

J(u,w) = Ex{
∞∫
0

[xT (t)[M̄(rt)x(t) +

uT (t)R(rt)u(t)− vT
1 (t)Γ(v1(t)− z(t))−

γvT (t)v(t)−
ν∑

j 6=r

γrjvT
rj(t)vrj(t)qrj ]dt} (15)

along the trajectories of the system (9), whereEx is
the expectation operator atx0 = x; γ, γij(i, j ∈
IN) are positive numbers;Γ = diag[γl]m1 is positive
definite matrix,M̄(i) = S(i) + M+(i), S(i) =
M(i) + γET (i)E(i) +

∑ν
j 6=i γijET

ijEijqij ; M(i) =
MT (i) (i ∈ IN) is positive semidefinite matrix.
M+(i) = MT

+(i) (i ∈ IN) is positive definite
matrix. The disturbances will attempt to maximize
this functional, while the control will to keep it to a
minimum.

Define the worst-case disturbance as

w∗ = arg max
w

J(u,w)

This disturbance satisfy the Hamilton-Jacobi equation
(Basar and Bernhard, 1995)

max
w
{LV (x, i) + Θi(x,u,w} = 0, (16)

whereL is the differential generator of the Markov
process{xt, rt}t≥0 along the trajectories of the sys-
tem (9) with jump conditions (11), andΘi(x,u,w) =
xT M̄(i)x + uT R(i)u − vT

1 Γ(v1 − z) − γvT v −∑ν
j 6=i γijvT

ijvij(t)qij(i ∈ IN). Taking into account
that

LV (x, i) =
[
∂V (x, i)

∂x

]T

[A(i)x + B(i)u +

F(i)v + D(i)v1] +
ν∑

j 6=i

[V (Φijx + Fijvij , j)−

V (x, i)]qij ,

see (Kats, 1998) and choosing the Bellman function
in the quadratic formV (x, i) = xT H(i)x we can
rewrite (16) as

max
w
{2xT H(i)[A(i)x + B(i)u +

F(i)v + D(i)v1] + xT M̄(i)x +

uT R(i)u− γvT v − vT
1 Γ(v1 − Lx) +

ν∑
j 6=i

[xT (ΦT
ijH(j)Φij −H(i))x−

γijvT
ijvij + 2xT ΦT

ijH(j)Fijvij +



vT
ijF

T
ijH(j)Fijvij ]qij} = 0. (17)

By standard calculations from (17) we obtain that the
worst case disturbances for the system (9) with jump
conditions (11) and withr(t) = i are given by

v∗ = G(i)x, v∗1 = G1(i)x, if r(t) = i, (18)

v∗ij = Gijx, i, j ∈ IN, (19)

where

G(i) = γ−1FT (i)H(i), (20)

G1(i) = Γ−1[DT (i)H(i) +
1
2
ΓL(i)], (21)

Gij = [γijI− FT
ijH(j)Fij ]−1FT

ijH(j)Φij , (22)

and the matrixH(i) satisfies the system of coupled
matrix quadratic equations:

H(i)Ac(i) + AT
c (i)H(i)−

H(i)B(i)R−1(i)BT (i)H(i) +

γ−1H(i)F(i)FT (i)H(i) + M̄(i) +

(H(i)D(i) +
1
2
LT (i)Γ)Γ−1(H(i)D(i) +

1
2
LT (i)Γ)T +

ν∑
j 6=i

[ΦT
ijH(j)Φij −

H(i) + ΦT
ijH(j)Fij(γijI−

FT
ijH(j)Fij)−1FT

ijH(j)Φij ]qij = 0. (23)

If there exists a positive definite solutionH(i) i ∈ IN
of the equation (23) then for all admissible distur-
bances we have

0 > 2xT H(i)[A(i)x + B(i)u + F(i)v∗ +

D(i)v∗1] + xT S(i)x + uT R(i)u−
γv∗T v∗ − v∗1

T Γ(v∗1 − L(i)x) +
ν∑

j 6=i

[xT (ΦT
ijH(j)Φij −H(i))x−

γijv∗ij
T v∗ij + 2xT ΦT

ijH(j)Fijv∗ij +

v∗ij
T FT

ijH(j)Fijv∗ij ]qij >

2xT H(i)[A(i)x + B(i)u + F(i)v +

D(i)v1] + xT M(i)x + uT R(i)u−
γ[vT v − xT ET (i)E(i)x]− vT

1 Γ[v1 −

L(i)x] +
ν∑

j 6=i

[xT (ΦT
ijH(j)Φij −H(i))x−

γij [vT
ijvij − xT ET

ijEijx] +

2xT ΦT
ijH(j)Fijvij + vT

ijF
T
ijH(j)Fijvij ]qij .

It follows from this inequality that if the system of
matrix equations (23) has positive definite solution
H(i) i ∈ IN then along the trajectories of the the
system (9) withu given by (8) we have

LV (x, i) + xT M(i)x + uT R(i)u−
γ[vT v − xT ET (i)E(i)x]−

vT
1 Γ[v1 − L(i)x]−

ν∑
j 6=i

γij [vT
ijvij − xT ET

ijEijx]qij < 0. (24)

Substituting in (24) the disturbance given by (12),
(13), (14) we obtain according to Kats (1998) and
taking into account theS-procedure, see (Boydet al.,
1994), that the system (1) is robustly stable. The robust
stabilizing control law is given by (8). It is easy to
see that in this case the disturbances (13)-(14) are
admissible. So we have proved the following theorem.

Theorem 1.Let for some positive scalarsγ, γl(l =
1, . . . ,m), γij (i, j ∈ IN) and matricesM(i) ≥
0, R(i) > 0 there exists a positive definite solution
H(i) (i ∈ IN), of the system of coupled matrix
quadratic inequalities

H(i)Ac(i) + AT
c (i)H(i)−

H(i)B(i)R−1(i)BT (i)H(i) +

γ−1H(i)F(i)FT (i)H(i) + S(i) +

(H(i)D(i) +
1
2
LT (i)Γ)Γ−1(H(i)D(i) +

1
2
LT (i)Γ)T +

ν∑
j 6=i

[ΦT
ijH(j)Φij −

H(i) + ΦT
ijH(j)Fij(γijI−

FT
ijH(j)Fij)−1FT

ijH(j)Φij ]qij < 0. (25)

Then the output feedback control (8) is the ro-
bust stabilizing control. The functionV (x, i) =
xT H(i)x (i ∈ IN) is stochastic Lyapunov function
which guarantees robust stability of the system (1).

4. PERFECT ROBUST STABILIZING CONTROL

As a rule the jumping variabler(t) has uncertainty
in its parameters too. We suppose that the matrixQ
of transition intensities of Markov chainr(t) is not
exactly known and we have only some bounds for its
elements (maximal "switching frequency"):

qi = −qii ≤ q̄i. (26)

In this section we obtain a state feedback control in
the same form as in previous section such that the
closed loop system (1) is exponentially stable in the
mean square for all transition probabilities, satisfying
(26), for all plant parameters uncertainty, satisfying
inequality (2), for all nonlinearities, satisfying (3) (4)
and for all jump parameters uncertainty, satisfying (7)
We say that such a system is perfectly robustly stable
and appropriate control is perfect robust stabilizing
control. To solve the stated robust control problem



consider the set of the following auxiliary determin-
istic systems

ẋ(t) = A(ρi, i)x(t) + B(i)u(t)dt +

F(i)v(t) + D(i)v1(t), (27)

with the corresponding cost functionals

Ja(u,v,v1) =

∞∫
0

[xT (t)[M̃(i)x(t) +

uT (t)R(i)u(t)− vT
1 (t)Γ(v1(t)−

L(i)x)− γvT (t)v(t)]dt, (28)

whereA(ρi, i) = A(i)+ 1
2ρiI, ρi is a positive scalar,

M̃(i) = M(i)+M+(i)+γET (i)E(i) (i ∈ IN); u(t)
is the control vector andv(t) ∈ L2[0,∞), v1(t) ∈
L2[0,∞) play the role of disturbances.

Theorem 2.Let for some positive scalarsγ, γl (l =
1, . . . ,m), αi, ρi, γij (i, j ∈ IN) and matrices
M(i) ≥ 0, R(i) > 0 the system of inequalities

H(i)Ac(ρi, i) + AT
c (ρi, i)H(i)−

H(i)B(i)R−1(i)BT (i)H(i) + M(i) +

γET (i)E(i) + γ−1H(i)F(i)FT (i)H(i) +

(H(i)D(i) +
1
2
LT (i)Γ)Γ−1(H(i)D(i) +

1
2
LT (i)Γ)T < 0, (29)

ν∑
j 6=i

ΦT
ijHjΦij − ΦT

ijHjFij [FT
ijH(j)Fij −

γijI]−1FT
ijH(j)Φij + γijET

ijEij ≤ αiHi, (30)
ρi

αi
≥ q̄i, (31)

ΦT
ijHjΦij − ΦT

ijHjFij [FT
ijH(j)Fij −

γijI]−1FT
ijH(j)Φij + γijET

ijEij ≥ 0, (32)

where

Ac(ρi, i) = A(ρi, i)−B(i)K(i)C(i) (i ∈ IN),

has positive definite solutionH(i) (i ∈ IN). Then the
control (8) is perfect robust stabilizing control for the
system (1).

PROOF. Define the worst-case disturbances as

[v∗ v∗1]
T = arg max

v,v1
Ja(u,v,v1)

and suppose that the control law is given by (8). It
follows from Theorem 1, see also (Kogan, 1999), that
these disturbances are given by (18), where matrices
G(i), G1(i) are defined by the formulae (20), (21)
and matrixH(i) (i ∈ IN) is positive definite solution
of the following matrix equation.

H(i)Ac(ρi, i) + AT
c (ρi, i)H(i)−

H(i)B(i)R−1(i)BT (i)H(i) +

γ−1H(i)F(i)FT (i)H(i) + M̃(i) +

(H(i)D(i) +
1
2
LT (i)Γ)Γ−1(H(i)D(i) +

1
2
LT (i)Γ)T = 0. (33)

This solution exists for some positive definite matrix
M+ in virtue of the inequality (29). From (29), taking
into account thatv∗,v∗1 maximize the left hand side
of (33) and (31) we have for allx ∈ IRn

0 > 2xT H(i)[A(i)x + B(i)u +

F(i)v∗ + D(i)v∗1]x + xT (M(i) +

γET (i)E(i))x + uT R(i)u− γv∗T v∗ −
v∗1

T Γ(v∗1 − L(i)x) +

ρixT H(i)x ≥ 2xT H(i)[A(i)x +

B(i)u + F(i)v + D(i)v1]x +

xT M(i)x + uT R(i)u−
γ[vT v − xT ET (i)E(i)x]− vT

1 Γ[v1 −
L(i)x] + xT αiq̄iH(i)x. (34)

For the last term in (34) taking into account the prop-
erty of the matrixQ and (30), (32) we obtain

xT αiq̄iH(i)x ≥ xT
ν∑

j 6=i

qij [ΦT
ijH(i)Φij −

H(i)− ΦT
ijHjFij [FT

ijH(j)Fij −
γijI]−1FT

ijH(j)Φij + γijET
ijEij ]x =

ν∑
j 6=i

qijxT [[ΦT
ijH(i)Φij −H(i) +

γijET
ijEij ]x + 2xT ΦijH(j)Fijv∗ij +

v∗T
ij(F

T
ijH(j)Fij − γijI)v∗ij ], (35)

wherev∗ij is given by (19), (22). It is easily to see
that such av∗ij maximizes the right hand side of (35).
Then for all admissible disturbances the following
inequality is true

ν∑
j 6=i

qijxT [[ΦT
ijH(i)Φij −H(i) +

γijET
ijEij ]x + 2xT ΦijH(j)Fijv∗ij +

v∗T
ij(F

T
ijH(j)Fij − γijI)v∗ij ≥

ν∑
j 6=i

qijxT [ΦT
ijH(i)Φij −H(i) +

γijET
ijEij ]x + 2xT ΦijH(j)Fijvij +

vT
ij(F

T
ijH(j)Fij − γijI)vij ]. (36)

It follows from (34), (36) that along the trajectories of
the the system (9) withu given by (8) the inequality
(24) holds. Substituting in (24) the disturbance given



by (12), (13), (14) we obtain according to (Kats,
1998) and taking into account theS-procedure, see
(Boyd et al., 1994), that the system (1) is perfectly
robustly stable and the robust stabilizing control law
is given by (8). It is easy to see that in this case the
disturbances (13)-(14) are admissible. The function
xT H(i)x is stochastic function of Lyapunov which
guarantees perfect robust stability of system (1).

5. CONCLUSION

To compute the robust output feedback control law in
the form of (8) it is necessary to solvethe standard de-
terministic output feedback control problem together
with the additional system of standard linear matrix
inequalities and nonstandard quadratic matrix Riccati
like inequalities. One possible approach is to formu-
late this problem as a consequent iterative procedure
of solution of linear matrix inequalities (LMI) (Boyd
et al., 1994), leading to numerical MATLAB based
algorithms.
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